
Neuron

Article

A Biophysically Detailed Model
of Neocortical Local Field Potentials Predicts
the Critical Role of Active Membrane Currents
Michael W. Reimann,1,4 Costas A. Anastassiou,2,3,4,* Rodrigo Perin,1 Sean L. Hill,1 Henry Markram,1 and Christof Koch2,3
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SUMMARY

Brain activity generates extracellular voltage fluctua-
tions recorded as local field potentials (LFPs). It is
known that the relevant microvariables, the ionic cur-
rents acrossmembranes, jointly generate themacro-
variables, the extracellular voltage, but neither the
detailed biophysical knowledge nor the required
computational power have been available to model
these processes. We simulated the LFP in a model
of the rodent neocortical column composed of
>12,000 reconstructed, multicompartmental, and
spiking cortical layer 4 and 5 pyramidal neurons
and basket cells, including five million dendritic and
somatic compartments with voltage- and ion-depen-
dent currents, realistic connectivity, and probabi-
listic AMPA, NMDA, and GABA synapses. We found
that, depending on a number of factors, the LFP re-
flects local and cross-layer processing. Active cur-
rents dominate the generation of LFPs, not synaptic
ones. Spike-related currents impact the LFP not
only at higher frequencies but below 50 Hz. This
work calls for re-evaluating the genesis of LFPs.

INTRODUCTION

Extracellular voltage recordings (Ve), the voltage difference be-
tween a point in the extracellular space and a reference elec-
trode, are the primary method of monitoring brain processing
in vivo. Such recordings are high-pass filtered to isolate spiking.
Slower Ve fluctuations (typically <300 Hz), referred to as local
field potentials (LFPs), reflect the summed electric activity of
neurons and associated glia and provide experimental access
to the spatiotemporal activity of afferent, associational, and local
operations (Buzsáki, 2004). The relationship between electric
activity of nerve and (presumably) glia cells and the LFP has re-
mained mysterious (for a review, see Buzsáki et al., 2012). LFPs
have traditionally been viewed as a reflection of cooperative
postsynaptic activity (Lindén et al., 2011; Mitzdorf, 1985). Yet,
even when synaptic activity is blocked, neural populations can

show emergent activity associated with large LFP deflections
(Buzsaki and Traub, 1996; Buzsaki et al., 1988; Jefferys and
Haas, 1982). What is clear is that nonsynaptic events, such as
the spike afterpotential and intrinsic oscillatory membrane cur-
rents, can contribute to the recorded LFP (Anastassiou et al.,
2010, 2011; Belluscio et al., 2012; Buzsáki et al., 2012; Buzsaki
et al., 1988; Ray and Maunsell, 2011; Schomburg et al., 2012).
A major advantage of extracellular recording techniques is

that, in contrast to other methods used to study network activity,
the biophysics related to these measurements are well under-
stood (Buzsáki et al., 2012). This has enabled the development
of reliable and quantitative mathematical models to elucidate
how transmembrane currents give rise to the recorded electric
potential (Gold et al., 2006; Lindén et al., 2011; Pettersen et al.,
2008; Schomburg et al., 2012). In particular, models emulating
realistic morphology, physiology, and electric behavior, as well
as connectivity, can provide insights into the origin of different
kinds of extracellular signals because they allow precise control
and access of all variables of interest. Here, we use a very large-
scale model consisting of more than 12 thousand morphologi-
cally and functionally realistic neurons, simulated using more
than five million spatial compartments and 35 million discrete
synaptic and membrane currents, connected with each other
based on rules that capture many aspects of measured connec-
tivity (Hill et al., 2012; Perin et al., 2011). In particular, we account
for the presence of neocortical (S1, hindlimb area) excitatory
(layer 4, L4, and layer 5, L5, pyramidal neurons) and inhibitory
(L4 and L5 basket cells) neurons. We investigate the impact of
slow (approximately 1 Hz) external activity impinging on neurons
and its effect on the resulting LFP signature.
Such rhythmic activity is relevant, for example, in the case of

the most prominent of cortical processing, slow-wave activity
(SWA, 0.1–1 Hz). Found in humans (Achermann and Borbély,
1997) and animals (Steriade et al., 1993a, 1993b, 1993c), SWA
involves large areas of neocortex, along with various subcortical
structures, that are synchronized into cyclical periods of global
excitation followed by widespread silence. SWA is a defining
characteristic of slow-wave, deep, or non-REM sleep but also
occurs under anesthesia and in isolated cortical preparations.
Neocortical cells discharge during the trough of the LFP and
remain silent during the peak of the LFP recorded from deep
layers of cortex. Active and silent periods of this slow oscillation
are referred to as UP (high conductance) and DOWN (low
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conductance) states. This robust neocortical oscillation coordi-
nates various other rhythms, including spindles and delta waves
(Steriade et al., 1993a, 1993b, 1993c) and faster activity (Mukov-
ski et al., 2007).

Although we do not attempt to emulate the biophysical details
of SWA involving a multitude of internal and external inputs, our
large-scale, bottom-up biophysical model provides insights into
the origin of the LFP signal, in the presence of active membrane
conductances, realistic neural morphologies, and network con-
nectivity patterns.

RESULTS

Based on hundreds of morphologically and functionally recon-
structed neurons (Druckmann et al., 2007; Hay et al., 2011) (Fig-

ure S1 available online), the network model was built to capture
many aspects of connectivity (Figure 1) (Hill et al., 2012; Ober-
laender et al., 2012; Perin et al., 2011). Neural membrane pro-
cessing of every compartment of every neuron is reflected in
Ve by superposing membrane current contributions from each
neural compartment using the line source approximation (Holt
and Koch, 1999). That is, Ve at every location in extracellular
space results from the linear summation of all membrane cur-
rents throughout the volume, scaled (to a first order inversely)
by the distance to the current source (see the Experimental Pro-
cedures). In the present study, we focus on how the microscopic
currents across each membrane sum to give rise to the macro-
scopic LFP signal and neglect any contributions that the LFP,
in turn, might have on the voltage across each membrane (Anas-
tassiou et al., 2010, 2011; Jefferys, 1995).

Figure 1. Intracellular and Extracellular Biophysics of Individual Neurons
First row: 5,471 morphologically reconstructed and interconnected L4 pyramids (red), 5,364 L5 pyramids (green), and 1,700 basket cells (blue). Circles indicate

soma location, and the depth axis is shown on the right. Second row: connectivity probability (bars) as a function of distance to the soma and neural type

(corresponding to the top row). For example, the probability that a basket cell is connected to a L4 pyramidal neuron located within 25 mm is approximately 0.16

(blue bar). Bottom row: extracellular action potentials around the cell body for the three neural types considered (L4 pyramids, L5 pyramids, L5 basket cell)

induced by a brief (10 ms) intracellular somatic current pulse (gray: soma and dendrites; red: axons; see the Experimental Procedures). Left: transmembrane

currents across all neural processes within a particular volume sum to make up the extracellular voltage fluctuations measured by an electrode (circles: iso-

potentials arising from two dendritic current sources). The line source approximation is used to calculate the extracellular contribution of transmembrane currents

across each cylindrical compartment (see the Experimental Procedures).

See also Figure S1.
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Comparison between the extracellular action potential (EAP)
traces elicited during simulated administration of brief (10 ms)
intracellular somatic current injections (Figure 1, bottom row)
and simulation as well as experimental observations (Gold
et al., 2006) demonstrates that our single-neuron representa-
tions accurately reproduce the EAP waveform even though their
reconstruction was optimized to reproduce intracellular rather
than extracellular events (Hay et al., 2011). In fact, accurate
simulation of the EAP waveform can be used as an additional
(and often stricter) measure for the quality of the reconstruction
of a neuron, especially for perisomatic compartments (Gold
et al., 2007).
The prevailing view is that the LFP primarily reflects postsyn-

aptic currents for frequencies lower than approximately 100–

Figure 2. Simulated Network Activity
(A) External excitatory (red) and inhibitory (blue)

synaptic input impinging on a L5 pyramid. In

addition to more than 15 million synapses formed

between the three types of neurons in our simu-

lation, circa 750,000 additional synapses were

placed on the pyramidal cells and activated by

independent Poisson processes with a rate fluc-

tuating at 1 Hz between 3 and 15 events per sec-

ond for excitation and 0.3 and 1.5 events for inhi-

bition. This input, impinging on L4 and L5

pyramids, drives network activity.

(B) Intracellular potential of three individual neu-

rons (red: L4 pyramid; green: L5 pyramid; blue: L4

basket cell).

(C and D) Mean intracellular somatic potential (C)

and spike frequency (D) (total number of spikes/

total number of neurons/10 ms) as a function of

time for all L4 (red) and L5 pyramids (green) and

basket cells (blue).

(E–G) LFP and current source density (CSD) dy-

namics for postsynaptic excitatory and inhibitory

currents (E) in the extracellular space, (F) impinging

along morphologically realistic neurons with pas-

sive, or (G) with active membranes. LFP traces are

plotted in solid black at different locations along

the depth axis (vertical depth is 1mm). CSD shown

along the depth axis (blue: sink; red: source). (Left)

Soma density of L4 (red) and L5 (green) pyramids

and basket cells (blue) as a function of depth to

indicate layering. (Right) Depth axis. Time axis, on

the bottom, is identical for all panels.

See also Figures S1–S4 and Table S1.

150 Hz (Nunez and Srinivasan, 2006),
which stems from the recognition that
extracellular currents from many individ-
ual compartments must overlap in time
to induce a measurable signal, with such
overlap primarily occurring for synaptic
events (Elul, 1971; Logothetis and Wan-
dell, 2004). This assumption, in turn, has
motivated the study of LFPs usingmodels
that account for morphologically realistic
but passive neurons with the statistics of
postsynaptic currents and their spatial
distribution emulating experimental ob-

servations. Yet, the presence of active conductances along the
neural membrane is a highly nonlinear (either voltage- or ion-
dependent) contributor of extracellular currents that cannot be
accounted for via passive elements.
Figure 2 shows the outcome of a large-scale simulation in

which slow (1 Hz) external excitatory (AMPA and NMDA) and
inhibitory (GABAA) synaptic activity impinged along both L4
and L5 pyramidal neurons (Figure 2A). For the active membrane
simulation, this elicits spiking (Figure 2B),which, in turn, gives rise
to local and global postsynaptic activity (Figures 2C and 2D). We
define the depolarizing (hyperpolarizing) part of the external 1 Hz
stimulation as UP (DOWN) state. The spike frequency (Figure 2D)
of the different cell types considered in our simulations agrees
with experimental observations in rodents duringSWA (Fanselow
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andConnors, 2010; Haider et al., 2006; Luczak et al., 2007, 2009;
Sanchez-Vives and McCormick, 2000).

LFP Is Not Determined by Postsynaptic Currents Alone
To understand the different components contributing to the LFP,
we considered three scenarios, each of which has identical
spatiotemporal postsynaptic currents (PSC). We define the
PSC to be the postsynaptic membrane current flowing at the
synapse in response to the synaptic-associated conductance
change, Isyn(t) = gsyn(t)(Vm-Vrev), with gsyn being the synaptic
conductance, Vm is the membrane potential, and Vrev is the
reversal potential (Koch, 1999). In the first scenario, we only
consider the LFP caused by these currents from the roughly 15
million synapses (Figure 2E) by ignoring all nonsynaptic currents
in the calculation of the LFP. Thus, the simulation reflects purely
PSC activity and only accounts for the way synapses are ar-
ranged in space in the absence of neurons. In Figure 2F, we
replay the identical PSC input along every neuron as in the full
simulation (Figure 2G) but, in a more complex scenario than in
Figure 2E, compute the LFP contributed by synapses plus the
morphologically accurate but passive cables. Finally, the last
scenario includes synapses as well as the morphology supple-
mented by all active membrane conductances (Figure 2G).

If we compute the LFP only from synaptic conductances (Fig-
ure 2E), excitatory input (mainly along the basal dendrites; Hill
et al., 2012) on L4 and L5 pyramids gives rise to a negative
LFP deflection extending across L4 and L5 at the onset of UP.
The LFP negativity attenuates during the UP state due to synap-
tic depression (see the Experimental Procedures). During the
DOWN state, synaptic activity is much reduced, resulting in an
LFP close to zero.

How do morphological features of neurons impact the LFP? In
Figure 2F, we replayed the pattern of PSC activation of Figure 2E,
but this time we included morphologically detailed neurons (Fig-
ures 1 and S1) with passive membranes. In this setup, the LFP
contributors are by definition limited to PSC and related passive
‘‘return’’ currents, i.e., currents induced along the neural mem-
brane by impinging synaptic input due to charge conservation
(Buzsáki et al., 2012). (Notably, the impact of return currents is
absent in the simulation shown in Figure 2E.) All sodium, potas-
sium, and calcium currents have been blocked. Oscillatory
external inputs (Figure 2A) give rise to oscillatory intracellular de-
polarization (similar to Figure 2C). Yet, LFP features, such as the
amplitude or the temporal width in the two layers, change dras-
tically compared to Figure 2E. The presence of passive mem-
branes markedly attenuates the amplitude and the temporal
width of the LFP waveform (note the voltage scale bar in Fig-
ure 2E is 5-fold larger than in Figures 2F and 2G). This reduction
is due to the impact of return currents of opposite sign that
cancel out the extracellular impact of locally impinging synaptic
input and low-pass filtering of passive membranes. In particular,
the LFP waveform changes as a function of depth. This is espe-
cially true during the first 50–100 ms of UP.

Active Membrane Conductances of Within-Layer
Pyramidal Neurons Crucially Shape the LFP
How do voltage- and ion-specific membrane conductances
found in all of these neurons shape the LFP? The short answer

is a lot, in particular, compared to the passive cable simulation
(Figure 2F). The LFP amplitude in the active case (Figure 2G;
mid L5 at approx. 1,100 mm cortical depth; mean amplitude:
0.8 mV (active) versus 1.3 mV (passive); mean half-wave width:
60 ms (active) versus 130 ms (passive); see also upcoming sec-
tions and Figure 4) is substantially attenuated. This is caused by
the active conductances giving rise to a leakiermembrane, espe-
cially at the onset and during UP, that, in turn, manifests itself in
spatially extended extracellular multipoles of smaller amplitude
(Figure S2). During DOWN, the difference between active and
passive membrane leakiness is much attenuated because the
membrane conductances in the state of near absence of synap-
tic input are almost identical (Figure S2). In general, adding return
currents (via the inclusion of passivemorphologies) and, in a sub-
sequent step, increasing membrane leakiness (via the inclusion
of active membrane conductances) leads to attenuation of the
LFP amplitude and spatiotemporal width.
Given the linearity of the extracellular resistive milieu (Anastas-

siou et al., 2011; Logothetis et al., 2007 but also see Bédard
et al., 2004), the LFP plotted in Figures 2E–2G is the sumof extra-
cellular contributions from synapses and neurons distributed
across two layers. In Figure 3, we segregate the LFP contribution
of each neural type (top to bottom: L4 pyramids, L5 pyramids,
L4/5 basket cells) for the case shown in Figure 2G. We observe
that the LFP contributors within both layers are currents asso-
ciated with L4 and L5 pyramids. More specifically, in L4, L4
pyramids contribute 46% ± 18% of the LFP (L5 pyramids contri-
bution: 45% ± 18%), whereas in L5, L5 pyramids contribute
52% ± 20% (L4 pyramids contribution: 39% ± 18%). These re-
sults support the view that, under the conditions studied here,
the LFP does not reflect only local population processing but
also outer-layer activity (Figures 3A and 3B), especially in L4.
The LFP in L5 is larger than in L4 due to the large size of L5 py-
ramidal neurons as well as the powerful synaptic drive they
receive along their basal (mainly) and apical dendrites (Fig-
ure 2G). This elicits membrane currents along the whole depth
axis (Figure 3B) so that, while perisomatic compartments still
contribute mostly to the LFP, the apical dendrites of these
neurons also contribute to the LFP in L4, especially during the
transition from DOWN to UP, i.e., during the highly synchronous
barrage of excitation impinging on L5 pyramidal neurons.
Comparatively, L4/5 basket cells, making up only 13% of all

cells with their temporally narrow EAPs (Figure 1, bottom)
(Schomburg et al., 2012) and fairly symmetric and localized
dendritic arbors, contribute very little to the LFP in either layers
(basket cell contribution is 9% ± 2% in L4 and 9% ± 6% in L5;
Figure 3C). The negligible contribution of L4/5 basket cells to
the LFP is in stark contrast to their particularly high level of activ-
ity (their spiking rate reaches up to 75 Hz during UP, Figure 2D),
compared to L4 and L5 pyramidal neurons in our simulations.
The simulated LFP contributions of L4 and L5 pyramids cap-

ture a common experimental observation: the positive LFP
deflections in the perisomatic region and the negative LFP
deflection along basal and apical dendrites during somatic depo-
larization periods (especially at UP onset; see also Figure 4) can
be attributed to the location of excitatory and inhibitory conduc-
tances along the elongated morphology of neurons in combina-
tion with the presence of return currents (Buzsáki et al., 2012).
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Active Membrane Conductances Alter LFP and CSD
Amplitude, Spatial Width, and Constellation
To quantify differences in the spatial extent of the LFP between
the passive (Figure 2F) and active membrane (Figure 2G) simula-
tions, we fit the sum of two, spatially displaced, Gaussian func-
tions (independent variable: location along the depth axis) of
opposite sign to the mean LFP depth profile during UP (Figures
4A–4C) and determined the amplitude, peak location, and the
LFP length scale (described by the half width of each of the
Gaussians). We found that the amplitude changes by approx.
50%–300%, the location by 100–300 mm, and the spatial width
by 30%–40% (values determined 50 ms after onset of UP; Fig-
ure 4D). Differences between active and passive are even greater
during the first 50 ms of UP states (Figure 4A), but we chose to
compare LFP depth profiles after synaptic activity had propa-
gated throughout the network. Thus, in both layers, the presence
of spiking and spike-related currents drastically alters LFP depth
characteristics (amplitude, spatial, and temporal constellation),
with differences being more pronounced in L5 especially during
the first 100 ms of UP (Figure 4A). On the other hand, in L4, the
LFP traces for the active and passive simulation aremore similar,

Figure 3. LFP and CSD Contribution of Indi-
vidual Cell Populations
(A–C) The LFP and CSD contribution of (A) L4 py-

ramidal neurons, (B) L5 pyramidal neurons, and (C)

L4/5 basket cells as a function of depth for the

active conductance simulation shown in Fig-

ure 2G. CSD is shown along the depth axis (blue:

sink; red: source).

See also Figures S2 and S3 and Table S1.

suggesting that the LFP there reflects not
only active membrane processing but
also synaptic and passive processes.
Current source density (CSD) analysis

estimates the negative second-order
spatial derivative of the LFP along the
depth axis of the recordings. Per defini-
tion, the CSD represents the volume
density of the net current entering or
leaving the extracellular space (Nicholson
and Freeman, 1975) and is used as a
measure of synaptic input eliciting so-
called current sinks (for excitatory inputs)
and sources (for inhibitory inputs). In
contrast to the LFP that is a distance-
weighted superposition of currents within
a small volume, the CSD crucially de-
pends on local events along the depth
axis. Thus, it is a better measure for pro-
cesses occurring along the extent of L4
and L5 pyramids.
We calculated the one-dimensional

CSD along the 1 mm depth axis covering
L4 and L5 (Figures 2E–2G and 3; sinks are
in blue, and sources are in red). In the
presence of active membrane conduc-

tances, sodium influx and potassium efflux associated with
spiking gives rise to sinks and sources, respectively, in the vicin-
ity of cell bodies. The oscillatory pattern of impinging synaptic in-
puts gives rise to a temporally oscillatory CSD of the same fre-
quency as well as an intricate spatial structure of the waxing
and waning of two sources (one in each layer) and one sink (in
L5) with a length scale of approximately 250 mm. The aforemen-
tioned LFP differences (amplitude, spatial, and temporal vari-
ance) are also reflected in the CSD characteristics with passive
membranes resulting in temporally wider CSD and differential
sink-source constellation along the depth axis (Figures 2F and
2G). Notably, a current source is present in deep L5 for active
membranes at UP onset (Figure 2G, red areas) that vanishes in
the passive case. More generally, passive membranes exagger-
ated the strength and spatial reach of the induced multipoles
along pyramidal neurons (Figures 2F, 2G, and 4A–4D). Examina-
tion of the CSD contribution of the individual neural types (Fig-
ures 3 and S3) revealed that the presence of active versus pas-
sive membranes altered the overall sink-source constellation
and individual neural type contributions. Yet, for the stimulation
scenarios examined in this paper, the contribution of L5
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Figure 4. Comparison of the LFP Depth Profiles between Active and Passive Membranes
(A) Average LFP trace as a function of cortical depth during themean UP state (mean calculated over the five UP states in Figure 2) for passive (black; simulation in

Figure 2F) and active (red; simulation in Figure 2G) membranes. The blue line indicates the 50 ms instant on which the analyses shown in (B)–(D) are based.

(B) The contribution of all neurons (black), layer 4 (red) and layer 5 pyramids (green), or L4/5 basket cells (blue) as a function of depth (circles: simulation results;

line: best fit with double Gaussian function) in the center of the neural population for active membranes.

(C) Same as (B) but for passive membranes.

(D) Amplitude of the negativity (Aneg) and positivity (Apos), location (cneg and cpos, respectively), and the half-width of the LFP extrema (wneg andwpos, respectively)

of the double Gaussian fits for active (red) and passive (black) membranes (see also Table S1). Color coding as in (B) and (C).

(E) Comparison of network simulations with experimental data. Left: mean CSD of simulation (time zero: UP onset; Figure 4A) with purely passive membrane

conductances (simulation shown in Figure 2F). Middle: meanCSD of simulation, including activemembrane conductances (simulation shown in Figure 2G). Right:

grand average (n = 13 rats) CSD from recordings in rat somatosensory barrel cortex during single-whisker deflections (Riera et al., 2012). The dashed vertical line

on the left indicates the time instant for the whisker deflections. The position of L4 (red) and L5 (green) is indicated by the bars on the left and depth (in mm). The

right panel is partly adopted from Riera et al. (2012) and aligned to the simulation CSDs so as to show the same depth coordinates (a L5 pyramid is shown on the

right for comparison).

See also Figure S2.
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pyramids continues to dominate also in terms of CSD (Figures 3B
and S3B).

Experimentally Measured Sink-Source Constellation
Replicated by Simulations
Which CSD, passive (Figure 2F) or active (Figure 2G), is closer to
CSDs obtained in vivo? Answering this question involves
comparing CSDs during various brain states that can differ
greatly. Riera et al. (2012) recently conducted detailed experi-
ments in rat somatosensory barrel cortex and measured the
CSD along the depth axis of barrel cortex during single whisker
deflections. In Figure 4E, we plot the CSD for (left to right) the
passive simulation (mean of the data shown in Figure 2F aligned
at UP onset; Figure 4A), the active membrane simulation (mean
of the data shown in Figure 2F aligned at UP onset; Figure 4A)
and the grand average measured by Riera and colleagues (their

Figure 5. Altered Synaptic Input Correlation
Driving L4 and L5 Pyramidal Neurons
(A–H) Two cases with altered synaptic input cor-

relation driving L4 and L5 pyramidal neurons

(compared to ‘‘control’’ in Figure 2): one with

decreased (‘‘decorrelated,’’ A–C and G) and

one with increased input correlation (‘‘super-

synchronized,’’ D–F and H). (A) Intracellular po-

tential of three individual neurons (red: L4 pyramid;

green: L5 pyramid; blue: L4 basket cell). (B)

Spiking frequency as a function of time for all L4

(red) and L5 pyramids (green) and basket cells

(blue). (C) LFP and CSD dynamics resulting from

decorrelated input impinging along morphologi-

cally realistic neurons with active membranes.

(D–F) Same as (A)–(C), respectively, for the ‘‘su-

persynchronized’’ case. (G andH) Amplitude of the

negativity (Aneg) and positivity (Apos), location (cneg
and cpos, respectively), and the half-width of the

LFP extrema (wneg and wpos, respectively) of the

double Gaussian fits for active (red) and passive

(black) membranes (see also Table S1) for (G) the

‘‘uncorrelated’’ and (H) ‘‘supersynchronized’’ ca-

ses (same color-coding as in Figure 4D).

See also Figures S2 and S4.

Figure 3). We observe how at UP onset
and during the first 10–20ms, sink-source
constellation in L4 and L5 is similar
to in vivo experiments. Subsequently,
following synaptic depression in L5 attrib-
uted to particularly synchronous spiking,
the two scenarios differ markedly for the
next 10–20 ms with the sink-source
constellation inverting. Finally, after equil-
ibration of synaptic weights in L4, the
active membrane simulation becomes
almost identical to experiments. Notably,
the resemblance between simulated and
measured CSDs is greatly diminished
when assuming identical synaptic input
but passive membranes (Figure 4E, left),
with the sink in L5 being exaggerated

and the source almost absent from L4. (The resemblance be-
comes even poorer when comparing the experimental CSD to
the PSC case shown in Figure 2E.) Although this comparison
needs to be extended across multiple brain states, it suggests
that active membrane conductances have a powerful influence
on the CSD.

Synaptic Input Correlation Differentially Reflected in
Sink-Source Features, Depending on Membrane
Conductances
How do LFP characteristics change with input statistics? Syn-
aptic input correlation crucially impacts the spatial extent of
the LFP (Lindén et al., 2011; Pettersen et al., 2008; Schomburg
et al., 2012). We performed simulations in which we either elim-
inated (‘‘uncorrelated’’ case; Figures 5A–5C) or further enhanced
(‘‘supersynchronized’’ case; Figures 5D–5F) the temporal
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correlation of impinging synaptic input compared to the sim-
ulations shown in Figure 2G (termed the ‘‘control’’ case). Impor-
tantly, the ‘‘uncorrelated’’ and ‘‘supersynchronized’’ simulations
have an identical number of PSCs impinging at the same loca-
tions as the ‘‘control’’ simulation. Only their timing is shifted, re-
flecting a decrease or an increase in input correlation (see
the Experimental Procedures; Figure S4). As synaptic drive
becomes more correlated, the LFP amplitude increases (Fig-
ure 5C versus 5F). To quantify such differences, we use the
same method as introduced in Figure 4 and report amplitude,
location, and spatial width of the two spatially displaced
Gaussian functions 50 ms after UP onset (Figures 5G and 5H;
see also Table S1).

For example, the amplitude of the LFP negativity (fit by a
Gaussian), Aneg, increases with input correlation: 0.12 mV (un-
correlated) versus 0.36 mV (control) versus 0.50 mV (super-
synchronized) (Table S1).We see that the extent of the amplitude
decrease for passive versus active membranes depends on cell
type, with the greatest effect observed for L5 pyramids due to
their size and strong synaptic drive.

As witnessed by Figures 2, 4, and 5, identical synaptic input
causes larger LFP amplitudes for passive than for active mem-
branes for almost all input correlation scenarios considered.
For example, for the ‘‘control’’ simulation, identical synaptic ac-
tivity gave rise to Aneg = 0.99 mV and Apos = 0.68 mV for passive
membranes versus Aneg = 0.50 mV and Apos = 0.46 mV for active
membranes (Table S1). Increased input correlation generally re-
sulted in an increase in the length scale of the LFP, both for active
and passive membranes, with L5 pyramids most strongly
affected (compare spatial width w in Figure 5G versus 5H; Table
S1). Again, passive membrane simulations have a larger spatial
extent than active ones (manifested in the negative slope in
almost all w-related panels in Figures 4D, 5G, and 5H).

A B

C D

Figure 6. LFP Contribution as a Function of
Lateral Distance
(A–D) (Left) L4 and (right) L5 pyramidal neuron

population was separated in concentric cylinders

of radii R. (A and B) Cumulative contribution of

each additional cylinder to the LFP amplitude

measured in the center of each population (red:

active membranes; black: passive; circle: control

input; star: uncorrelated input) with s defined as

the SD of the LFP signal during four UP states.

(Notably, s differs from the LFP amplitude defini-

tion in Figures 4 and 5.) (C and D) Rescaled version

of panels (A) and (B) with the LFP amplitude ex-

pressed as fraction of the asymptotically reached

amplitude (95% of the maximum value). The ver-

tical distance R*, where the LFP amplitude equals

95% of the asymptotically reached LFP amplitude

is designated by blue triangles.

So far our analyses have focused on
the LFP and CSD features along the
cortical depth axis. Assuming extracel-
lular recording sites are situated along
the center of the cortical disk, how do
LFP characteristics change along the

radial axis, that is, tangential to the cortical sheet? In Figure 6,
we segmented the population into concentric cylinders of radii
R and calculated the LFP amplitude contributed in the center
of L4 (left column) and L5 (right column) as a function of R. Ac-
counting only for the Ve contribution of pyramidal neurons within
a certain layer, we adopted the approach introduced in Lindén
et al. (2011) (their Figure 5) to calculate the LFP contribution for
the uncorrelated (stars) and control (circles) case for active
(red) and passive (black) membrane conductances. Briefly, we
defined the LFP amplitude s as the SD of the LFP signal (Figures
6A and 6B) and the LFP saturation distance R* (Figures 6C and
6D; blue triangles) as the radius at which the LFP amplitude rea-
ches 95% of its maximum value with neurons located farther
from R* having a small contribution to the LFP signal. (Impor-
tantly, LFP amplitude s is not the same as A reported in Figures
4D, 5G, and 5H). Similar to Lindén et al. (2011), we found that
increasing input correlation increasedR*. Yet, as for the analyses
along the cortical depth axis, the presence of active membranes
reduced R* (active versus passive in L4: uncorrelated, 89 versus
184 mm; control, 187 versus 278 mm; L5: uncorrelated, 212
versus 249 mm; control, 315 versus 319 mm), especially in L4.
Interestingly, for uncorrelated input in L5 and passive mem-
branes, R* from our simulations (249 mm) is in agreement with
the value reported by Lindén et al. (2011) (approximately
200 mm; their Figure 5c).

LFP Composition Is Transient and State Dependent
So far, we focused on the LFP contribution of different cell types.
Given the critical role of active membranes, which channels
impact the LFP most and under which conditions? To address
this question, we calculate the LFP contribution of synaptic input
as well as the specific ions sodium (Na), potassium (K), and cal-
cium (Ca) of the different cell types separately and show them for
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two cases, ‘‘uncorrelated’’ and ‘‘control’’ (Figure 7). (Performing
the same analyses for the ‘‘supersynchronized’’ case yields very
similar results to ‘‘control’’.) Specifically, we define the normal-
ized portion of the LFP signal attributed to the current passing
from a particular conductance integrated over the time bin (re-
sulting in charge) as LFP contribution. We calculated the LFP
contribution of specific conductances in two locations, the cen-
ter of L4 and L5. For the ‘‘uncorrelated’’ case (Figure 7A), synap-

Figure 7. Ionic Contributions to the LFP
(A and B) Three types of LFP contributions are

considered: excitatory and inhibitory postsynaptic

currents (synaptic) as well as Na-related (NA) and

K-related (K) membrane currents as measured in

the center of L4 (top) and L5 (bottom). Ca-related

currents were also calculated, but their contribu-

tion was small (less than 2.5%) and is neglected.

Temporal binning is 10 ms. To calculate the

contribution at the time bin of interest, the synaptic

and active charge contribution (return currents are

not included) of a particular neural population is

weighted by the distance. In a second step, we

normalized the contribution to the LFP amplitude

generated by the population as shown in Figure 3.

(The reason for the second step is to ensure that

the sum of Na, K, and synaptic contributions of a

cell type population equals the total contribution of

that population to the overall LFP.) For example,

the contribution of Na-related conductances of L5

pyramids is the total charge moved across the

membrane via active Na-conductances during a

particular time bin weighted by the inverse of the

distance to the electrode. Then we divide the

charge contributed by Na-related conductances

by the total charge contributed by all conduc-

tances of L5 pyramids. The contribution of the

three cell types is considered separately: L4 py-

ramidal neurons (red), L5 pyramidal neurons

(green), and basket cells (blue). The data are

presented in form of relative (stacked) percentual

contributions. (A) The results for the ‘‘uncorre-

lated’’ simulation (Figures 5A–5C). (B) The results

for the ‘‘control’’ simulation (Figure 2F). Notably,

inhibitory postsynaptic currents contribute app-

roximately 10% of the total synaptic contribution,

i.e., excitatory input dominates the synaptic

contribution.

tic excitatory and inhibitory currents
contribute under 15%–20% to the LFP.
Fast sodium currents, especially from
local pyramidal neurons, contribute about
30%, with the rest of the contribution
stemming from slower potassium cur-
rents. Interestingly, whereas L5 pyramids
expectedly (due to the presence of thick
apical dendrites) contribute to the LFP re-
corded in L4, L4 pyramids also contribute
to the LFP recorded in L5, mainly via K-
related currents. The main contribution
of L4/5 basket cells is in L5, where sodium
and potassium currents constitute about

30% of the total current, yet it needs to be pointed out that the
LFP amplitude for uncorrelated input is small (see Figure 5G
and traces in Figure 7).
How do these contributions change with input correlation?

For the ‘‘control’’ case (Figure 7B), we observe how spiking Na
and K currents from L5 pyramids dominate the LFP 20–40 ms
from UP onset, both in L4 and L5. In fact, in L4, the LFP contribu-
tion from postsynaptic input impinging on L5 pyramids is larger
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than the LFP contribution of postsynaptic input impinging along
L4 pyramids. Concurrently, there is a strong activation of Na- and
K-related currents through spiking of L5 pyramids that promi-
nently contribute to the LFP in L4. It is after the initial transient
of 40 ms that synapses of L5 pyramids depress at which point
Na- and K-related currents of L4 pyramids begin dominating (ap-
prox. 60%–80%) the LFP signal in L4. In L5, within-layer pyra-
mids dominate the LFP throughout the UP-DOWN cycle with
two main differences to L4 activity: first, synaptic currents
contribute more (approx. 15%–20%) than in any other case dur-
ing UP, and second, L4/5 basket cells have a significant (even if
short-lived) impact on the LFP 50 to 70 ms from UP onset (ap-
prox. 30%–40%), where dense local connectivity (Figure 1)
and the massive bolus of postsynaptic activity induces high
spiking rates (Figure 2). Finally, we found IPSCs to contribute
approximately 10% of the total (excitatory and inhibitory) synap-
tic contribution, i.e., under the conditions studied here excitatory
input dominates the synaptic contribution.

Frequency and Distance Scaling of LFPs Is Determined
by Active Membrane Currents
Temporal frequency (‘‘1/f’’) and distance (‘‘1/r’’) scaling of LFP
signals can reveal aspects of neural processing (Bédard et al.,
2006; Katzner et al., 2009; Miller et al., 2009; Milstein et al.,
2009; Pritchard, 1992; Rasch et al., 2009). Which sort of scaling
do our simulations exhibit? Using the Ve traces recorded in
depths ranging from 500 to 1,700 mm (representative Ve traces
shown in Figure 8A; blue: PSC only, black: passive membranes,
red: active membranes), we initially calculated the power spec-
tral density (PSD) P (‘‘control’’ simulations in Figure 8B; line:
mean, shaded area: SD). We calculate the best fit (see Table
S2) to P(f) f 1/fa with f being the frequency and a the scaling
exponent for two bandwidths: <40 Hz (Figure 8C, bottom) and
40–1,000 Hz (Figure 8C, top). a is consistently smaller across
all cases of input correlation for low frequencies compared to
high ones (circles: mean; error bars: SEM), with the differences
in a between all cases being small for <40 Hz (Table S3). For
40–1,000 Hz, a is similar between PSC and passive membrane
simulations, while substantially reduced for active membranes
(Table S3). For example, for the ‘‘control’’ simulation with active
membranes, a = 2.0 ± 0.4, whereas for passive membranes, a =
3.7 ± 0.1. (For <40 Hz, for the ‘‘control’’ simulation, a = 1.0 ± 0.2
and 0.9 ± 0.1, respectively.) Notably, experimental recordings
exhibit a close to two (Miller et al., 2009; Milstein et al., 2009),
with a smaller at lower frequencies (Miller et al., 2009). We
conclude that a is crucially shaped not only by postsynaptic cur-
rents but also by membrane characteristics in the 40–1,000 Hz
range.

How do individual neurons and the associated microvariables
give rise to such frequency-scaling evident in the macrovari-
ables, i.e., the LFP? To address this question, we defined a sin-
gle-cell frequency scaling exponent for all L5 pyramidal neurons
(the population with the strongest LFP contribution), whereP(f)f
1/fb, and calculated the mean Ve of all 5,364 L5 pyramidal neu-
rons at three different locations relative to the soma (Figures
8D and 8E shows the ‘‘control’’ simulation). The PSD as well as
its frequency scaling differs substantially depending on whether
only PSC, passive cable structures, or active membranes

contribute to the LFP. PSC and passive membranes consistently
give rise to steeper scaling and larger b (approx. 2.5–3; Figures
8E and 8F; Table S4) for all simulations, whereas for active mem-
branes b is smaller (approx. 1–2; Table S4). The PSD decreases
drastically as a function of frequency for passivemembranes and
decreases much less so for active membranes (Figure 8E). More
surprisingly, differences in PSD as well as frequency-scaling for
active versus passive membranes persist for frequencies
<100Hz (Figure 8E). This suggests that spiking and spike-related
currents contribute to low LFP bandwidths traditionally consid-
ered to reflect purely synaptic activity, an observation that
agreeswith experiments demonstrating LFPs generated via non-
synaptic events (Anastassiou et al., 2010; Buzsáki et al., 2012;
Chrobak et al., 2000).
The spatial extent of LFPs changes substantially between

cases (Figures 4 and 5). We analyzed the LFP contribution of
L5 pyramids to three bandwidths (<50, 50–100, and 800–
1,000 Hz; Figure 8G), as a function of distance r between the
soma and the electrode, i.e., P(r) f 1/rg, with P(r) as the dis-
tance-dependent PSD in a particular bandwidth, and g is the dis-
tance-dependent exponent (Figures 8G–8I). In agreement with
Lindén et al. (2011), Pettersen et al. (2008), and Schomburg
et al. (2012), we found that for passive membranes, g < 2 for
r < 100 mm, increasing to g z 3 for larger distances (Figure 8I).
This observation was robust for all bandwidths and input corre-
lations we examined. In the presence of active membrane con-
ductances, PSD distance scaling changed substantially closer
than 100 mm (Figures 8H and 8I), with g z 3 for all distances
and input correlation scenarios. This suggests that active mem-
brane conductances in L5 pyramids consistently generate extra-
cellular multipoles (Pettersen et al., 2008; Riera et al., 2012).
Notably, PSC simulations, consistent with the point-like nature
of synaptic input, give rise to monopoles close to the recording
electrode and dipoles when measured farther away. As illus-
trated in Figure 8H (and already suggested by Figures 8B and
8E), PSD not only differs in the higher bandwidths, where spiking
currents dominate, but, surprisingly, also below 50 Hz. Given the
identical synaptic activity between PSC, passive and active
membrane simulations, these differences are attributed to the
active membrane properties that not only give rise to a leakier
membrane but fundamentally alter the sink-source constellation.

DISCUSSION

We use a large-scale computational model with more than
five million compartments to study the extracellular signature of
activebrain tissue, the LFP. Themodel accounts for biophysically
characterized and morphologically reconstructed neurons inter-
connected based on rules supported by experimental data.
Traditionally, the LFP has been assumed to reflect postsynaptic
currents and associated passive return currents, with the final
extracellular field mainly shaped by neural morphology and
synaptic input. Our simulations challenge this picture. With iden-
tical synaptic input waxing and waning at 1 Hz, activemembrane
conductances cause markedly different LFP signatures than
passive cable structures or only postsynaptic activity without
any passive or active membranes. These differences are not
merely due to the amount of current flowing through the
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membranebut alsoby the radically altered spatial constellation of
extracellular sinks and sources. In agreement with recent work
(Lindén et al., 2011; Pettersen et al., 2008; Schomburg et al.,
2012), we find that the LFP length scale depends on the temporal
coordination of the oscillatory inputs. Importantly, spiking and

spike-related currents impact the LFPnot only in the higher band-
widths but also in lower ones (<50 Hz) traditionally thought to
reflect purely postsynaptic activity.
We found that L4 pyramids impacted the LFP and CSD within

both layers, with their extracellular contribution greatly affected

A B C

D E F

G H I

Figure 8. Frequency and Distance Scaling of the LFP
(A) A 2-s-long period of the Ve recording conducted in the middle of L5 for (top to bottom) uncorrelated, control, and supercorrelated inputs (blue: only PSC

contribute toward the LFP; black: passive membrane; red: active membrane contributes to the LFP).

(B) PSD frequency scaling for the control input simulation (line: mean PSD of seven recordings from L4 and L5; see Figure 2; shaded line: SEM). Broken horizontal

lines indicate slopes of a = 2, 3, and 4. The vertical broken line indicates f = 40 Hz.

(C) PSD frequency scaling exponent a as a function of network state (top, fit for < 40 Hz; bottom, 40–1,000 Hz; circle: mean; error bar: SD). Quality-of-fit was

assessed via the normalized root-mean-square error and linear correlation andwas good for all cases (Table S2) so that a-values accurately depict power-scaling

in the designated frequency bandwidths.

(D) Ve recordings from an individual L5 pyramid at three locations within L5 (voltage traces are clipped).

(E) PSD frequency scaling of individual L5 pyramidal neuron Ve contribution (bandwidth: 25–1,000 Hz; line: mean; shaded area: SEM; broken lines show slopes of

2, 3, and 4) for the three locations shown in (D).

(F) The value of frequency scaling exponent b indicates the frequency scaling of L5 pyramidal neurons at the single-neuron level as a function of network state

(circle: mean; error bar: SD; lines of the same color report b in the three locations).

(G) Ve signal originating from a single L5 pyramidal neuron (same as in the middle of D) filtered at (top to bottom) <50 Hz, 50–100 Hz, and high pass (>800 Hz).

(H) The PSD of the filtered Ve traces are shown as a function of distance of the recording electrode from each L5 pyramidal neuron (line: mean; shaded area:

SEM). For passive membranes, PSD scales differently as a function of distance for distances larger versus smaller than 100 mm. Broken lines indicate slopes g =

2, 3, and 4.

(I) Distance scaling exponent g denoting distance scaling of the Ve contribution of L5 pyramidal neurons at the single-neuron level as a function of network state

(circle: mean of the three bandwidths; error bar: SD) for distances larger (top) or smaller (bottom) than 100 mm.

See also Tables S3 and S4.
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by the presence or absence of active membranes. Conversely,
L5 pyramids with their large somata, thick apical dendrites,
and strong synaptic input contribute not only to the LFP within
L5 but also to the LFP in L4, especially at the onset of coordi-
nated synaptic input. Given their large size and powerful synaptic
input, it is conceivable that L5 pyramids could also contribute to
the LFP in other layers, such as L2/3 or L6, not simulated here.
Thus, whereas the LFP reflects processing of neurons whose
cell bodies are situated within that layer, the extended nature
of pyramidal neurons gives rise to multipoles that reach into
nearby layers. Importantly, we found this to be broadly true in
simulations exhibiting varying degrees of input correlation.

In agreement with others (Pettersen et al., 2008; Schomburg
et al., 2012), we find that L4/5 basket cells with their fairly low
density (compared to excitatory neurons), localized and sym-
metric dendritic arbor, spatially uniform synaptic input, the small
temporal width of their somatic spikes, and lack of strong after-
potentials have only a small impact on the LFP and CSD, even
though their spike frequency is substantially higher than that of
their excitatory neighbors (Figure 3C). Of course, this does not
suggest that extracellular action potentials from individual bas-
ket cells are small.

When considering LFP characteristics, such as amplitude and
spatiotemporal width, we observed that these are markedly
shaped by the impinging pattern of postsynaptic currents and
membrane characteristics. Increasing model complexity from
only postsynaptic to using fully reconstructed active neurons at-
tenuates the LFP amplitude, alters its spatiotemporal width and
changes the sink-source location. Additionally, our findings
regarding the LFP length scale (depending on input correlation,
approximately 200–600 mm along the cortical depth and 100–
300 mm tangentially) points to the necessity of large-scale
models to study the origin and functionality of the LFP.

How do these observations compare with LFPs recorded dur-
ing whisker stimulation (Riera et al., 2012)? Such stimulation trig-
gers prominent thalamocortical input into L4 in somatosensory
cortex (Brecht and Sakmann, 2002). At UP onset, and during
the first 10–20 ms, the sink-source constellation in L4 and L5
was similar to experiments. Following the onset of synaptic
depression in L5, the CSD became markedly different for the
next 10–20 ms, with sink-source constellation inverting. Finally,
after equilibration of synaptic weights in L4, the simulated CSD
became almost identical to experiments. Given that the synaptic
activation in our network was not designed to emulate whisker
stimulation, we are led to the conclusion that while network
computation requires inclusion of synaptic, morphological, and
membrane characteristics, connectivity patterns, and features
of synaptic dynamics, such as plasticity rules, are crucial not
only for network processing but also to fully account for extracel-
lular sinks and sources.

Sodium and potassium currents prominently contribute to the
LFP in both layers with K currents dominating (approx. 40%–
60%) the LFP during the UP-DOWN cycle. Although fast Na
currents of local neurons contribute less than K ones, their
contribution to the LFP is greater (approx. 10%–20%) than that
of postsynaptic currents (<10% in most cases). Thus, it is true
that synaptic input is reflected in the LFP in that it initiates and
sustains the intracellular and membrane currents along neurons,

but our simulations show that the LFP signal does not directly
reflect synaptic activity. Instead, it predominantly reflects active
membrane conductances activated by impinging postsynaptic
input.
This observation challenges the classic view that LFPs are pri-

marily a reflection of synaptic currents based on the number of
activated synapseswithin a volume of brain tissue being typically
much larger than the number of spikes (per unit time) within the
same volume. Why do our simulations show such strong contri-
bution of active membrane currents? The main reason is that
during an individual spike, charge fluxes across the neural mem-
brane at the perisomatic region (axon initial segment, soma, etc.)
are much stronger than individual PSCs (Koch, 1999). While the
strongest charge fluxes occur within 1–2 ms of every spike (ac-
cording to the standard Hodgkin-Huxley model), a cascade of
slower spiking currents (mainly K- but also Ca-dependent) with
much longer time scales is coactivated. These slower active
membrane conductances crucially contribute to the LFP as
observed in Figure 7. On the other hand, fast synaptic currents
(AMPA- and GABAA-type) die out rapidly, while the slower
ones (NMDA-type) have a fairly small contribution (the AMPA
versus NMDA component of every excitatory synapse is about
1 to 0.7; Ramaswamy et al., 2012). (Notably, not all presynaptic
inputs give rise to PSCs; Markram, 1997; Ramaswamy et al.,
2012.) Finally, active conductances contribute much more to
the LFP than passive ones because they are mainly located in
the perisomatic region along large compartments (i.e., low axial
resistance), such as the soma and near dendrites (especially for
L5 pyramidal neurons), so that the associated return currents are
spread along the whole morphology of the neuron. As a conse-
quence, EAP amplitude is approximately proportional to the
sum of the dendritic cross-sectional areas of all dendritic
branches connected to the soma. Therefore, neurons with thick
dendrites connected to the soma produce large EAPs and have
the largest ‘‘radius of visibility’’ (Pettersen and Einevoll, 2008). At
the same time, PSCs aremainly located along thin dendrites (i.e.,
much higher axial resistance), preventing return currents from
spreading along the whole neural morphology.
Another important observation stemming from our simulations

is the input specificity of the LFP composition. Although the LFP
during the first 50–80 ms from UP onset is dominated by K cur-
rents originating from L5 pyramids for temporally coordinated
input (Figure 7B), this switches to K currents from L4 pyramids
for uncorrelated input (Figure 7A). Moreover, basket cells gener-
ally do not contribute markedly to the LFP, but this changes
briefly 50 to 70 ms after UP onset. Thus, the LFP composition
is not static but time- and state-dependent and is crucially
impacted by the impinging input and the sort of subthreshold
and spiking activity it induces (especially proximally to the
recording site).
What are the functional (computational) ramifications of

these observations? Coherence between spiking and specific
LFP bands has been used to infer the relationship between
synaptic input (hitherto considered to be reflected in the LFP)
and neural output (spiking) and thereby specific mechanisms
of information processing within and across brain regions (Fries
et al., 1997; Lee et al., 2005; Montgomery et al., 2008; O’Keefe
and Recce, 1993; Rutishauser et al., 2010; Womelsdorf et al.,
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2006). This raises the question of the extent to which the locally
generated LFP (or particular bandwidths of it) represent actual
synaptic input impinging on local neurons rather than spiking
output (Buzsáki et al., 2012). For example, it was recently shown
that spiking coherence to ripples during sharp waves in CA1 is
partly attributed to spiking currents shaping the ripple signal
(Belluscio et al., 2012; Schomburg et al., 2012).
Another question arises regarding how perturbing rhythmic

LFP activity such as theta with tetanic stimulation at particular
phases of theta induces potentiation or depression of synaptic
strength (Hölscher et al., 1997; Hyman et al., 2003; Pavlides
et al., 1988). Other studies relate cognitive alteration to perturba-
tion of neocortical UP-DOWNstates (Marshall et al., 2006) or hip-
pocampal sharp waves (Girardeau et al., 2009). Our population
model does not attempt to reproduce any particular LFP rhythm,
but it does link the LFP to biophysical processing. Thus, it can
become a useful tool toward addressing the involvement of
particular mechanisms during particular LFP bandwidths and
phases and how perturbing them crucially alters other process-
ing and, ultimately, cognitive function.
When modeling the impact of active membranes on LFP po-

wer scaling, we found an inverse power law (Miller et al., 2009;
Milstein et al., 2009) with scaling exponent a depending on input
correlation and bandwidth of interest. Passive membrane
consistently resulted in larger exponents for higher bandwidths
(40–1,000 Hz). When zooming in to the level of individual L5 pyr-
amids by calculating the scaling exponent b, active membrane
contributions differ substantially from passive membrane ones
not just for higher bandwidths but, importantly, down to low fre-
quencies (<50 Hz). Interestingly, b compares much better to a in
the 40–1,000 Hz range than below 40 Hz for synaptic only and
passive membranes. Yet, in the presence of active membrane
conductances, b becomes comparable to a, both in the lower
and higher bandwidth (especially so for the control and sup-
ersynchronized scenarios), suggesting very similar scaling
between the entire population and L5 pyramidal neurons,
regardless of their exact location within L5.
We also looked at PSD distance scaling (exponent g)—within a

100 mm radius, PSD scales with gz 2, characteristic of a dipole.
For larger distances, g z 3. A recent study elegantly illustrated
that as long as g > 2, the contribution of successive more distant
populations of neurons to the LFP saturates, that is, the LFP has
a finite spatial reach (Lindén et al., 2011). In our simulations, for
active membranes, PSD consistently scales with distance as g
z 3. To generalize, for smaller distances, postsynaptic currents
contribute as monopoles (gz 1), the presence of passive mem-
branes gives rise to return currents and an additional pole (g z
2), and active conductances give rise to leakier membranes, re-
sulting in a third pole (gz 3). For larger distances, power scaling
of active and passive membranes is similar (g z 3). Concur-
rently, an increase in input correlation results in an increase in
LFP amplitude and, importantly, length scale. Thus, whereas
the LFP is a good estimator of local neural processing, the vol-
ume it is representative for (within the same layer) can change
substantially.
The present biophysical model does not include glial and as-

trocytic processes likely to be important for slowly fluctuating
components of the LFP and we do not include nonmyelinated

presynaptic axonal compartments (though Gold et al., 2006;
Schomburg et al., 2012; and our own modeling indicate they
contribute minimally to the LFP). Likewise, we neglected contri-
butions of presynaptic terminals; given their small size, it is likely
that the associated local return currents will render their contri-
bution nugatory. Diffusion was also excluded in our simulations,
which can lead to 1/f-scaling (Bédard and Destexhe, 2009).
Finally, in our simulations we assumed a purely resistive and ho-
mogeneous extracellular medium. There is evidence in favor of a
purely ohmic extracellular medium for frequencies <500 Hz, but
at least one study has emphasized a capacitive component (Bé-
dard et al., 2004), which, if true, may alter some of the findings in
terms of the LFP contributions of all processes involved. More-
over, even for the purely resistive case, conductivity experiments
have shown that the extracellular medium is inhomogeneous,
i.e., resistivity gradients exist (Goto et al., 2010). Although the
model can be extended to account for such observations, our
primary goal is to account for the conventional biophysical pro-
cesses related to LFP generation and the impact of active mem-
brane conductances in particular.
Despite these limitations, our model reproduces a number of

observations. First, external synaptic input gives rise to spike fre-
quencies compatible with in vivo observations during slow-wave
activity. The simulated EAP waveforms from our pyramids and
basket cells agree with experimental observations (Gold et al.,
2006). Our simulations suggest the LFP contribution of fast
spiking basket cells is small, as also shown in Lindén et al.
(2011) and Schomburg et al. (2012). Furthermore, our active sim-
ulations generate LFPs and CSDs that agree, both in terms of
spatial constellation (Riera et al., 2012) and spectral content
(Miller et al., 2009; Milstein et al., 2009), with in vivo observations,
especially after UP onset. Using passive morphologies, we were
able to reproduce the observation that LFP power scales differ-
ently within versus outside a 100 mm radius from the recording
electrode (Lindén et al., 2011). This changed substantially in
the presence of active membranes. Finally, increasing input cor-
relation resulted in larger LFP amplitudes and length scales, both
for active and passive membranes. Richard Feynman once
famously wrote: ‘‘what I cannot create, I do not understand.’’ It
is our belief that the present approach is a necessary step toward
unraveling the biophysics of LFPs and the workings of brain cir-
cuitry, in general.

EXPERIMENTAL PROCEDURES

The Core Simulation
The model and simulations were developed using the software and hardware

infrastructure of the Blue Brain Facility, including data, models, and workflows

for modeling rat (P12–P16) cortical S1 microcircuitry. Network simulations

were performed using NEURON software (Hines and Carnevale, 1997) running

on a Blue Gene P supercomputer on 1,024 nodes and 4,096 CPUs. Four sec-

onds of simulated time took approx. 3 hr to compute. A collection of tools and

templates written in HOC and NMODLwere employed to handle the setup and

configuration on the parallel machine architecture (Hines et al., 2008).

Electrophysiology and Morphological Reconstruction
Electrophysiology and reconstruction protocols are described in Hay et al.

(2011). Briefly, the firing response was obtained from slice whole-cell patch-

clamp recordings in rat S1. For L4 and L5 pyramidal neurons, protocols

were identical to Hay et al. (2011). For the basket cells, we used some
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additional stimulation protocols (Toledo-Rodriguez et al., 2004). After the

experiment, brain slices were fixed and incubated overnight. Morphological

reconstruction was performed from well-stained neurons exhibiting only few

cut neurite branches.

Computational Reconstruction of Neurons
Single-neuron computational modeling is described in Hay et al. (2011).

Briefly, neurons were represented as a compartmental, conductance-based

model using reconstructed morphologies from rat S1. The compartments

were separated in four zones: axon initial segment (AIS), soma, basal den-

drites, and apical dendrites (Figure 1). The full axon was not simulated; only

the AIS was simulated (Figure 1, bottom row). Synapses at the postsynaptic

cells were activated after spike detection in AIS in the control case and prere-

corded spike trains otherwise. A conduction delay based on axonal path dis-

tance to the soma (assuming spike conduction velocity was 300 mm/ms; Stuart

et al., 1997) was accounted for. Passive membrane capacitance was 1 mF/cm2

for the soma, AIS, and dendrites, whereas for pyramids it was 2 mF/cm2 for

basal and apical dendrites to correct for dendritic spine area. Axial resistance

was 100 U cm for all compartments. Input resistance Rin was 225 ± 41 MU for

L4 pyramids and 74 ± 35MU for L5 pyramids. For basket cells, Rin = 379 ± 210

MU. The resting potential was!74.1 ± 0.1mV for L4 pyramids,!73.8 ± 0.1mV

for L5 pyramids, and !71.6 ± 1.4 mV for basket cells.

Up to ten active membrane conductance types were accounted for with

kinetics taken from the published ion channel models or from published exper-

imental data (Hay et al., 2011). The reversal potentials for sodium and potas-

sium were 50 and !85 mV, respectively, and !45 mV was used for the Ih cur-

rent. Ion currents were modeled using the Hodgkin-Huxley formalism.

Network Connectivity
Connectivity patterns were implemented as presented in Hill et al. (2012).

Briefly, reconstructed cells from L4 and L5 were placed in a hexagonal volume

with a radius of 320 mm, matching biological densities of approx. 240,000 per

mm3 in L4 and 90,000 per mm3 in L5 (J. Gonzalez-Soriano, J. DeFelipe, L.

Alonso-Nanclares, personal communication). Every axonal part closer than

3 mm to a dendrite is detected, and synapses are placed at a 5% subset of

these appositions. The subset is chosen such that the number of synapses

per connection and synaptic bouton densities match biological values. Spatial

distributions of synapses placed in suchmanner are known tomatch biological

distribution for a number of intracortical pathways with a mean error <8%.

Synaptic Dynamics
All 15,137,757 synapses were modeled using conductance changes. AMPA-

and NMDA-type synapses accounted for excitation. For AMPA receptor

(AMPAR) kinetics, the synaptic conductance was 0.3 ± 0.2 nS. The rise and

decay time constants were 0.2 ± 0.05 ms and 1.7 ± 0.18 ms, respectively.

For NMDAR kinetics, conductance was 0.2 ± 0.1 nS with rise and decay times,

0.29 ± 0.23 ms and 43 ± 1.2 ms, respectively. The reversal potential of AMPAR

and NMDAR was 0 mV. For inhibitory GABAA synapses, the mean conduc-

tance was 0.66 ± 0.2 nS with the rise and decay time constants, 0.2 ±

0.05 ms and 8.3 ± 2.2 ms. Time constant for recovery from depression and

time constant for recovery from facilitation were adopted (Angulo et al.,

1999; Gupta et al., 2000) and assigned to each putative inhibitory synaptic

location identified by the collision-detection algorithm. The GABAA reversal

was !80 mV. External input is mediated by distributing additional excitatory

and inhibitory synapses randomly (uniform distribution) across all cells and

activating them independently with a temporally modulated frequency.

External synapses accounted for approximately 5% of the total number of

synapses.

Spiking Synchrony
To measure spiking synchrony, we calculated the mean of the normalized joint

peristimulus time (PST) histogram at a lag of 0 ms, i.e., the mean cross-covari-

ance of PST histograms of cell pairs, normalized by the product of their SD. To

generate the histograms, we used a bin width of 1ms. As the covariance would

be affected by the change in firing rates between simulated UP andDOWN, we

limited the analysis to spikes elicited during UP. To remove synchrony from the

simulation (uncorrelated case), we first generated artificial spike trains bymov-

ing all spikes of the control case to times randomly chosen between 0 and

4,000 ms. This generated independent stationary Poisson spike trains with

the same number of spikes as in the control case. This spike train was then

used to drive synapses in a simulation. The external input was also present

but with a constant rate equal to the mean of the rate in the control case. To

increase synchrony (supersynchronized case), we moved all spike times of

the control case to the nearest multiple of 5 ms. External input in this case

was identical to the control case.

Extracellular Field Calculation
The extracellular contribution of transmembrane currents of all neural com-

partments (approx. 410 compartments per cell, >5,000,000 in total) was calcu-

lated via the line source approximation, LSA (Holt and Koch, 1999). Briefly,

assuming a purely homogeneous and resistive (3.5Um) extracellular medium,

Laplace’s equation applies V2Ve = 0. At the boundaries, (1/r)Ve = Jm with r be-

ing the resistivity and Jm the transmembrane current density. LSA assumes

each cylindrical compartment of the spatially discretized neuron as a line (a

cylinder of infinitesimally small diameter) with a constant current density along

the line. The Ve contributed by current Ij of each neural compartment j evenly

distributed over the line segment of length Dsj and the overall extracellular

voltage Veð r!; tÞ becomes

Veð r!; tÞ=
XN

j =1

rIjðtÞ
4pDsj

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
j + r2j

q
! hj

ffiffiffiffiffiffiffiffiffiffiffiffi
l2j + r2j

q
! lj

;

with rj being the radial distance from line segment, hj the longitudinal distance

from the end of the line segment, and lj = Dsj+hj the distance from the start of

the line segment. The LSA was found to be accurate, except at very small dis-

tances (a few micrometers) from the cable.

Calculation of Ve using the LSA took place on a separate computer cluster

(SGI) and took approx. 1 hr. The CSD was estimated as the negative second

spatial derivative along the depth axis. We also calculated the CSD via iCSD

(qęski et al., 2011), and the outcome remained very similar. We thus used

the conventional CSD definition.
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Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nat.

Neurosci. 7, 446–451.

Buzsaki, G., and Traub, R. (1996). Physiological basis of EEG activity. In

Epilepsy, a Comprehensive Textbook, J. Engel, Jr. and T.A. Pedley, eds.

(New York: Raven Press).
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