
A PERSISTENCE LANDSCAPES TOOLBOX FOR TOPOLOGICAL

STATISTICS

PETER BUBENIK AND PAWE L D LOTKO

Abstract. Persistence landscapes can be used to analyze large families of large persistence di-
agrams. In this paper we discuss efficient algorithms and their implementation to compute and
manipulate persistence landscapes. We give concrete examples in which persistence landscapes al-
low calculations that are out of reach of other methods at present. These algorithms are intended
to facilitate the use of statistics in topological data analysis.

1. Introduction

One of the main tools in applied topology is persistent homology. It captures the evolution of
the homology of a finite filtered complex K0 ⊂ K1 ⊂ . . .Kn as the filtration parameter changes.
Applying homology with field coefficients to the filtered complex we obtain a sequence of vector
spaces and linear maps,

(1.1) H(K0) ↪→ H(K1) ↪→ . . . ↪→ H(Kn).

We say that a class c is born in H(Kb) if c ∈ H(Kb) and c is not in the image of H(Kb−1). We
say that the class c dies in H(Kd) if the image of c in H(Kd−1) is nonzero, but the image of c
in H(Kd) is zero or if c became identical to other class born earlier. The birth-death pair (b, d) is
represents the lifespan of the class c. The fundamental result of persistent homology is that all
of the information in (1.1) can be captured by a finite multiset of birth-death pairs, called either
a barcode or a persistence diagram [1, 2]. There are various programming libraries available for
computing birth-death pairs [3, 4, 5, 6].

The standard metrics on the set of persistence barcodes are the bottleneck metric [7] and the
Wasserstein metric [8]. The persistence homology is stable in those distances with respect to
perturbations of a filtration [7, 8] which makes it a nice tool in data analysis. However these
distances are hard to compute. Their computational complexity is O(n3) where n is the number of
birth-death pairs [9].

One of the simplest statistical questions one can ask of a set of persistence diagrams is, what
is their average? There is a nice notion of average in a metric space given by the Fréchet mean,
however for persistence diagrams it need not be unique. Notable progress has been made in this
direction [10, 11, 12], however there still do not exist effective algorithms for computing means for
a wide variety of examples.

In [13] the persistence landscape is introduced to help with both computational and statistical
challenges when working with persistence diagrams. Given a pair of numbers (b, d) with b < d, the
piecewise linear (PL) function f(b,d) : R→ [0,∞] is defined by:

(1.2) f(b,d) =


0 if x 6∈ (b, d)

x− b if x ∈ (b, b+d
2]

−x+ d if x ∈ (b+d
2 , d)

We remark that this definition makes sense for −∞ ≤ b < d ≤ ∞.

Date: December 4, 2013.

1

The persistence landscape of a multiset of persistence barcodes {(bi, di)}ni=1 is a set of functions
λk : R → R such that λk(x) = k-th largest value of {f(bi,di)(x)}ni=1. We assume that λk(x) = 0
is the k-th largest value do not exist. The persistence landscape is the image of a mapping from
persistence diagrams to a larger vector space in which efficient algorithms exist to compute Lp

distances for p ∈ [1,∞] and the average is easily defined.
In [13] it is shown that the persistence landscape is stable with respect to the Lp distance for

1 ≤ p ≤ ∞ and that this Lp distance gives lower bounds for the bottleneck and Wasserstein
distances of the corresponding persistence diagrams.

In this paper we discuss efficient algorithms and their implementation to compute and manip-
ulate persistent landscapes. In particular, we show that by using persistence landscapes one can
accomplished many goals that are beyond reach when using persistence diagrams and Wasserstein
or bottleneck distances.

Our main results are algorithms to do the following. Calculating the persistence landscape from a
persistence diagram of size n in O(n2). If the coordinates of the points in the persistence diagram lie
on a grid of size m, then we can do this in O(mn log(n)). We can calculate the average persistence
landscape for N persistence diagrams in O(n2N2). In addition we can calculate the Lp distance
for 1 ≤ p ≤ ∞ between the average persistence landscapes for two groups of persistence diagrams
in O(n2N2).

In Section 2 the basic algorithms and data structures needed to store and construct persistence
landscapes are given. In the Section 3 we show how to average families of persistence landscapes
and calculate the difference between two such averages. In the Section 4 algorithms to compute
distances between landscapes are discussed. Finally, in the Section 5 numerical experiments are
presented. The main experiment we are calculate the average persistence landscapes of points
sampled uniformly from Sd for d ∈ {2, . . . , 10}. We calculate the distances between these average
landscapes and show that they are significantly different. In the remaining two examples we discuss
an effect of scaling of a sensor network to the process of how the holes are glued and we compare
the times needed to compute distances between a family of persistence diagrams.

2. Data structures and algorithms

2.1. Input. We will assume that input consists of a list of n pairs of numbers (b, d) with b < d.
Each of these pairs represents the birth and death times of a persistent homology class. Thinking
of these pairs as points we obtain a persistence diagram [9], and considering them to be intervals
we obtain a barcode [14].

We will give two algorithms for calculating persistence landscapes. In the second algorithm we
make two additional assumptions. First we assume that b and d are finite. This can be achieved
by removing or truncating infinite intervals or by using extended persistence [15]. The second
assumption is that each b and d is an element of a finite, evenly-spaced grid, a, a+d, a+2d, . . . , a+
(m− 1)d. An example of the latter is the output of Perseus [17, 3] or Plex [6].

2.2. Output. A persistence landscape λ is a function λ : R×N→ [0,∞], or equivalently, a sequence
of functions λk : R → [0,∞] where k ≥ 1. For every fixed k, λk is a PL function. Since the input
consists of n birth-death points, λk = 0 for k greater than some fixed K ≤ n. We will represent λk
by a sorted list Lk of the points (x, λk(x)) such that λk is not differentiable in x. In addition we keep
in Lk the points (−∞, 0) and (∞, 0) or (±∞,∞) if infinite intervals allowed. The projection of Lk

onto its first coordinate is the vector of critical points and the projection on the second coordinates
is the vector of critical values. We will sometimes abuse notation and refer to the elements of Lk as
critical points. Clearly, λk can be recovered from Lk by linearly interpolating consecutive points.

2.3. Algorithms. In this section we present two algorithms to construct a persistence landscape.
Algorithm 1 does not make any assumptions about the input. Its computational complexity is

2

O(n log(n) + nK), where n denotes the number of input pairs and K the number of nonzero
landscapes. Note that K is bounded by n. Algorithm 2 assumes that the input coordinates are
elements of a finite, evenly-spaced grid of size m. Its computational complexity is O(mn log(n)).

In Algorithm 1 we calculate the persistence landscape using an iterative line-sweep algorithm.
Each pass of the line sweep calculates the next Lk. Figure 1 illustrates Algorithm 1 for a simple
example.

Algorithm 1 Compute the persistence landscape.

Input: A = {(bi, di)}ni=1 – list of pairs, −∞ ≤ bi < di ≤ ∞;
Output: {Lk} – persistence landscape;

Sort A primarily according to increasing b and secondarily according to decreasing d;
Let k = 1;
while A 6= ∅ do

Pop first (b, d) from A remembering its position in A;
if (b, d) = (−∞,∞) then

Add (−∞,∞), (∞,∞) to Lk; ++k; continue;
if d =∞ then

Add (−∞, 0), (b, 0), (∞,∞) to Lk; ++k; continue;
if b =∞ then

Add (−∞,∞) to Lk;
else

Add (−∞, 0), (b, 0), (b+d
2 , d−b2) to Lk;

loop
if d maximal among remaining d’s then

Add (d, 0), (∞, 0) to Lk; ++k; continue;
Let d′ be first of remaining d’s with d′ > d;
Pop (b′, d′) from A, remembering its position;
if b′ > d then

Add (0, d) to Lk;
if b′ ≥ d then

Add (0, b′) to Lk;
else

Add (b′+d
2 , d−b

′

2) to Lk;

Push (b′+d
2 , d−b

′

2) into A in order (requires iteration between positions of (b, d) and (b′, d′) in A);
if d′ =∞ then

Add (∞,∞) to Lk; ++k; continue;

add (b′+d′

2 , d
′−b′
2) to Lk;

(b, d)← (b′, d′);

Let us discuss the while loop. At the beginning |A| = n. When the algorithm runs, points are
removed from A and points are added to A. But in order to add a point to A, a point has to be
removed from A. Moreover a point is added to A only if the graphs of two functions given by (1.2)
intersect with slopes of 1 and -1 respectively. Since for any two such functions there can be at most
one such intersection, there are at most

(
n
2

)
such intersections. Therefore Algorithm 1 terminates.

Let us discuss the time complexity of Algorithm 1. Sorting the points takes O(n log(n)) time.
Since the points added to A during the construction Lk do not affect the computation of Lk, a
single iteration of the while loop takes O(|A|) time, where |A| ≤ n is the cardinality of A at the
start of the loop. Therefore the computational time to compute Lk will always be bounded by
O(n). Therefore the overall complexity of the Algorithm 1 is O(n log(n) + Kn), where K is the
highest number such that LK is not empty. Of course K may be n, and then Algorithm 1 has
pessimistic complexity O(n2).

3

x x

x

x

x x

x
x

x

x
x

X

(a) (b)
(c)

(e)
(g)

(i)

(k)

(d)

(f) (h)

(j)

(l)

Figure 1. Algorithm 1 is used to construct a persistence landscape. (a) The func-
tions (1.2) corresponding to 4 birth-death pairs and their corresponding critical
points. (b-d) Steps through the while loop to construct L1. (e) The graph of λ1.
(f) The graph of the functions corresponding to the remaining pairs in the list A.
(g-i) The second iteration of the while loop constructs L2. (j) The graph of λ2. (k)
The graphs of the functions corresponding to the remaining pairs on the list A. (l)
The graph of λ3.

Algorithm 2 Compute the persistence landscape using a grid.

Input: {(bi, di)}ni=1 – list of pairs bi < di which are a subset of a, a+ d, . . . , a+ (m− 1)d;
Output: {Lk} – persistence landscape;
V = vector of the size 2m of (initially empty) vectors of real numbers;
for int i = 1 to n do

double v = 0, int j = d bi−a2d e;
while v ≤ di−bi

2 do
Add v to V [j];
v = v + d

2 , + + j;
v = v − d;
while v ≥ 0 do

Add v to V [j];
v = v − d

2 , + + j;
for int i = 1 to 2m do

Sort V [i];
l = maxi∈{1,...,2m}size of V [i];
for int i = 0 to l do

for int k = 0 to 2m do
if V [k].size() > i then

Add (a+ kd/2, V [k][i]) to Li;

3. Averages

In Section 2 we encoded a persistence landscape λ = {λk : R → R} by a list Lk of pairs of
extended real numbers. Define Xk and Yk to be the vectors of critical numbers and critical values

4

obtained from the first and second coordinates of elements of Lk. Then Yk = λk(Xk), and λk can
be obtained from Xk and Yk by linear interpolation.

Now suppose that we have persistence landscapes λ1, . . . , λN and we wish to calculate the linear

combination f =
∑N

j=1 ajλ
j , where aj ∈ R. Let fk(t) = f(k, t). Then fk =

∑N
j=1 ajλ

j
k. Here we give

an algorithm for calculating a representation of fk from the representations (X1
k,Y1

k), . . . , (XN
k ,YN

k)

of λ1k, . . . , λ
N
k .

First we sort the union of the elements of X1
k, . . . ,XN

k , removing repetitions. Call this vector

Xk. For each 1 ≤ j ≤ N , define Ȳj
k = λjk(Xk). Now we represent λjk by Xk and Ȳj

k. Again, λjk
can be obtained from Xk and Ȳj

k by linear interpolation. By definition fk(Xk) =
∑N

j=1 ajλ
j
k(Xk) =∑N

j=1 ajȲ
j
k. Also, fk can be recovered from Xk and fk(Xk) be linear interpolation.

In summary, vector space operations on λ1k, . . . , λ
N
k are obtained from vector space operations

on Ȳ1
k, . . . , ȲN

k .

Algorithm 3 Linear combination of persistence landscapes.

Input: (X1
k,Y1

k), . . . , (XN
k ,YN

k)
Output: (Xk,Yk)

Merge the sorted lists Xj
k, removing duplicates. Call this vector Xk.

for j = 1 to N do
Calculate Ȳj

k = λjk(Xk) by linear interpolation.

Yk ←
∑N

j=1 ajȲ
j
k.

return (Xk,Yk)

Let m be the maximum number of the critical points of the persistence landscapes. Then
constructing Xk takes O(mN log(mN)). Since the length of Xk may be at most mN , calculating

each Ȳj
k takes O(mN2) and calculating Yk takes O(mN2). So Algorithm 3 has time complexity

O(mN2).
Now if we repeat Algorithm 3 for all k we obtain a linear combination of the full persistence

landscape. This has time complexity O(n2N2), where n is the maximum number of birth-death
pairs generating the persistence landscapes, since there are most n nontrivial (Xk,Yk) and m ≤ n.

As special cases, we can use this algorithm to calculate the average of a list of persistence
landscapes, λ =

∑N
j=1

1
N λ

j , or the difference between the averages of two groups of persistence

landscapes, λ− λ′ =
∑N

j=1
1
N λ

j +
∑N ′

j=1−
1
N ′λ′j .

4. Distances

In this section we consider the computations of the Lp and L∞ distances between functions f, g
that are linear combinations of a set of persistence landscapes. Let (X,Y) be the representation of
f − g as described in Section 3. Let K be the maximum k for which (Xk,Yk) is nontrivial.

The L∞ distance between f and g is given by the L∞ norm of the corresponding representation.
That is, ∥∥f − f ′∥∥∞ = maxk ‖Yk‖∞ .
This calculation has time complexity O(KmN).

The Lp distances between f and f ′ is given by the formula:

∥∥f − f ′∥∥
p

=
p

√√√√max(K,K′)∑
k=1

∫ ∥∥fk − f ′k∥∥pp
5

The norm ‖fk − f ′k‖
p
p can be computed from (Xk,Yk) by summing integrals over intervals given by

consecutive elements of Xk. These have the form
∫ d
c |ax+ b|p dx = (ax+b)p+1

a(p+1) |
d
c . This calculation

also has time complexity O(KmN).
Now assume that we start with two sets of persistence diagrams each of which has at most n

birth-death pairs, and the larger set consists of N persistence diagrams. Combining results from
Sections 3 and 4, since K ≤ n and m ≤ n we can calculate the L∞ and Lp distances between the
corresponding average persistence landscapes in O(n2N2).

5. Experiments

The experiments presented here are proof of concept. Their aim is not to solve any of the
considered problems, but to show the utility of the concept of persistence landscapes and the
described implementation.

5.1. Points sampled from Sd. In this experiment we consider the following questions. Suppose
we are given a set of points in Rd. How are these points distributed? If they are sampled from a
lower dimensional space, can we detect it using persistent homology?

To help address these type of questions we have performed the following computations. We have
sampled 100 points randomly from (d+ 1)−dimensional Gaussian distribution for d ∈ {2, . . . , 10}.
We have projected those points to Sd. For an example of such normalization in topological data
analysis, see [16]. This is equivalent to sampling 100 points from Sd using the uniform distribution.
Then, we compute the persistent homology of the Vietoris-Rips complex of this point cloud. Such
a computation was repeated 100 times for every dimension. The radius parameter changed form 0
to a radius in which all inessential 0, 1, and 2 dimensional cycles are killed, which is 0.7 for this
range of dimensions. The resulting average persistence landscapes for dimension zero, one and two
are in Figure 4, Figure 5, and Figure 6, respectively. The distance between average landscapes
for various dimensions has been computed. The results in dimension zero are summarized in the
Table 1, and for dimension one in the Table 2 and form dimension two in Table 3.

To validate the obtained results we performed a permutation test. For every pair i, j ∈ {2, . . . , 10}
such that i 6= j the two corresponding sets of 100 persistence landscapes are combined in a set A of
cardinality 200. Then the set A is randomly split into two subsets A1, A2 of cardinality 100 each.
Then average landscapes λ1 and λ2 are computed based on landscapes in A1 and A2, respectively.
Let d denote the distance between the original averaged landscapes in dimensions i and j. The
distance between λ1 and λ2 is compared to d. This described process is repeated 10000 times. The
p value equals the proportion of cases in which the distance between λ1 and λ2 is greater than d.
For every pair i 6= j, it never happened that the distance between λ1 and λ2 was greater than the
corresponding d. Therefore we can conclude that there there is very strong statistical difference
between the persistence landscapes in various dimensions.

We hope that the ability to easily perform such calculations will be very useful in topological
data analysis.

5.2. Scaling in planar Rips complexes. This experiment is motivated by problems in sensor
networks. For further information about topological sensor networks consult [18]. For the whole
subsection we keep the average number of sensors per unit area fixed. Suppose the sensors are
distributed randomly and the coverage radius R is a little higher than the coverage radius needed
to provide the coverage with high probability. We are considering the persistence intervals for the
radius parameter r ∈ [0, R]. We want to find out if the process in which all one dimensional cycles
are glued is depended on a scale or not.

The setup of the experiment is as follow. 130a2 sensors are distributed on a square Ma =
[10a, 10a]× [10a, 10a]. The radius r used in construction of Rips complex is such that r ∈ [0, 2] and

6

0 0.0993 0.1377 0.1595 0.18605 0.209 0.2195 0.2282 0.2365
0.0993 0 0.10695 0.1442 0.1696 0.1919 0.2093 0.2198 0.23035
0.1377 0.10695 0 0.1177 0.1446 0.1658 0.1823 0.1952 0.2071
0.1595 0.1442 0.1177 0 0.087 0.1127 0.1321 0.1447 0.1593
0.18605 0.1696 0.1446 0.087 0 0.0536 0.0727 0.0984 0.1229
0.209 0.1919 0.1658 0.1127 0.0536 0 0.0356 0.0619 0.087
0.2195 0.2093 0.1823 0.1321 0.0727 0.0356 0 0.0292 0.0543
0.2282 0.2198 0.1952 0.1447 0.0984 0.0619 0.0292 0 0.0259
0.2365 0.23035 0.2071 0.1593 0.1229 0.087 0.0543 0.0259 0

Table 1. Distance matrix between averaged landscapes in dimension 0 of set of
points in Sd for d ∈ {2, . . . , 10}.

0 0.0905 0.0867 0.0792 0.0752 0.0713 0.0678 0.0614 0.0588
0.0905 0 0.0452 0.06275 0.0815 0.0883 0.0899 0.09035 0.09045
0.0867 0.0452 0 0.0331 0.056 0.0722 0.0808 0.0847 0.0865
0.0792 0.06275 0.0331 0 0.0263 0.0447 0.05955 0.0704 0.0757
0.0752 0.0815 0.056 0.0263 0 0.0208 0.0376 0.0506 0.062
0.0713 0.0883 0.0722 0.0447 0.0208 0 0.0179 0.0318 0.0448
0.0678 0.0899 0.0808 0.05955 0.0376 0.0179 0 0.016 0.0291
0.0614 0.09035 0.0847 0.0704 0.0506 0.0318 0.016 0 0.0142
0.0588 0.09045 0.0865 0.0757 0.062 0.0448 0.0291 0.0142 0

Table 2. Distance matrix between averaged landscapes in dimension 1 of set of
points in Sd for d ∈ {2, . . . , 10}.

0 98.8446 14.433 16.7507 18.2941 19.1773 19.3288 19.8472 20.3933 20.3888
98.8446 0 99.4143 99.969 98.9645 99.2153 99.27 100.799 100.917 98.1056
14.433 99.4143 0 7.41727 12.5082 16.1639 18.5834 20.6395 22.1545 22.354
16.7507 99.969 7.41748 0 7.73501 12.8598 16.8738 19.6588 21.7679 22.6858
18.2941 98.9645 12.5086 7.73569 0 6.28071 11.8002 15.9319 18.9312 20.6962
19.1773 99.2154 16.1647 12.8616 6.28311 0 6.66167 11.7402 15.5133 18.2732
19.3288 99.27 18.5843 16.8759 11.8029 6.66358 0 5.86467 10.1659 13.7775
19.8472 100.799 20.6405 19.6616 15.9349 11.7462 5.86728 0 4.96949 9.9325
20.3933 100.917 22.156 21.7712 18.9351 15.52 10.1716 4.97485 0 6.05756
20.3888 98.1056 22.3555 22.6885 20.6997 18.2815 13.7864 9.93782 6.06143 0

Table 3. Distance matrix between averaged landscapes in dimension 2 of set of
points in Sd for d ∈ {2, . . . , 10}.

change from 0 with a step 0.2. For every fixed a for 100 times we are sampling the points randomly
from Ma, compute persistence, create persistence landscapes and average them. At the end, we
compute standard deviation and distance from the mean. The results obtained with persistence
landscapes are summarized in the table below:

7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6

dim 2. dim 3. dim 4.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6

dim 5. dim 6. dim 7.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6

dim 8. dim 9. dim 10.

Table 4. Persistence landscapes in dimension 0 of set of points in Sd for d ∈ {2, . . . , 10}.

Dimension 0 Dimension 1

a st. deviation av. distance from average st. deviation av. distance from average
1 0.172297 0.16639 0.172285 0.16695
1.5 0.186837 0.17547 0.178868 0.17068
2 0.168297 0.16452 0.183618 0.18167
2.5 0.173492 0.16858 0.188076 0.18494
3 0.17807 0.17346 0.192968 0.18771
3.5 0.17248 0.16868 0.200915 0.1941

The experiments performed are not conclusive in this matter. We were not able to observe any
scale dependent pattern in those statistics.

5.3. Computing distance matrices on a random set of persistence intervals. In this ex-
periment we have generated a random set of 1400 persistence barcodes of a size ranging from 500
to 700 elements. Our aim is to compute the distance matrix between every pair of persistence bar-
codes. The computations of the bottleneck distance took tree hours on 512 cores. That gives 1537
hours of computations if they were done on a single core. The computations of the first Wasserstein
distance took 27 hours on 512 cores. That gives 13826 on a single core. At the other hand, the
computations by using L∞ and L1 landscape distance took both less than one hour on a single
core. Such a four order of magnitude speedup makes a lot of statistical computations possible

5.4. Implementation. The implementation of all the presented procedures is available from the
webpage http://hans.math.upenn.edu/~dlotko/persistenceLandscape.html.

8

http://hans.math.upenn.edu/~dlotko/persistenceLandscape.html

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6

dim 2. dim 3. dim 4.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6

dim 5. dim 6. dim 7.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6

dim 8. dim 9. dim 10.

Table 5. Persistence landscapes in dimension 1 of set of points in Sd for d ∈ {2, . . . , 10}.

Acknowledgments

The authors would like to thank Brittany T. Fasy valuable suggestions and Miroslav Kramar
for providing timings of a Bottleneck and Wasserstein distance computations. P.B is supported
by AFOSR grant FA9550-13-1-0115. P.D is supported by DARPA grant FA9550-12-1-0416 and
AFOSR grant FA9550-14-1-0012.

References

[1] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete & Computa-
tional Geometry, Discrete Comput. Geom. 28 (2002), 511-533.

[2] A. Zomorodian, G. Carlsson, Computing Persistent Homology, Discrete & Computational Geometry 33 (2005),
249-274.

[3] V. Nanda, The Perseus software project, www.math.rutgers.edu/~vidit/perseus, accessed 11/15/2013.
[4] D. Morozov, The Dionysus software project, http://mrzv.org/software/dionysus/, accessed 11/15/2013.
[5] Ulrich Bauer, Michael Kerber, Jan Reininghaus, PHAT (Persistent Homology Algorithm Toolbox), https://code.

google.com/p/phat/, accessed 11/15/2013.
[6] PLEX libdary, http://comptop.stanford.edu/u/programs/jplex/, accessed 11/15/2013.
[7] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of Persistence Diagrams, Discrete & Computational Ge-

ometry, Volume 37, Issue 1, pp 103-120 (2007).
[8] D. Cohen-Steiner, H. Edelsbrunner, J. Harer and Y. Mileyko, Lipschitz functions have Lp-stable persistence,

Found. Comput. Math., 10 (2010), 127-139.
[9] H. Edelsbrunner, J. Harer, Computational Topology, American Mathematical Society, 2010.
[10] Y. Mileyko, S. Mukherjee, J. Harer, Probability measures on the space of persistence diagrams, Inverse Problems,

27 124007, 2011.

9

www.math.rutgers.edu/~vidit/perseus
http://mrzv.org/software/dionysus/
https://code.google.com/p/phat/
https://code.google.com/p/phat/
http://comptop.stanford.edu/u/programs/jplex/

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

dim 2. dim 3. dim 4.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

dim 5. dim 6. dim 7.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

dim 8. dim 9. dim 10.

Table 6. Persistence landscapes in dimension 2 of set of points in Sd for d ∈ {2, . . . , 10}.

[11] K. Turner, Y. Mileyko, S. Mukherjee, J. Harer, Fréchet Means for Distributions of Persistence diagrams,
arXiv:1206.2790.

[12] E. Munch, P. Bendich, K. Turner, S. Mukherjee, J. Mattingly, J. Harer, Probabilistic Fréchet Means and Statistics
on Vineyards, arXiv:1307.6530.

[13] P. Bubenik, Statistical topology using persistence landscapes, arXiv:1207.6437.
[14] R. Ghrist, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc. 45 (2008), 61-75.
[15] D. Cohen-Steiner, H. Edelsbrunner and J. Harer. Extending persistence using Poincare and Lefschetz duality,

Found. Comput. Math. 9 (2009), 79-103.
[16] G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian, On the Local Behavior of Spaces of Natural Images, Int.

J. Comput. Vision, Volume 76, Issue 1, pp 1-12 2008.
[17] K. Mischaikow, V. Nanda, Morse Theory for Filtrations and Efficient Computation of Persistent Homology,

Discrete & Computational Geometry, September 2013, Volume 50, Issue 2, pp 330-353.
[18] V. de Silva and R. Ghrist, Coordinate-free coverage in sensor networks with controlled boundaries, Intl. J. Robotics

Research, 25(12), 1205-1222.

Department of Mathematics, Cleveland State University
E-mail address: p.bubenik@csuohio.edu

Department of Mathematics, University of Pennsylvania, Philadelphia, PA and Institute of Com-
puter Science, Jagiellonian University, Krakow, Poland

E-mail address: dlotko@sas.upenn.edu

10

	1. Introduction
	2. Data structures and algorithms
	2.1. Input
	2.2. Output
	2.3. Algorithms

	3. Averages
	4. Distances
	5. Experiments
	5.1. Points sampled from Sd
	5.2. Scaling in planar Rips complexes.
	5.3. Computing distance matrices on a random set of persistence intervals.
	5.4. Implementation

	Acknowledgments
	References

