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Abstract. A recent publication provides the network graph for a neocor-
tical microcircuit comprising 8 million connections between 31,000 neurons
[7]. Since traditional graph-theoretical methods may not be su�cient to un-
derstand the immense complexity of such a biological network, we explored
whether methods from algebraic topology could provide a new perspective
on its structural and functional organization. Structural topological analy-
sis revealed that directed graphs representing connectivity among neurons in
the microcircuit deviated significantly from di↵erent varieties of randomized
graph. In particular, the directed graphs contained in the order of 107 sim-
plices groups of neurons with all-to-all directed connectivity. Some of these
simplices contained up to 8 neurons, making them the most extreme neuronal
clustering motif ever reported. Functional topological analysis of simulated
neuronal activity in the microcircuit revealed novel spatio-temporal metrics
that provide an e↵ective classification of functional responses to qualitatively
di↵erent stimuli. This study represents the first algebraic topological analysis
of structural connectomics and connectomics-based spatio-temporal activity
in a biologically realistic neural microcircuit. The methods used in the study
show promise for more general applications in network science.

The Blue Brain Project (BBP) has recently generated the first draft digital
reconstruction and simulation of a microcircuit of neurons in the neocortex of a
two-week-old rat (Figure 1A) [7]. This reconstruction is made available through
the Neocortical Microcircuit Portal (https://bbpnmc.epfl.ch) [11]. Based on sparse
anatomical and physiological data for neurons and synapses and on a variety of bi-
ologically motivated organizing principles, the complete connectivity between neu-
rons belonging to a neocortical microcircuit was digitally reconstructed – a micro-
connectome. The structural properties of the reconstruction have been extensively
validated against independent data, and simulations of the reconstruction repro-
duced multiple in vitro and in vivo experiments without adjusting any parameter,
further validating its biological accuracy.

In this article we apply methods from topology to the analysis of 42 variants of
the digital reconstruction, grouped in six sets of seven microciruits each. The first
five sets of microcircuits take into account biological variability in layer heights,
proportions of cell types, and cell densities from five individual rats, while the sixth
set is based on the average reconstruction across the five individuals. To form each
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set of microcircuits, seven statistically varying instantiations of the microcircuit
were reconstructed [12]. The 42 microcircuits are therefore all distinct, though
the degree of resemblance within each set is higher than that between sets. The
structural connectivity of each reconstructed microcircuit can be represented as a
directed graph with approximately 3 ⇥ 104 vertices and 8 ⇥ 106 edges, while its
functional connectivity can be represented as a time series of subgraphs formed by
functionally e↵ective connections.

Our topological analysis of the detailed structural and functional connectivity of
these 42 neural microcircuits led to a number of surprising observations. Firstly, we
found that the distribution of directed cliques (directed all-to-all connected subsets)
of neurons by size is highly significantly di↵erent from both that in Erdős-Rényi
random graphs with the same number of vertices and the same average connection
probability and that in more sophisticated random graphs, constructed either by
taking into account distance-dependent probabilities varying within and between
cortical layers or morphological types of neurons, or according to Peters’ Rule
[9], [10] (Figure 1D). In particular, we found that directed cliques of up to eight
neurons are highly prominent motifs in the reconstructed microcircuits: the average
microcircuit incorporates approximately 108 3-cliques and 4-cliques, approximately
107 5-cliques, approximately 105 6-cliques, and approximately 103 7-cliques. Taking
the alternating sum of the numbers of directed cliques of various sizes, we computed
the Euler characteristic (EC) [5] of the 42 reconstructed microcircuits, obtaining in
each case a value on the order of 107, indicating a preponderence of directed cliques
consisting of an odd number of neurons (Figure 2).

Another topological metric that we considered in this analysis are the Betti
numbers (SI, Supplementary Text, ST1.3) associated to a graph via its directed
flag complex (Figure 1C). These are a sequence of natural numbers �0,�1,�2, ...
that measure the higher-order organizational complexity of the network, detecting
“cyclic” chains of intersecting directed cliques. For each graph considered here we
determined its homological dimension, i.e., the maximum n such that �

n

6= 0. We
showed that the reconstructed microcircuits have homological dimension 5 (Figure
2D), whereas the random graphs considered have homological dimension at most 4,
strongly indicating that the microcircuits possess a higher degree of organizational
complexity than the random graphs.

Topological methods also enabled us to distinguish functional responses to di↵er-
ent input patterns fed into the microcircuit through thalamo-cortical connections.
We ran simulations of neural activity in one of the reconstructed microcircuits dur-
ing one second, over the course of which a given stimulus was applied every 50 ms
(Figure 3). We then binned the output of the simulations by 5 ms timesteps and
associated to each timestep a transmission-response graph, the vertices of which are
all of the neurons in the microcircuit and the edges of which encode connections in
the microcircuit whose activity in that time step leads to firing of the postsynaptic
neuron (Figure 4). The size of the time bins and the precise rule for formation
of the transmission-response graph for each time bin are biologically motivated, as
explained in more detail in the Supplementary Methods section (SI, Supplementary
Methods, SM1).

From the time series of transmission-response graphs for each of 20 trials of two
di↵erent stimuli (called Circle and Point for geometric reasons (Figure 4A), we de-
rived time series of two non-topological metrics (mean firing rate and number of
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Figure 1. (A) A sparse visualization of the microcircuit (soma
and dendrites only). Morphological types are color-coded, with
m-types in the same layer having similar colors. (B) Examples of
simplices in dimensions 0 through 3. (C) An example of a directed
graph and its associated flag complex, in which there is one n-
simplex for every directed (n+1)-clique in the graph. (D) A graph
depicting the average number of simplices in each dimension for
the flag complexes associated to the reconstructed microcircuit (N-
complexes) and the four types of random graphs considered, each
with the same number of vertices as the reconstructed microcircuit,
where shading indicates standard deviation, which was very small
for all except the N-complexes.

edges in the transmission-response graph) and five topological metrics (the num-
ber of 3-cliques, EC, �0, �1, and �2) and applied a Gaussian Bayes classifier (SI,
Supplementary Methods, SM2) to determine how successfully each of the metrics
classified the 40 trials in the time bins corresponding to the first two stimulations
and in the time bins immediately following those stimulations (Figure 5). In each
of those crucial time bins, the metrics that were most successful at classification
the number of 3-cliques (denoted 2D in the figure), �2, and, in one case, the Euler
characteristic (Figure 2A).

We expect the methods applied here will prove useful for studying networks in
general.
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Figure 2. (A) An oriented simplicial complex consisting of eight
2-simplices glued together along their 1-dimensional faces, together
with a table of its Betti numbers and numbers of simplices in
dimensions 0,1, and 2 and a computation illustrating that the
Euler characteristic can be computed as the alternating sum of
the Betti numbers or the simplex counts. (B) Graph depicting
the average Euler characteristic of the reconstructed microcircuit
(N-complexes) and of each of the types of random graph consid-
ered, where the whisker indicates standard deviation, which was
very small, except for N-complexes and P-complexes. (C) Box-
and-whisker plots depicting the Euler characteristics of 35 recon-
structed microcircuits, seven for each individual rat. (D) Box-and-
whisker plots depicting the 5th Betti number of 35 reconstructed
microcircuits, seven for each individual rat.

1. Structural topology

We computed the binary adjacency matrices of all 42 digitally reconstructed
microcircuits and then generated the associated directed flag complexes (SI, Sup-
plementary Text, ST1.2), which are oriented simplicial complexes encoding the
connectivity of all orders of the underlying directed graph: to each directed n-
clique (SI, Supplementary Text, ST1.2) in the underlying graph corresponds to an
oriented (n� 1)-simplex in the flag complex, and the faces of a simplex correspond
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to the directed subcliques of its associated directed clique (Figure 1 B and C). For
each neuron in the microcircuit, there is a vertex in the underlying directed graph
that is labelled with the unique global identification number (GID) of the neuron.
The (j, k)-coe�cient of the structural adjacency matrix is 1 if and only if there is a
directed connection in the microcircuit from the neuron with GID j to the neuron
with GID k. We refer to this adjacency matrix as the structural matrix of the mi-
crocircuit and to its associated directed flag complex as a neocortical microcircuit
complex or N-complex .

Having computed each of the 42 N-complexes, we counted the simplices in each
dimension. For comparison with non-biological matrices, we generated five Erdős-
Rényi random graphs [4] of a comparable size (31,000 vertices) and connection
probability 0.8%, the same as the average arising from the structural matrices of
the microcircuits (SI, Supplementary Methods SM3.1). We refer to the associated
directed flag complexes as ER-complexes.

To have a more biological control, we also generated 20 adjacency matrices,
given by partly randomizing the structural matrix of one of the average microcir-
cuits, taking into account its biologically meaningful division into six layers in 10
cases and into 55 morphological neuron types (m-types) [7] in 10 cases. The ran-
domization was carried out so that the distance-dependent connection probability
for all pairs of layers (respectively, pairs of m-types) was identical to that of the
original matrix, i.e., for each pair of layers (respectively, m-types) the number of
connections between them was the same as that of the original and for each 25µm
distance bin the number of connections was identical. The matrices are completely
random otherwise (SI, Supplementary Methods SM3.2, SM3.3). We call the asso-
ciated directed flag complexes L-complexes (respectively, M-complexes). Note that
since each m-type is restricted to a fixed layer, the M-complex should retain more
of the structure of the original N-complex than the L-complex. Our final and most
biological control consisted in the generation of 10 connectivity matrices for 31,000
neurons according to Peters’ Rule [9], [10] for which the associated directed flag
complexes are called P-complexes (SI, Supplementary Methods SM3.4). Having
carried out the computations for 10 control matrices out of each randomized set of
20, the very small variance in the results convinced us that no further computations
should be needed.

The resulting distribution of simplices displayed highly consistent behavior among
the N-complexes, all of which we computed, with a small variation among the sam-
ples arising from di↵erent rats. Note that Figure 1 represents the analysis only of the
seven N-complexes arising from the average reconstruction because the randomiza-
tions are based on those microcircuits. The ER-complexes showed almost identical
behavior among the di↵erent instances, as did the L-complexes, M-complexes, and
P-complexes. On the other hand, the N-complexes exhibited remarkably di↵erent
distributions from the various random complexes (Figure 1 D), with much greater
numbers of simplices and simplices of significantly higher dimension. We computed
the Euler characteristic of all N-complexes, as well as that of the various random
complexes, obtaining large positive values in all cases, due to the predominance of
even-dimensional (particularly 2-dimensional) simplices.

The Betti numbers (SI, Supplementary Text, ST1.2) of a simplicial complex pro-
vide a much finer and more sophisticated measure of its organizational complexity
than the dimension-wise simplex count or the Euler characteristic. The n-th Betti
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Figure 3. (A) Average firing rate (top-down projection) in the
stimulated microcircuit, plotted during the first 35 ms after the
first stimulation at t=0 ms in the Point vs. Circle experiment. (B)
Raster plots of the same 500 neurons randomly picked from layer
4, for two trials of the circle stimulus. (C) Population PSTH of all
neurons in the microcircuit for three trials of the Circle stimulus.
(D) Mean firing rate of the Circle and Point stimuli, between t and
t+5 ms, where light shading indicates the standard deviation and
dark shading the error of the mean.

number, �
n

, counts the number of chains of simplices intersecting along faces to
create an “n-dimensional hole” in the complex, which requires a certain degree of
organization among the simplices. On the other hand, computation of the Betti
numbers is much more expensive than that of the directed flag complex of a di-
rected graph or its Euler characteristic. In fact, the sheer size of the complexes we
considered here made it practically impossible to do so on a computer with 256 GB
of RAM. We succeeded in computing the highest nonzero Betti numbers of the N-
complexes, however, by restricting our attention to the 5-th and 6-th coskeleta (SI,
Supplementary Text, ST1.2). The top Betti number in all N-complexes appeared
in dimension 5, with �5 varying between 1 and 80 (Figure 2D). By contrast, �

n

= 0
for all n > 3 for all ER-complexes and P-complexes considered, while �

n

= 0 for
all n > 4 for all L-complexes and M-complexes. Moreover �4 varies between 0 and
6 for all L-complexes and M-complexes, so that these Betti numbers are almost
negligible.

2. Functional topology

We tested our methods on active microcircuits as well. In an experiment that we
call the Point vs. Circle test , we activated in a simulation the incoming thalamo-
cortical fibers of one of the average that the stimulated fibers formed first a point
shape, then a circle shape [7]. The size of the point shape was chosen such that the
average firing rate of the neurons was essentially the same as for the circle shape,
and in both cases the fibers were activated regularly and synchronously with a
frequency of 20 Hz for one second, similar to the whisker deflection approximation
in [7, Figure 17A]. We performed 20 trials of each stimulus (Figure 3). The trials of
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each stimulus exhibit biological trial-to-trial variability in the neural response, due
to the stochasticity of the synapse models and of some of the ion channel models.
The aim of this experiment was to determine whether our topological methods were
able to classify the two di↵erent stimuli, the point and the circle better than the
firing rate, which is largely overlapping for the first two stimulations (see Figure
3D).

After a systematic analysis to determine the appropriate time bin size and con-
ditions for probable spike transmission from one neuron to another (SI, Supplemen-
tary Methods, SM1.4), we divided the activity of the microcircuit into 5 ms time
bins for 1 second after the initial stimulation and recorded for each 0  n < 200 a
functional connectivity matrix A(n) for the times between 5n ms and 5(n+ 1) ms.
The (j, k)-coe�cient of the binary matrix A(n) is 1 if and only if the following three
conditions are satisfied, where sj

i

denotes the time of the i-th spike of neuron j.

(1) The (j, k)-coe�cient of the structural matrix is 1, i.e., there is a structural
connection from the neuron with GID j to the neuron with GID k.

(2) There is some i such that 5n ms  sj
i

< 5(n+ 1) ms, i.e., the neuron with
GID j spikes in the n-th time bin.

(3) There is some l such that 0 ms < sk
l

� sj
i

< 7.5 ms, i.e., the neuron with
GID k spikes after the neuron with GID j, within a 7.5 ms interval.

We call the matrices A(n) transmission-response matrices , as it is reasonable to
assume that the spiking of neuron k is influenced by the spiking of neuron j under
conditions (1)–(3) above.

The goal of the Point vs. Circle test was to determine whether topological met-
rics, such as simplex counts, Betti numbers and Euler characteristic, could classify
correctly two groups of stimuli of a similar nature and whether these metrics con-
tain more information than the mean firing rate. In Figure 4C we provide plots of
the time series of the average zeroth, first, and second Betti numbers, of the aver-
age numbers of 1- and 2-simplices, and of the average Euler characteristic for 20
trials of each stimulus. We applied a Gaussian Bayes classifier (SI, Supplementary
Methods, SM2) to each metric in each time bin, to determine their success rate
at classifying the various trials of the stimuli. To compare, we also classified the
stimuli according to the mean firing rates. To allow for a fair comparison, we used
three mean firing rates (between t to t+5, t+5 to t+10, and t+10 to t+15 ms)
for the classification at each time step t, since the transmission-response edges for
time step t are based on information from up to t+ 12.5 ms.

As illustrated by Figure 5 A, none of the metrics considered, topological or
otherwise, succeeded very well at classifying the stimuli for times between 10 ms
and 50 ms after the initial stimulation, which is not surprising given the strong
similarity between the spatial propagation of activity of the two stimuli during this
period (Figure 3). On the other hand, in the very first time bin, immediately after
the initial stimulation, the 1- and 2-dimensional simplex counts and �1 and �2 all
classify very well. In the second time bin the 2-dimensional simplex count and �2

continue to classify very well, and the Euler characteristic classifies even better.
Immediately after the second stimulation, from 50 ms to 55 ms after the initial
stimulation, none of the metrics performs very well, but the 2-dimensional simplex
count and �2 still have the highest success rate. In the next time bin, from 55
ms to 60 ms after the initial stimulation, the 2-dimensional simplex count and �2
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Figure 4. (A) Schematic representation of the transmission-
response paradigm: there will be an edge from j to k in the graph
associated to particular time bin if and only if there is a physical
connection from neuron j to neuron k, neuron j fires in the time
bin, and neuron k fires at most 7.5 ms after the firing of neuron
j. Here, shading indicates the error of the mean.(B) Schematic
representation of those firing patterns involving a presynaptic and
a postsynaptic neuron that lead to an edge in the transmission-
response graph, with a red block indicating successful transmission
and a white block indicating lack of transmission. (C) Time series
plots of the average value of the metrics 1D (number of 1-simplices),
2D (number of 2-simplices), �0 (the zeroth Betti number, i.e., the
number of connected components), �1 (the first Betti number), �2

(the second Betti number), and EC (the Euler characteristic) for
the Circle and Point stimuli. Here, shading indicates the error of
the mean.

again classify very well and are the only metrics to do so. In all of these cases, the
topological metrics far outperform the metric based on firing rate.

3. Discussion

We have introduced topological analysis of directed graphs encoding structural
or functional connectivity of digital reconstructions of neural microcircuits. We
showed in particular that these directed graphs di↵ered significantly from random
graphs of both Erdős-Rényi-type and types taking into account biologically con-
strained, distance-dependent connection probabilities. The topological analysis re-
vealed not only the existence of high-dimensional simplices representing the most
extreme form of circuit “motifs” - all-to-all connectivity within a set of neurons -
that have so far been been reported for brain tissue, but also that there are a surpris-
ingly huge number of these structures. We established moreover that topological
methods e↵ectively distinguish functional responses to distinct thalamic stimuli,
introducing a new measure of the spatio-temporal activity responses generated by
neural tissue. The results of our topological analysis of biologically realistic digital

Tom Dean
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Figure 5. (A) Times series plot for the first 80 ms of the 40 trials
of the percentage of correct classifications performed by a Gauss-
ian Bayes classifier based on each of the metrics FR (sequences of
mean firing rates over three consecutive time bins), 1D (number
of 1-simplices), 2D (number of 2-simplices), �0 (the zeroth Betti
number, i.e., the number of connected components), �1 (the first
Betti number), �2 (the second Betti number), and EC (the Eu-
ler characteristic). (B) Graphs depicting the percentage of correct
classifications performed by a Gaussian Bayes classifier based on
each of the metrics in four particularly important time bins: from
0 to 5 ms (immediately after the initial stimulation), from 5 to 10
ms, from 50 to 55 ms (the time bin immediately after the second
stimulation), and from 55 to 60 ms.

reconstructions provide a convincing argument for considering topology as a useful
mathematical tool for analyzing the structural and functional connectome of neural
circuits.

Our results lead naturally to many new questions, most notably concerning the
biological significance of the high-dimensional simplices and homology classes we
have discovered in the digitally reconstructed neocortical microcircuits. We intend
to explore these questions in future studies. In particular we hypothesize that the
time series of di↵erent topological metrics could reveal an evolving spatio-temporal
code that goes beyond either rate or timing information to one that incorporates the
structural organization. Such metrics could yield a deeper understanding of how
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the structural organization constrains emergent functional states. Age-dependent
changes in such digital reconstructions may help reveal even more complex topo-
logical structures with development, and changes introduced by synaptic plasticity
may reveal structures associated with learning and memory.

We expect the topological approach to studying directed graphs that we im-
plement here will also prove useful in applications of network science outside of
neuroscience, in the study of networks exhibiting intricate directed connectivity
patterns, such as gene and protein networks, VLSI circuits, and electrical grids.
The obvious utility of the directed flag complex in these applications may also
encourage theorists to establish results analogous to those established by Kahle
concerning Betti numbers of undirected flag complexes of random graphs [6].

4. Materials and methods

4.1. Computation of flag complexes and their Betti numbers. We represent
the directed flag complex of a directed graph by a reference-based data structure,
using vectors to store the references to the simplices in the simplicial complex. The
required storage space grows linearly with the number of vertices and with the
number of edges. A publicly available C++ implementation of the code will be
available on http://neurotop.gforge.inria.fr/. All homology computations carried
out for this paper were made with F2 coe�cients, using the boundary matrix re-
duced by an algorithm from the PHAT [2] library. For further details, please see
(SI, Supplementary Text, ST2).

4.2. The Point vs. Circle experiment. The stimulated reconstructed microcir-
cuit is innervated by 310 VPM fibers, whose horizontal centers of innervation are
evenly distributed over the microcircuit (one fiber per mini-column). It is therefore
possible to activate the microcircuit with topographically di↵erent stimuli by se-
lecting only a subset of these 310 fibers. Here we used two di↵erent stimuli, a point
and a circle, which were calibrated by adjusting the respective number of fibers to
evoke an overall similar mean firing rate (i.e., close enough to prevent clearly distin-
guishing between the two stimuli simply by the mean population firing rate). The
microcircuit was stimulated by synchronous spikes, similar to the whisker deflection
experiment described by Markram et al. (2015). The point stimulus consisted of
synchronous spikes in the 46 neighboring fibers of the center of the microcircuit,
whereas the circle stimulus involved 56 fibers near the periphery of the microcircuit.
The stimulation was repeated every 50 ms, but only the firing rates after the first
two stimulations (at 0 and 50 ms) are overlapping.

We used a Gaussian näıve Bayes classifier [8], where we performed 500 classifica-
tion trials, randomly choosing 15 trials of each stimulus to be part of the training
data, and five trials of each stimulus to be part of the test data. We then obtained
the mean ratio of successfully classified test data points using 500 di↵erent training
and test sets. The classification of the firing rate used the firing rates of three
consecutive time bins, to make it a fairer comparison, since the edges may contain
firing rate information of more than two time bins, over a range of 12.5 ms.

4.3. Computation of transmission-response matrices. Transmission-response
matrices were calculated according to the specifications mentioned above, using a
custom-written program in the Python programming language. It combined the

http://neurotop.gforge.inria.fr/
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matrix of synaptic connections (structural matrix), constructed as part of the stan-
dard reconstruction process of the BBP, with the spiking output of a simulation run
and user-defined values for time steps �t1 and �t2 (5 and 7.5 ms in our analyses).
For further details, please see (SI, Supplementary Methods ,SM1).

4.4. Gaussian Bayes classifiers. The Gaussian Bayes classifier minimises the
probability of misclassification under the assumption that the distributions are
Gaussian. We randomly split the data into training and testing sets. Using the
training set we model the distributions of the dot and circle classes by Gaussians
N (µ̂dot, �̂2

dot) and N (µ̂circle, �̂2
circle) respectively. Assuming a uniform prior and

Gaussian distributions, Bayes’ theorem provides a classifier

Class(x) = argmax
c2{dot,circle}

1p
2⇡�̂2

c

exp

✓�(x� µ̂
c

)2

2�̂2
c

◆
.
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Supplementary Methods

SM1. Optimization of the parameters for the transmission-response
matrices

The transmission-response matrices that allow us to analyze activity in an exper-
iment (cf. the section on Functional Topology in the main body of the article) form
a sequence depending on two parameters, �t1 and �t2. The number of matrices in
the sequence is the duration of the experiment divided by �t1. In other words for
a given experiment of duration T and fixed �t

i

, we obtain a sequence of matrices
S(�t1,�t2) = {A(n) = A(n,�t1,�t2)}N

n=1, where N is the integer value of T/�t1.
For fixed values of �t1 and �t2, the corresponding sequence {A(n)}N

n=1 is ob-
tained as follows. The spiking output of the simulation is first converted into lists
of spike times, one for each neuron. Standard histogram methods, binning by �t1,
are applied to each list to determine in which time steps a presynaptic neuron fired.
For each time bin in which a particular neuron fired, the exact timing of its first
spike in that bin is then compared to the full list of spike times of each neuron it
innervates, to ascertain which of them had spiked at most �t2 ms after the presy-
naptic neuron. (Spiking of a pair of neurons within �t2 ms is ignored if they are not
structurally connected.) For all pre-postsynaptic pairs satisfying this constraint on
spike timing, the corresponding entry in the transmission-response matrix for that
time step is set to 1 and all others to 0. More precisely, the (j, k)-coe�cient of the
binary transmission-response matrix A(n) corresponding to the n-th time bin is 1
if and only if the following three conditions are satisfied, where sj

i

denotes the time
of the i-th spike of neuron j.

(1) The (j, k)-coe�cient of the structural matrix is 1, i.e., there is a structural
connection from the neuron with GID j to the neuron with GID k, so that
they form a pre-post synaptic pair.

(2) There is some i such that n�t1 ms  sj
i

< (n+ 1)�t1 ms, i.e., the neuron
with GID j spikes in the n-th time bin.

(3) There is some l such that 0 ms < sk
l

� sj
i

< �t2 ms, i.e., the neuron with
GID k spikes after the neuron with GID j, within a �t2 ms interval.

Starting with firing data from spontaneous activity in the reconstructed mi-
crocircuit, we generated sequences of 20 transmission-response matrices for �t

i

2
{1, 2, 5, 10, 20, 50, 100} ms, thus creating 49 such sequences corresponding to every
possible choice of the pair (�t1,�t2). We refer to each of these sequences as the
true transmission-response matrices corresponding to the pair (�t1,�t2).
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In the rest of this section, we describe the procedure for optimizing the choice of
the time intervals �t1 and �t2 so that the associated true transmission-response
matrices best reflect the actual successful transmission of signals between neurons
in the microcircuit.

SM1.1. Properties of the transmission-response matrix. The nonzero co-
e�cients in a transmission-response matrix are a subset of those in the structural
matrix. Due to the partly stochastic behavior of the in silico microcircuit, the sub-
set will vary even for subsequent applications of the same stimulus. In fact, even an
exact repetition of the same conditions will lead to di↵erent transmission-response
matrices, if the random number generator is seeded di↵erently. It follows that the
generation of the transmission-response matrices for a given stimulus should be
considered as a stochastic process. With the correct choice of the parameters �t

i

,
the matrices should reflect how the microcircuit processes a stimulus and thus take
into account parameters of neural processing, such as pre-post synaptic interaction.

To find parameters �t1 and �t2 that maximize the degree to which neural
processing is captured by the transmission-response matrices, we first develop a
stochastic model for synaptic firing that takes into account neural processing and
that depends on �t1 and �t2. For the purpose of this analysis, we assume that the
true transmission-response matrices are compatible with this model.

Based upon our model for synaptic firing, we formulate a simplified model that
ignores neural processing. For this simplified model and for any choice of parameters
�t1 and �t2, we explain how to obtain transmission-response matrices from actual
firing data, by shu✏ing the firing data appropriately, then applying the algorithm
for generating a transmission-response matrix of the previous section. Finally, for
each choice of the parameters �t1 and �t2, we compare the true transmission-
response matrices for spontaneous activity in the reconstructed microcircuit to
those obtained by the simplified generation process. The parameters that we work
with in the main body of the paper are the �t1 and �t2 that maximize the di↵erence
(measured by the ratio of the numbers of ones in the matrices) between the actual
transmission-response matrices and those resulting from the simplified model.

SM1.2. Stochastic model with neural processing. Fix time intervals �t1 and
�t2. Let A = (a

ij

) denote the structural matrix of a reconstructed microcircuit,
and let A(n) = (an

ij

) denote the transmission-response matrix of the n-th time bin,
based on firing data from a trial of simulated activity in the microcircuit, for the
given intervals �t1 and �t2. By Condition (1) above, if an

ij

= 1 for any n, then
a
ij

= 1. It is reasonable to consider A to be static, at least over the time periods
considered here.

We want to compute the probability that an
ij

= 1, given that a
ij

= 1, so we
need to determine on which parameters and properties this probability depends.
According to the definition of transmission-response matrices, a presynaptic and a
postsynaptic spike are required for an

ij

to be 1. To simplify the analysis somewhat,
we assume that each neuron n

i

has a time-dependent, instantaneous firing rate
F i(t) that determines spiking probability at time t, i.e., spiking can be described as
an inhomogeneous Poisson process. Under this assumption, the expected number
mi

�t1
(t0) of spikes of neuron n

i

in the interval [t0, t0 + �t1] can be computed as

mi

�t1
(t0) =

Z
t0+�t1

t0

F i(u)du.
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IfKi

�t1
(t0) denotes the probability that neuron n

i

spikes at least once in the interval
[t0, t0 + �t1], then

Ki

�t1
(t0) = 1� P�

mi

�t1
(t0)

�
= 1� e�m

i
�t1

(t0),

where P(�) is the Poisson probability mass function with parameter � at 0. (Recall
that if X is a random variable that counts the number of spikes of neuron n

i

in
the interval [t0, t0 + �t1], then P�

mi

�t1
(t0)

�
is the probability that X = 0.) If the

change in F i(t) is slow compared to �t1, then mi

�t1
(t) ⇡ F i(t) · �t1. Moreover,

1 � P(�) ⇡ � for small values of �. For small enough �t1, the expected number
mi

�t1
(t0) of spikes of neuron n

i

will certainly be small, and change in F i(t) will be
slow in compared to �t1, so that we may assume that

Ki

�t1
(t0) ⇡ F i(t0) · �t1.

For the postsynaptic spike the situation is more complicated. As there is a
causal relation between presynaptic and postsynaptic firing, mediated by synaptic
transmission, we need to estimate the conditional probability of at least one post-
synaptic spike, given that at least one presynaptic spike occured. Let n

i

and n
j

denote neurons such that a
ij

= 1. Let s0 2 [t0, t0+�t1] denote the time of the first

presynaptic spike in this interval. Let Xj

�t2
(s0) denote the random variable whose

value is the number of times neuron n
j

spiked in the time window [s0, s0 + �t2].
Let Y i

�t1
(t0) denote the random variable whose value is the number of times neuron

n
i

spiked in the time interval [t0, t0 + �t1]. We need to estimate the conditional
probability

P
�
Xj

�t2
(s0) > 0 |Y i

�t1
(t0) > 0

�
.

The nature of this interaction is very intricate and depends on the identities of the
presynaptic and postsynaptic neurons, the spiking history of the presynaptic neuron
before s0, and all other synaptic input the postsynaptic neuron received. It can
be described as governed by some function Gij modulating the spiking probability
of the postsynaptic neuron n

j

. This function takes as parameters the expected
number of spikes of neuron n

j

in the interval [s0, s0 + �t2], the time t0, and the
“spiking history” of the presynaptic neuron n

i

until s0, which we write as a function
si⇤(t) evaluated at s0, giving rise to the expression

P
�
Xj

�t2
(s0) > 0 |Y i

�t1
(t0) > 0

�
= 1� e�G

ij(mj
�t2

(s0),t0,s
i
⇤(s0)).

Summarizing the analysis above, the following formula provides a good estimate
of the probability that an

ij

= 1 if a
ij

= 1, for small enough �t1 and �t2, where
s0 denotes the time of the first presynaptic spike in the interval [n�t1, (n+ 1)�t1]
and t0 = n�t1.

(1)
P
�
an
ij

= 1|a
ij

= 1
�
=

⇣
1� e�m

i
�t1

(t0)
⌘
·
⇣
1� e�G

ij(mj
�t2

(s0),t0,s
i
⇤(s0))

⌘

⇡ F i(t0) · �t1 ·Gij

�
F j(s0) · �t2, t0, s

i

⇤(s0)
�
.

This conditional probability encodes not only the distinctive features of the struc-
tural connectivity (via a

ij

) but also the potentially stimulus-dependant neuron-
specific firing rates (via F i and F j) and their co-variation. Most crucially, it
captures the stimulus-dependent functional modulation of postsynaptic firing by
a presynaptic spike as well. We assume that the true transmission-reponse matri-
ces capture the actual transmission of spikes according to the model of synaptic
firing described by this formula.
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SM.1.3. Null hypotheses: no neural processing. We introduce here a sim-
plified model of synaptic spiking that is based upon formula [1] but that ignores
pre-post synaptic interaction. We then explain how to obtain transmission-response
matrices that correspond to this simplified model from firing data arising from sim-
ulated activity.

We begin by setting each Gij to be the projection onto the first component,
ignoring the pre-post synaptic interaction. After this simplification, the approxi-
mation obtained in the previous section now reads

P (an
ij

= 1|a
ij

= 1) ⇡ F i(t0) · F j(s0) · �t1 · �t2,

where s0 denotes the time of the first presynaptic spike in the interval [n�t1, (n+ 1)�t1]
and t0 = n�t1, as before. Since this drastic simplification neglects the central as-
pect of neural computation - pre-post synaptic interaction - it gives rise to control
cases for each pair of parameters (�t1,�t2) and each choice of firing rate func-
tions F i(t). Comparison of the true transmission-response matrices for each pair of
parameters to the corresponding control matrices for the same pair and a specific
choice of the functions F i(t) will allow us to determine values for �t1 and �t2 for
which the true transmission-response matrix optimally reflects neural processing.

We assume moreover that the individual firing rates consist of a neuron-dependent
frequency that is up- or down-regulated by a global time series, i.e., that F i(t) =
f(i) · F (t), for some function F (t) and some constant f(i) for each neuron n

i

.
Transmission-response matrices corresponding to this simplified model for fixed �t1
and �t2, which we call simplified transmission-response matrices, can be generated
by first shu✏ing all recorded spikes from simulated activity in the reconstructed
microcircuit, while preserving both the number of spikes per neuron and per time
bin, then applying the usual transmission-response matrix generation method.

SM.1.4. Optimization of parameters. The di↵erence between the true transmission-
response matrices and the control case described above is a consequence of the pre-
post synaptic interaction. Comparison with the control case enables us therefore
to measure how well that interaction is captured in the true transmission-response
matrices. In particular, it is reasonable to optimize the parameters �t1 and �t2
so that the di↵erence between the true transmission response matrices arising from
actual simulation data and those arising in the control cases is maximized, as a
maximal di↵erence indicates that the e↵ect of the pre-post synaptic interaction is
captured optimally by the true transmission-response matrices.

The comparison between the true transmission-response matrices and the control
cases was carried out by first producing 20 true transmission-response matrices and
20 simplified transmission-response matrices based on firing data obtained from
spontaneous activity in the reconstructed microcircuit for every pair (�t1,�t2),
where �t

i

2 {1, 2, 5, 10, 20, 50, 100} ms for i = 1, 2. The number of ones in each
matrix was then computed and the average taken over each set of 20 matrices. Since
no stimulus was applied to the microcircuit, the averages computed are meaningful,
since the firing data should be fairly homogeneous across the time bins.

The average number of ones in the transmission-response matrix arising from
simulated actitivity in the reconstructed microciruit, as a function of �t1 and �t2,
is illustrated in Figure S1. Figure S2 shows the ratio of the average number of
ones in the true transmission-response matrices to the average number of ones in
the simplified transmission-response matrices, for various values of �t1 and �t2.
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In all cases we find that the maximum lies between �t2 = 5 ms and �t2 = 10 ms,
leading us to choose to work with �t2 = 7.5 ms. For �t1 we find a maximum at
50 ms, but we use �t1 = 5 ms (for which the maximum ratio is only slightly lower
than for �t1 = 50 ms) instead to avoid more than one spike per neuron per bin.

SM2. Gaussian Bayes classifiers

Suppose there is a distribution ⇢ over R⇥ {c1, c2, . . . , ck}, where {c1, c2, . . . , ck}
is a set of class labels. We can project ⇢ onto each of the coordinates to construct
a real-valued random variable X and a class-label-valued random variable Y . We
wish to build a classifier C : R ! {c1, c2, . . . , ck} which will, for any real number,
choose the most likely class to which it might belong. That is,

C(x) = argmax
c2{c1,c2,...,ck}

P (Y = c|X = x),

where P (A|B) is the probability of A conditional on B and argmax
a2A

f(a) denotes
the element a 2 A such that f(a) is maximal. This element of A will in practice
always be unique.

Bayes’ theorem states that

P (Y = c|X = x)P (X = x) = P (X = x|Y = c)P (Y = c).

A Bayesian classifier picks the class with the highest conditional probability, which
using Bayes’ theorem is

C(x) = argmax
c2{c1,c2,...ck}

P (X = x|Y = c)P (Y = c)

P (X = x)
.

Usually ⇢ itself is unknown and must be infered from sample data. We then also
assume some model distribution to estimate ⇢ from these samples. The Gaussian
Bayes classifier is the Bayes’ classifier under the assumption that the distribution
of each separate class is Gaussian.

After calculating the means and variances of the sample data within each of
the classes separately, we model their respective distributions by the Gaussians
N(µ

ci ,�
2
ci
). If p(A) denotes the probability density function of A, then

P (X = x|Y = c)

P
(Y = c)P (X = x) =

p(X = x|Y = c)

P
(Y = c)p(X = x)

=
1p
2⇡�2

c

exp

✓�(x� µ
c

)2

2�2
c

◆
P (Y = c)

p(X = x)

A common situation, such as in our analysis, is a uniform prior. A uniform prior
over {c1, c2, . . . , ck} means P (Y = c

i

) = 1/k for all i. If we assume a uniform prior,

then the factor P (Y=c)
p(X=x) is common to all classes and thus does not a↵ect which class

achieves the maximum. Thus we get the formula

C(x) = argmax
c2{c1,c2,...ck}

1p
2⇡�2

c

exp

✓�(x� µ
c

)2

2�2
c

◆
.
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SM3. Randomization of connection matrices and other control cases

We created four types of random matrices of sizes and connection probabilities
similar to the connectivity matrices of the BBP reconstruction.

SM3.1. Generation of Erdős-Rényi random matrices. For this basic control
we first computed the overall connection probability in the reconstruction and found
it to be 0.8%. We then generated random, binary square matrices of size 3.1⇥ 104,
where 1’s were placed at random o↵-diagonal in the matrix with probability 0.8%.

SM3.2. Randomization preserving the distance-dependent connectivity
between layers. Input for this randomization method were the structural matrix
and the matrix of pairwise soma distances, both generated as part of the standard
BBP reconstruction process. The rows and columns of both matrices were first
grouped into N = 6 groups according to the layer of the neuron they correspond
to. This e↵ectively partitioned both matrices into N ⇤ N = 36 submatrices each.
For each pair of submatrices, the soma distances were grouped into bins of size
25µm. Next, in the submatrix corresponding to each distance bin, we first replaced
all 1’s by 0’s and then replaced randomly chosen 0’s by 1’s, so that the total number
of 1’s was preserved. Creation of autapses, i.e., a connection from a neuron to itself,
was avoided by creating a separate bin for distances of 0µm.

The result was a connection matrix with the same number of connections between
each pair of layers and the same distance-dependent connection probability between
pairs of layers, to within 25µm, as the original matrix.

SM3.3. Randomization preserving the distance-dependent connectivity
between m-types. This randomization method was identical to the preceding
randomization, preserving connectivity between layers, except that the neurons
were partitioned initially into N = 55 groups of morphological types instead of
only six layers.

SM3.4. Generation of connection matrices according to Peters’ Rule.
For this control case, we started with a connection matrix that placed a connection
not just where a synaptic connection was found in the reconstructed microcircuit,
but between each pair of neurons whose arbors came within close proximity (closer
than 3µm). The resulting matrix had approximately 16 times more connections
than the structural matrix. These connections were then pruned randomly with
a uniform probability until the same number of connections as in the structural
matrix was attained.
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Supplementary Text
To accompany “Topological analysis of the connectome of digital reconstructions

of neural microcircuits.”
Pawe l D lotko, Kathryn Hess, Ran Levi, Max Nolte, Michael Reimann, Martina

Scolamiero, Katharine Turner, Eilif Muller, Henry Markram

ST1. The topological toolbox

Most of the mathematical methods we describe here are part of the basic toolbox
of algebraic topology, though perhaps not as well known in the directed variants
presented here. We give a brief account of these concepts for the benefit of the
non-expert, and refer to literature for the reader interested in further details.

We explain first how to associate to any directed graph a simplicial complex
known as its directed flag complex , then recall two types of important invariants of
simplicial complexes, which turn out to be very useful for analyzing the digitally
reconstructed microcircuits: the Euler characteristic and Betti numbers. We then
describe the data structures and algorithms that we implemented in order to con-
struct the flag complexes of the directed graphs representing the microcircuits and
to compute their Euler characteristics and Betti numbers.

ST1.1. Directed graphs. A directed graph G consists of a pair of finite sets
(V,E) and a function ⌧ : E ! V ⇥ V . The elements of the set V are the vertices
of G, the elements of E are the edges of G, and the function ⌧ associates with each
edge an ordered pair of vertices. The direction of an edge e with ⌧(e) = (v1, v2)
is taken to be from ⌧1(e) = v1, the source vertex , to ⌧2(v) = v2, the target vertex .
The function ⌧ is required to satisfy the following two conditions.

(1) For each e 2 E, if ⌧(e) = (v1, v2), then v1 6= v2, i.e., there are no loops in
the graph.

(2) The function ⌧ is injective, i.e., for any pair of vertices (v1, v2), there is at
most one edge directed from v1 to v2.

A vertex v 2 G is said to be a sink if ⌧1(e) 6= v for all e 2 E, and a source is if
⌧2(e) 6= v for all e 2 E.

To compare two graphs, we require the following notion. A morphism of directed
graphs from a directed graph G = (V,E, ⌧) to a directed graph G0 = (V 0, E0, ⌧ 0)
consists of a pair of set maps ↵ : V ! V 0 and � : E ! E0 such that � takes an edge
in G with source v1 and target v2 to an edge in G0 with source ↵(v1) and target
↵(v2), i.e., ⌧ 0 � � = (↵,↵) � ⌧ . Two graphs G and G0 are isomorphic if there is
morphism of graphs (↵,�) : G ! G0 such that both ↵ and � are bijections, which
we call an isomorphism of directed graphs (Figure S3).

A path in a directed graph G consists of a sequence of edges (e1, ..., en) such that
for all 1  k < n, the target of e

k

is the source of e
k+1, i.e., ⌧2(ek) = ⌧1(ek+1).

The length of the path (e1, ..., en) is n, the number of edges of which the path is
composed. If, in addition, target of e

n

is the source of e1, i.e., ⌧2(en) = ⌧1(e1), then
(e1, ..., en) is an oriented cycle.

Tom Dean

Tom Dean
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ST1.2. Simplicial complexes. An abstract oriented simplicial complex is a col-
lection S of finite, ordered sets with the property that if � 2 S, then every subset
⌧ of � is also a member of S. A subcomplex of an abstract oriented simplicial
complex is a sub-collection S 0 ✓ S that is itself an abstract oriented simplicial com-
plex. Henceforth, we simplify terminology and usually refer to abstract oriented
simplicial complexes merely as simplicial complexes.

The elements of a simplicial complex S are called its simplices. A simplicial
complex is said to be finite if it has only finitely many simplices. If � 2 S, we
define the dimension of �, denoted dim(�), to be |�|� 1, the cardinality of the set
� minus one. If � is a simplex of dimension n, then we refer to � as an n-simplex of
S. The set of all n-simplices of S is denoted S

n

. A simplex ⌧ is said to be a face of
� if ⌧ is a subset of � of a strictly smaller cardinality. A front face of an n-simplex
� = (v0, ..., vn) is a face ⌧ = (v0, ..., vm) for some m < n. Similarly, a back face of
� is a face ⌧ 0 = (v

i

, . . . , v
n

) for some 0 < i < n. If � = (v0, . . . , vn) 2 S
n

, then the
ith face of � is the (n� 1)-simplex �i obtained from � by removing the vertex v

i

.
A simplicial complex gives rise to a topological space by means of the construc-

tion known as geometric realization. In brief, one associates a point (a standard
geometric 0-simplex) with each 0-simplex, a line segment (a standard geometric 1-
simplex) with each 1-simplex, a filled-in triangle (a standard geometric 2-simplex)
with each 2-simplex, etc., glued together along common faces. The intersection of
two simplices in S, neither of which is a face of the other, is a proper subset, and
hence a face, of both of them. In the geometric realization this means that the geo-
metric simplices that realize the abstract simplices intersect on common faces, and
hence give rise to a well-defined geometric object. A geometric n-simplex is nothing
but a (n + 1)-clique, canonically realized as a geometric object. An n-simplex is
said to be oriented if there is a linear ordering on its vertices. In this case the
corresponding (n+ 1)-clique is said to be a directed (n+ 1)-clique.

If S is a simplicial complex, then the union S(n) = S
n

[ · · ·[ S0, which is called
the n-skeleton of S, is a subcomplex of S. We say that S is n-dimensional if
S = S(n), and n is minimal with this property. If S is n-dimensional, and k  n,
then the collection S

k

[ . . . [ S
n

is not a subcomplex of S because it is not closed
under taking subsets. However if one adds to that collection all the faces of all
simplices in S

k

[ . . . [ S
n

, one obtains a subcomplex of S called the k-coskeleton
of S, which we will denote by S(k). The computational usefulness of coskeleta will
become clear when we discuss homology computation (ST1.3).

Directed graphs give rise to abstract oriented simplicial complexes in a natural
way. Let G = (V,E, ⌧) be a directed graph. The directed flag complex associated
to G is the abstract simplicial complex S = S(G), with S0 = V and whose n-
simplices S

n

for n � 1 are (n+1)-tuples (v0, . . . , vn), of vertices such that for each
0  i < j  n, there is an edge in G from v

i

to v
j

. Notice that because of the
assumptions on ⌧ , an n-simplex in S is characterised by the (ordered) sequence
(v0, . . . , vn), but not by the underlying set of vertices. For instance (v1, v2, v3) and
(v2, v1, v3) are distinct 2-simplices with the same set of vertices.

ST1.3. Homology, Betti numbers, and Euler characteristic. We now recall
certain well known invariants of simplicial complexes arising in algebraic topol-
ogy, which are preserved under a class of morphisms that is relevant in algebraic
topology and that includes isomorphisms. These invariants serve to measure the

Tom Dean
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“complexity” of simplicial complexes, from various topological perspectives, leading
us to refer to them as metrics.

Homology is an important algebraic invariant of topological spaces. In this
paper we use only mod-2 simplicial homology , computationally the simplest variant
of homology, which is why we choose to work with it in applications, though other
types of simplicial homology may provide deeper information. We do not give a
complete account of homology here, but rather an elementary description of what
it is and its basic properties.

Let F2 denote the field of two elements, which we denote by 0 and 1. Let S be
a finite simplicial complex. Define the chain complex C⇤(S,F2) to be the sequence
{C

n

= C
n

(S,F2)}n�0, such that C
n

is the F2-vector space whose basis elements
are the n-simplices � 2 S

n

, for each n � 0. In other words, the elements of C
n

are formal linear combinations of n-simplices in S with coe�cients in F2. For each
n � 0, there is a linear transformation called a di↵erential

@
n

: C
n+1 ! C

n

defined by @
n

(�) = �0+�1+ · · ·+�n for every n-simplex �, where �i is the i-th face
of �, as defined above. Having defined @

n

on the basis, one extends the definition
linearly to the entire vector space C

n

.
The n-th Betti number �

n

(S) of a simplicial complex S is the F2-vector space
dimension of its n-th mod 2 homology group, which is defined by

H
n

(S,F2) = Ker(@
n�1)/Im(@

n

).

Computing the Betti numbers is conceptually very easy. Let |S
n

| denote the
number of n-simplices in the simplicial complex S. If one encodes the di↵erential
@
n

as a
�|S

n

| ⇥ |S
n+1|

�
-matrix D

n

with coe�cients in F2, then one can easily
compute its nullity , null(@

n

), and its rank , rk(@
n

), which are the F2-dimensions of
the null-space and the column space of D

n

, respectively. The Betti numbers of S
are then a sequence of natural numbers defined by

�0(S) = dimF2(C0)� rk(@0), and �
n

(S) = null(@
n�1)� rk(@

n

).

The n-the Betti number �
n

counts the number of “n-dimensional holes” in the
geometric realization of S. When S = S(G) is the directed flag complex of a directed
graph G, both the simplices of S and these “n-dimensional holes” can be regarded
as particularly important “metamotifs” [13] in the graph G.

It is easy to show that the n-th Betti number of a simplicial complex S is equal
to that of its (n� 1)-st coskeleton S(n�1), i.e., �n

(S) = �
n

(S(n�1)), for all n. This
observation turns out to be computationally very useful, since there is no need
to store the simplices of dimension less than n � 1 that are not faces of higher
dimensional simplices in order to compute �

n

(S). In this paper it was exactly
this trick that allowed us to compute the top dimensional homology of the 42 N-
complexes we worked with.

Homology actually encodes far more information than what is intimated here,
which can potentially be used for analyzing networks, but for the purposes of this
article the description above will su�ce.

If S is a simplicial complex and |S
n

| denotes the cardinality of the set of n-
simplices in S, then the Euler characteristic of S is defined to be

�(S) =
X

n�0

(�1)n|S
n

|.
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There is a well known, close relationship between Euler characterstic and Betti
numbers [5], which is expressed as follows. If {�

n

}
n�0 is the sequence of Betti

numbers for S, then
�(S) =

X

n�0

(�1)n�
n

(S).

See Figure 2A for a specific example.

ST1.4. Hasse Diagrams. A Hasse diagram, otherwise known as a directed
acyclic graph, is a directed graph H = (V,E, ⌧) with no oriented cycles. Hasse
diagrams can be used to encode various combinatorial, geometric, and topologi-
cal structures, such as posets and cubical complexes. Below we explain in detail
how Hasse diagrams encode simplicial complexes. We include this discussion here
because our computational algorithm (Algorithm 1) is based on this idea.

A Hasse diagram H is said to be stratified if for each v 2 V , every path from v
to any sink has the same length. Thus in a stratified Hasse diagram the vertices are
naturally partitioned into disjoint strata, where every directed path from a vertex
in the k-th stratum V

k

to any sink is of length k. In particular, the 0-th stratrum
V0 is the set of sinks of H. Moreover, for all e 2 E, there exists k > 0 such that
⌧1(e) 2 V

k

and ⌧2(e) 2 V
k�1. Note that if H and H0 are isomorphic Hasse diagrams,

and H is stratified, then so is H0.
An orientation & on a Hasse diagram H consists of a linear ordering <

&,v

of the
set E

v

of edges with source v, for every vertex v of H. If H = (V,E, ⌧) and H0 =
(V 0, E0, ⌧ 0) are Hasse digrams equipped with orientations & and & 0, respectively,
then a morphism of oriented Hasse diagrams from (H, &) to (H0, & 0) is a morphism
of directed graphs (↵,�) : H ! H0 such that for every v 2 V , the restriction of
� to a set map E

v

! E
↵(v) preserves the orientation, i.e, if e <

&,v

e0 for some
e, e0 2 E

v

, then �(e) <
&

0
,↵(v) �(e

0). A morphism (↵,�) of oriented Hasse diagrams
is an isomorphism if ↵ and � are bijections. A stratified Hasse diagram equipped
with an orientation is called admissible.

Vertices in the k-th stratum of a stratified Hasse diagram H are said to be of level
k. If k < n, and v, u are vertices of levels k and n respectively, then we say that v
is a face of u if there is a path in H from u to v. If H is also oriented and therefore
admissible, and there is a path (e1, ..., en�k

) from u to v such that e
i

= minE
⌧1(ei)

for all 1  i  n � k, we say that v is a front face of u. Similarly, v is a back face
of u if there is a path (e1, ..., en�k

) from u to v such that e
i

= maxE
⌧1(ei) for all

1  i  n� k. We let Face(u) denote the set of all faces of u and Face(v)
k

the set
of those that are of level k, while Front(u) and Back(u) denote its sets of front and
back faces, respectively. See Figure S4 for an illustration of the concepts introduced
above.

Example 1. If G = (V,E, ⌧) is a directed graph, then G can be equivalently repre-
sented by an admissible Hasse diagram with level 0 vertices V , level 1 vertices E,
and directed edges from each e 2 E to its source and target. The ordering on the
edges in the Hasse diagram is determined by the orientation of each edge e in G.

Every simplicial complex S gives rise to an admissible Hasse diagram HS as
follows. The level d vertices of HS are the d-simplices of S. There is a directed
edge from each d-simplex to each of its (d � 1)-faces. The stratification on HS is
thus given by dimension, and the orientation is given by the natural ordering of the
faces of a simplex from front to back. See Figure S5.
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The Euler characteristic of a stratified Hasse diagram H = (V,E, ⌧) is defined
to be the integer

�(H) =
X

k�0

(�1)k|V
k

|.

It is easy to see that isomorphic stratified Hasse diagrams have the same Euler
characteristic. It is also straight forward to show that if H is a stratified Hasse
diagram associated to a simplicial complex S, then the Euler characteristic of H
coincides with that of S.

ST2. Data structures and algorithms

In this section we describe our basic data structures and provide a detailed
overview of the algorithm that constructs the directed flag complex associated to
a directed graph. We also indicate briefly how our homology computations were
performed. A publicly available C++ implementation of the code will be available
on http://neurotop.gforge.inria.fr/.

ST2.1. Data structures. We represent an admissible Hasse diagram H cor-
responding to the directed flag complex of a directed graph G = (V,E, ⌧) by a
reference-based data structure, using vectors to store the references to the vertices
of the diagram. Each vertex v 2 H stores the following information.

(1) Ver(v): A vector of the vertices of G determining the simplex of the flag
complex to which v corresponds.

(2) Tar(v): A vector of references to the vertices that are targets of edges with
source v.

(3) Src(v): A vector of references to the vertices that are sources of edges with
target v.

The admissible Hasse diagram H is thus represented by an ordered set of d vectors,
where d is the maximal level in H, and where the i-th vector contains the references
to all level i vertices.

Let Sint denote the size of integer data types, and for a given graph G = (V,E, ⌧),
let |V | and |E| denote the cardinalities of the corresponding sets. Each edge of the
Hasse diagram is stored in two vertices of the diagram. If each reference requires
Sint storage, then we require O(|E| · Sint) space to store all references. In addition,
each vertex stores the vector of vertices in V of the simplex in the flag complex of G
to which it corresponds, which requires an additional O(S

int

·d) of space per vertex.
The total size of a Hasse diagram is thus bounded by O((Sint · d) · |V |+ |E| · Sint).
In particular, the required storage space grows linearly with the number of vertices
and with the number of edges. For our complexity analysis below we assume that
accessing any vertex, using Tar or Src, takes O(1) time.

ST2.2. Creation of the directed flag complex associated to a directed
graph. We describe our algorithm that creates a directed simplicial complex given
a directed graph G. The output is a Hasse diagram H, stored as the data structure
described above. The identifier Ver(v) of a vertex v inH, corresponding to a simplex
� in the directed flag complex, is the vector of vertices in G that represents �.

For every level n � 1 vertex v in H such that Ver(v) = [v0, . . . , vn], the algorithm
additionally records a vector U

v

of references to level 0 vertices u satisfying the
following properties:

http://neurotop.gforge.inria.fr/
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Algorithm 1 Directed flag complex generation.

Input: A directed graph G = (V,E, ⌧).
Output: A Hasse diagram H representing the directed flag complex associated to G.
1: Convert G to level 0 and level 1 vertices of H (cf. Example 1).
2: for every level 1 vertex e 2 H do
3: if exist e1, e2 such that ⌧1(e1) = ⌧1(e), ⌧1(e2) = ⌧2(e) and ⌧2(e1) = ⌧2(e2) = u

then
4: Add u to Ue;
5: dim = 2;
6: repeat
7: next level nodes – empty vector of references to nodes;
8: for top–level vertex e 2 H do
9: for Every u 2 Ue do

10: Create a node t of a Hasse diagram;
11: Ver(t) = [Ver(e), u];
12: Ut = Ue;
13: Add e to Tar(t);
14: Add t to Src(e);
15: for Every bd 2 Tar(e) do
16: for Every cbd 2 Src(bd) do
17: if u 2 Ver(cbd) then
18: Add cbd to Tar(t);
19: Add t to Src(cbd);
20: Ut = Ut \ Ucbd;
21: Add t to next level nodes;
22: Add next level nodes to H;
23: dim = dim+ 1;
24: until next level nodes = ;
25: Return H;

(1) u 6= v
i

for all 0  i  n, and
(2) for every u 2 U

v

and every 0  i  n, there exists an edge in G from v
i

to
u.

Finally, we assume that the graph G itself is given as an admissible Hasse dia-
gram, as described in Example 1. Under these assumptions Algorithm 1 below is
used to create the directed flag complex associated to G.

ST2.3. Discussion of Algorithm 1. At the start of the algorithm (Line 1) only
levels 0 and 1 of the Hasse diagram H, which are the same as those of the Hasse
diagram representation of G itself, have been created (cf. Example 1). The for
loop in the line 2 initialises the creation of the vectors U

v

for level 1 vertices. For
every level 1 vertex e, the vector U

e

stores the references to all the 0-simplices that,
together with e, will form a level 2 vertex t. The construction of level 2 vertices in
H is performed during the first iteration of the repeat-until loop starting in Line 6.

We analyze the generation of level 2 vertices as a generic case, since the ar-
guments may clearly be generalised to higher levels. The if condition in Line 3
ensures that the vertex u will be the terminal vertex of the 2-dimensional simplex
corresponding to the level 2 vertex t, created in the first iteration of the repeat-until
loop (Line 6). Moreover the level 1 vertex e will correspond to a front face of the



24 D LOTKO ET AL.

2-simplex associated to t. Therefore, the ordering of Ver(e) can be extended to or-
dering of Ver(t), as in Line 11. Thus all level 2 vertices corresponding to 2-simplices
in the directed flag complex of G will be created by the algorithm. Also, since every
simplex has a unique 1-dimensional front face, every 2-simplex will be created only
once by this process.

Notice also that the if condition in Line 3 ensures that only triangles in G
consisting of three edges oriented as (v1, v2), (v2, v3), and (v1, v3) will give rise
to level 2 vertices in H. It follows by induction that the analogous condition on
orientations is then automatically satisfied for simplices of dimension greater than
2. To see this, fix n � 2, and suppose that all simplices of dimension less than or
equal to n have the desired property. Fix an n-simplex S = [v0, . . . , vn] and u 2 U

S

.
By definition of the set U

S

, there is an edge from v
i

to u for every i 2 {0, . . . , n}.
Note that u 2 U

S

0 for any S0 2 Tar(S). The previous iteration of the repeat-until
loop (Line 6) created an oriented simplex from S0 together with u, of which u is the
last vertex. Since the ordering of elements in S0 is a restriction of the ordering of
elements in S, the ordering of a n+ 1 dimensional simplex [v0, . . . , vn, u] restricted
to any face yields the orientation of that face. It follows that Algorithm 1 does
indeed construct a directed flag complex.

We now discuss the termination of Algorithm 1. If a level n vertex v is a face of a
level (n+1) vertex w, then the last vertex u in Ver(w) is not present in Ver(v), but
is listed in U

v

. From Lines 12 and 21 of the algorithm it is clear that U
w

⇢ U
v

and
moreover that u 62 U

v

. The cardinalities of the vectors U(�) are therefore decreasing
for the newly created vertices. More precisely, for a vertex t and its faces s

i

, there
exist i such that |U

t

| � |U
si |. Level n+ 1 vertices are created only if there exist a

level n vertex t such that U
t

6= ;. Since the cardinality of the U(�) decreases with
each iteration of the repeat loop, the algorithm will terminate.

We remark finally that the size of the directed flag complex corresponding to
a given directed graph G may be exponential in the size of G. In that case, the
process of creation of a complex is usually stopped at some fixed dimension n. The
time complexity of Algorithm 1 is proportional to the size of the output complex
H, multiplied by maximal level of a vertex in H (due to the target-source search
performed in Line 15) of the algorithm.

ST2.4. Homology and Betti numbers. All homology computations carried out
for this paper were made with F2 coe�cients, using the boundary matrix reduced
by an algorithm from the PHAT [2] library.
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6. Supplementary Figures
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Figure S1. Average number of ones in the true transmission-
response matrices for di↵erent pairs of parameters (�t1,�t2) in a
simulation of spontaneous, in-vivo-like activity (Ca 1.2)
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Figure S2. Comparing randomized and non-randomized
transmission-response matrices: average number of ones in a true
transmission-response (t-r) matrix divided by the average number
of ones obtained when the recorded spikes were randomized
before calculating the t-r matrix. Matrices were calculated from
simulated spontaneous, ongoing activity with di↵erent values for
�t1 (in di↵erent colors) and �t2 (along the x-axis). For each
pair (�t1,�t2), matrices for 20 time steps were calculated, and
the mean ratio is shown. Spikes were randomized by shu✏ing the
identities of the firing neurons, thus conserving the number of
spikes in any given time step and the total number of spikes fired
by each neuron.
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Figure S3. (A-C) Examples of directed graphs. Graphs (A) and
(B) are isomorphic, where the isomorphism is given by the map
sending vertex a to 1, b to 2, c to 3, and d to 4. Graphs (A) and
(B) are not isomorphic to graph (C). Vertex b in graph (A) is a
sink, vertex a in the same graph is a source. Graph (C) has no
sources or sinks, which explains the lack of isomorphism to graphs
(A) and (B).
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Figure S4. (A) A Hasse diagram that is not stratified, due to the
edge from the vertex 1 to 5. (B) A stratified Hasse diagram, where
vertices 5, 6, and 7 are the vertices of level 0, vertices 2, 3, and 4
are of level 1, and vertex 1 is of level 2. This is also an admissible
Hasse diagram, where the outgoing edges are ordered from left to
right. Vertex 2 is a front face of vertex 1, while vertex 3 is neither
a front nor a back face of a vertex 1, and vertex 4 is back face of
a vertex 1.
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Figure S5. Top: The geometric realization of a simplicial com-
plex consisting of seven 0-simplices (labeled 1,...,7), ten 1-simplices,
and four 2-simplices. The orientation on the edges is denoted by
arrows, i.e., the tail of an arrow is its source vertex, while the head
of an arrow is its target. Bottom: The Hasse diagram correspond-
ing to the simplicial complex above. Level k vertices correspond
to k-simplices of the complex and are labeled by the ordered sets
of vertices that constitute the corresponding simplex. Note that,
e.g., vertex 23 is a back face of a vertex 123 and a front face of a
vertex 234.
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