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Schrödel, ..., Eviatar Yemini, Shawn

Lockery, Manuel Zimmer

Correspondence
zimmer@imp.ac.at

In Brief
Simultaneously recording the activity of

nearly all neurons in the C. elegans brain

reveals that most active neurons share

information by engaging in coordinated,

dynamical network activity that

corresponds to the sequential assembly

of motor commands.

Kato et al., 2015, Cell 163, 656–669
October 22, 2015 ª2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2015.09.034

mailto:zimmer@imp.ac.at
http://dx.doi.org/10.1016/j.cell.2015.09.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.09.034&domain=pdf


Article

Global Brain Dynamics Embed the Motor
Command Sequence of Caenorhabditis elegans
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SUMMARY

While isolated motor actions can be correlated with
activities of neuronal networks, an unresolved prob-
lem is how the brain assembles these activities into
organized behaviors like action sequences. Using
brain-wide calcium imaging in Caenorhabditis ele-
gans, we show that a large proportion of neurons
across the brain share information by engaging in co-
ordinated, dynamical network activity. This brain
state evolves on a cycle, each segment of which re-
cruits the activities of different neuronal sub-popula-
tions and can be explicitly mapped, on a single trial
basis, to the animals’ major motor commands. This
organization defines the assembly of motor com-
mands into a string of run-and-turn action sequence
cycles, including decisions between alternative be-
haviors. These dynamics serve as a robust scaffold
for action selection in response to sensory input.
This study shows that the coordination of neuronal
activity patterns into global brain dynamics underlies
the high-level organization of behavior.

INTRODUCTION

Behavior is composed of individual motor actions and motifs,
such as limb movements or gaits, which do not achieve organ-
ismal goals unless they are orchestrated into longer-lasting
action sequences and behavioral strategies, like navigation,
grooming, or courtship (Anderson and Perona, 2014; Gray
et al., 2005; Seeds et al., 2014). Ethologists often make quantita-
tive descriptions of this higher-level organization using state
transition diagrams, consisting of distinct, repeatable high-level
motor states and switches between them (Anderson andPerona,
2014). The brain’s representation of behavior must account for
both detailed metrics of individual actions (e.g., strength and
extent of movement or speed of gait), as well as for their higher
level orchestration. Identifying how these aspects of behavior
correspond to measurable neural activity is a necessary step
toward understanding how the brain encodes and produces

behavior. Recent studies in invertebrate motor ganglia and
mammalian cortex show that selection, execution, and shaping
of motor programs correspond to neural activity patterns across
large neuronal populations. These studies show that, despite the
participation of hundreds of sampled neurons, their activity is
coordinated, and meaningful signals can thus be reduced to
far fewer dimensions. Moreover, neuronal populations encode
information dynamically (Briggman et al., 2005; Bruno et al.,
2015; Churchland et al., 2012; Cunningham and Yu, 2014; Har-
vey et al., 2012; Jin et al., 2014; Mante et al., 2013). For practical
reasons, recordings in these studies have been performed over
short intervals that encompass individual motions or brief behav-
ioral tasks. Hence, the neuronal mechanisms that govern the
continuous control of behavior and its time course, encompass-
ing long-lasting and repeated action sequences, remain enig-
matic. Furthermore, approaches have been typically limited by
the need to average across trials or to sub-sample from local
brain regions or motor ganglia. Recently, the first brain-wide sin-
gle-cell-resolution functional imaging studies, in zebrafish and fly
larvae and adult C. elegans, revealed motor-related population
dynamics correlated across distant brain regions. These data
suggest that behaviorally relevant neural representations might
occur at the level of global population dynamics and highlight
the benefit of brain-wide sampling (Ahrens et al., 2012, 2013;
Lemon et al., 2015; Panier et al., 2013; Prevedel et al., 2014;
Schrödel et al., 2013).
The nematode C. elegans is an attractive model system to

address these problems, due to its stereotypic nervous system
of just 302 identifiable neurons grouped into 118 anatomical
symmetry classes (White et al., 1986). However, prior to the
availability of whole-brain imaging, past studies had not ex-
plored distributed or population dynamics in C. elegans.
Instead, identified interneurons and pre-motor neurons have
been described as dedicated encoders of specific sensory
inputs or motor outputs and are commonly placed in a context
of isolated sensory-to-motor pathways (see the following refer-
ences for examples: Chalasani et al., 2007; Donnelly et al.,
2013; Gray et al., 2005; Ha et al., 2010; Iino and Yoshida,
2009; Kimata et al., 2012). However, these pathways largely
overlap and are embedded in a horizontally organized and re-
currently connected neuronal wiring diagram (Varshney et al.,
2011; White et al., 1986). Moreover, recent functional imaging
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studies revealed that many of these circuit elements encode
motor rather than sensory related signals (Gordus et al., 2015;
Hendricks et al., 2012; Laurent et al., 2015; Li et al., 2014; Luo
et al., 2014). Taken together, these considerations argue against
separable feed-forward sensory pathways and instead support
the hypothesis that sensorimotor processing is performed by
distributed, shared networks operating on widespread motor
representations.

In the present study, we provide evidence for this hypothesis
by showing that many neurons in theC. elegans brain participate
in a pervasive dynamic population state, collectively represent-
ing the major motor commands of the animal. The time evolution
of the neural state is directional and cyclical, corresponding to
the sequential order of the animals’ repeated actions. These
network dynamics interface with sensory representations as
early as at the first synapse downstream of sensory neurons
and provide a robust scaffold for sensory inputs to modulate
behavior. Our work suggests that high-level organization of
behavior is encoded in the brain by globally distributed, contin-
uous, and low-dimensional dynamics.

RESULTS

Brain-wide Activity Evolves on a Low-Dimensional
Attractor-like Manifold
We performed whole-brain single-cell-resolution Ca2+ imaging
with a pan-neuronally expressed nuclear Ca2+ sensor in animals
immobilized in a microfluidic device (Schrödel et al., 2013). In
each animal (n = 5), we recorded the brain activity under environ-
mentally constant conditions for 18 min at a rate of !2.85 vol-
umes per second. The imaging volume spanned all head ganglia,
including most of the worm’s sensory neurons and interneurons,
as well as all head motor neurons and the most anterior ventral
cord motor neurons (White et al., 1986) (Figures 1A and 1B). In
each recording, we detected 107–131 neurons and were able
to determine the cell class identity of most of the active neurons.
Figures 1C and S1A show a typical multi-neuron time series
during which a large proportion of imaged neurons exhibited
discernable Ca2+-activity patterns.We performed principal com-
ponents analysis (PCA) on the time derivatives of the normalized
Ca2+ traces (Figures 1C–1E). This method produces neuron
weight vectors, termed principal components (PCs); here, PCs
are calculated based on the covariance structure found in the
normalized data (Jolliffe, 2002). For each PC, a corresponding
time series (temporal PC) was calculated by taking the weighted
average of the full multi-neural time series. Temporal PCs repre-

sent signals shared by neurons that cluster based on their corre-
lations. We found a low-dimensional, widely shared, dominant
signal: the first three PCs accounted for 65% of the full dataset
variance (Figure 1E). We performed PCA on the time derivatives
of Ca2+ traces because the resulting PCs produced more
spatially organized state space trajectories, described below.
The time integral of temporal PC1 displayed a strong oscilla-

tory time course with variable period, sharp transitions, and pro-
longed plateaus and troughs. This pattern derived from the
antagonistic activity of two groups of interneurons and motor
neurons (Figure 1C, right) previously implicated in controlling
the switch between forward- and backward-directed crawling
(Table S1 summarizes published results). Neurons previously re-
ported to have opposing roles were observed to have opposing
signs of their PC1 weights—e.g., AVA promoting backward
crawling and AVB promoting forward crawling. PC2 and PC3
received high contributions from head motor neurons. Two of
these neurons (SMDV and RIV) have been implicated in postural
changes required for navigational re-orientation maneuvers
(termed omega turns) (Gray et al., 2005). However, the neuronal
weights of all three PCs indicated contributions from many neu-
rons (Figure 1C). PC1–3 weights and their variance contributions
were consistent across the five datasets (Figures S2A–S2D).
The phase plot of temporal PC1–3 showed that the neural

state’s time evolution was cyclical—i.e., the same states were
repeatedly revisited within a trial, such that successive trajectory
cycles formed spatially coherent bundles (Figure 1F and Movie
S1). Consequently, the entire neural state trajectory traced out
a manifold, which is defined here as the sub-volume in PCA
space occupied by the neural state trajectory. When mapped
onto the neural trajectory, individual neurons’ activity rise and
fall phases occupied class-specific sub-regions on the manifold
(Figures 1G and S1B). All five recordings displayed a similarly
structuredmanifold (Figure S2E). Thus, a large group of interneu-
rons and motor neurons produces a cyclical, low-dimensional
population state time-varying signal.

Interneurons and Head Motor Neurons Reliably Encode
Motor State and Graded Motion Parameters
Next, we aimed for a functional interpretation of the neural state
manifold and its properties. Each manifold sub-region was
labeled specifically and consistently by different subsets of
neurons, some of which have been previously implicated in
the action sequence termed a pirouette (Table S1), which is
central to navigation (Gray et al., 2005; Pierce-Shimomura
et al., 1999). During pirouettes, worms switch transiently from

Figure 1. Brain-wide Activity Is Organized in a Low-Dimensional, Cyclical Neural State Space Trajectory
(A) Maximum intensity projection of a representative sample recorded under constant conditions.

(B) Single z plane overlaid with segmented neuronal regions.

(C) Heat plot of fluorescence (DF/F) time series of 109 segmented head neurons, one neuron per row. Labeled neurons indicate putative cell IDs. Ambiguous

neuron IDs are in parentheses (see Figure S1 for additional candidates). Neurons are colored and grouped by their principal component (PC1–3) weights and

signs, which are shown by the bar plots on the right.

(D) Integrals of the first three temporal PCs.

(E) Variance explained by first ten PCs, black line indicates cumulative variance explained.

(F) Phase plot of first two temporal PCs colored by direction of time evolution indicated by color key.

(G) Phase plots of first two (left) and first three (right) temporal PCs. Colored balls indicate Ca2+ rises of three example neurons indicated by legend.

See also Movie S1 and Figures S1 and S2.
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forward- to backward-directed crawling, termed a reversal (Fig-
ures 2A and 2B). They then resume forward crawling with a
concomitant turn along the dorsal or ventral body axis; worms
crawl lying on their left or right side (Figures 2C and 2D). We
performed Ca2+ imaging experiments of representative neurons
in freely moving worms while simultaneously recording their
behavior with an infrared (IR) camera (Faumont et al., 2011).
We selected neurons based on their PC weights and availability
of specific promoters to drive GCaMP expression. As with brain-
wide imaging experiments, animals were recorded 5–10 min af-
ter removal from food, a paradigm in which pirouettes contribute
to a local search strategy (Gray et al., 2005). Behavioral analysis
of the IR movies showed that reversal initiations were each pre-
ceded by a reduction in crawling speed (slowing bout), though
20% of slowing bouts did not lead to a reversal (Figures S3A
and S3B). We thus defined slowing as an additional behavioral
state and represent pirouettes together with forward crawling
as action sequences composed of forward run, slowing, re-
versal, resume forward via dorsal turn, and resume forward via
ventral turn actions, which is depicted in a state transition dia-
gram (Figure 2E).
We first examined Ca2+ dynamics in neurons with high pos-

itive or negative PC1 weight. An example trace of RIM neurons
is shown in Figure 2F. We found that the Ca2+ signals of RIM
resided in stable low states during forward-directed crawling
and that Ca2+ rises occurred exclusively during reversals (Fig-
ure 2F). The slope of these signals correlated with the speed of
reverse crawling (Figure 2G). Although reversals are of variable
duration (Gray et al., 2005; Pokala et al., 2014) (Figure S3B),
RIM Ca2+ rise onsets precisely aligned with reversal start,
and RIM Ca2+ fall onsets aligned with reversal end. This rela-
tionship was highly reliable—approximately 90% of reversals
were associated with a detectable RIM Ca2+ rise phase (Fig-
ure 2H, top), and the remainders were very short reversals
where small Ca2+ signals might have been occluded by noise
(Figure 2F). All clearly discernible RIM Ca2+ rises above our
signal-to-noise threshold occurred during reversals. We found
such a relationship of Ca2+ rise and fall phases with respect to
reversal events for all tested neurons with positive PC1 weight
(RIM, AVA, AVE, AIB), while neurons with negative PC1 weight
(RIB, AVB, RMEV) showed the inverse relationship (Figures 2H
and S3C–S3H). All these neurons’ activities changed as reli-
ably as RIM at both forward-reverse and reverse-forward
transitions.
Besides this common property of PC1 neurons, class-specific

relationships between neuronal activity and locomotion were re-
vealed by freely moving Ca2+ imaging. RIM and AVA Ca2+ rise
slopes, and AVE Ca2+ signal magnitude, were graded and corre-
latedwith reverse crawling speed (Figures 2G, S3I, and S3J). Un-
like RIM, AVA, and AVE, the activity of AIB did not show strong
correlations with reverse crawling speed (Figures S3E and
S3K); however, small AIB Ca2+ transients co-occurred with for-
ward slowing bouts, even when no reversal followed (Figures
S3E and S3Q). Consistent with this, AIB Ca2+ rise phases pre-
ceded the forward-to-reversal transition by!1 s on average (Fig-
ure 2H). The continuous activity of AVB and RIB, unlike RMEV,
showed strong correlations with forward crawling speed (Figures
S3L–S3P; see also Li et al., 2014). Consistent with this, AVB and

RIB Ca2+ fall phases preceded the forward to reverse transition
by !1 s on average (Figure 2H).
Next, we examined the activity of SMDV head motor neurons

as representative neurons with strong PC2/3 weight. Resump-
tion of forward crawling begins with a dorsal or ventral bend,
which was biased (71%/29%) in the ventral direction. The
head flexure during post-reversal turns is graded and increased
compared to normal forward crawling, especially for ventral
bends (Figure 3A). SMDV exhibited Ca2+ rises at the transition
from reverse to forward crawling; importantly, these rises
occurred exclusively during ventrally and not dorsally directed
events (Figures 3B–3D). The magnitude of these signals corre-
lated with ventral head-bending flexure (Figure 3E).
The major qualitative divergence in neural activity patterns be-

tween the freely moving single neuron and restrained whole-
brain setups that we observed was the absence, in freely moving
worms, of prolonged high phases in neurons with positive PC1
weight. Using RIM as an exemplar, we first ruled out that this dif-
ference was a consequence of nuclear localization of the Ca2+

reporter used in whole-brain imaging (Figures S3R–S3T). We
then dissociated the twomajor differences in these experimental
conditions by performing experiments in either pharmacologi-
cally or physically immobilized worms. While low doses of
the paralyzing agent tetramisole caused RIM high phases in
conjunction with prolonged slowly executed reversals, physical
immobilization alone also caused RIM high phases (Figures
S3U–S3X). These data suggest that impeded motor execution
leads to a prolongation of the reversal, which is correlated with
sustained Ca2+ levels in reversal-promoting neurons.
In summary, the investigated neuronal activities showed both

(1) sharp transitions depending on discrete motor state (i.e., for-
ward versus backward crawling, ventral versus dorsal turning di-
rection) and (2) graded information about motion parameters
(i.e., forward and reverse crawling speed and head bending
flexure). Acute motor state reliably matched the activities of the
associated neurons on a single event basis. Importantly, when
examining neuron activity periods mapped onto the neural state
manifold, we observed that neurons encoding the same behav-
ioral state in freely moving animals shared the same manifold
sub-regions with rare exception (Figure S1B).

Manifold Branches and Bundles Exhibit Distinct
Neuronal Recruitment Patterns
Having determined that the neural state manifold is a composite
of motor related signals, we next aimed for a quantitative
description thereof. We first segmented the global brain cycle
into four behaviorally relevant phases using the left AVA neuron
(AVAL) as a reference: a trough in AVAL Ca2+ defined the LOW
state, a Ca2+ increase the RISE state, a Ca2+ plateau the HIGH
state, and a Ca2+ decrease the FALL state (Figure 4A). We chose
this single neuron class because it is among the highest PC1
contributors, participated in every brain cycle, and, unlike tem-
poral PCs, exhibited sharply discernible transitions; however,
other strongly PC1-contributing neurons such as RIM could
also be used for this purpose. We validated that the appearance
of lasting plateau and smooth transition states was not due to
temporal filtering effects of Ca2+ imaging: all four states were
readily discernible in AVA membrane voltage recordings, and
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Figure 2. Distributed Encoding of Motor State and Crawling Speed by Interneurons in Freely Moving Worms
(A–D) Motor states of pirouette action sequence. White dotted lines show crawling trajectory. Arrows indicate crawling direction.

(E) Behavioral state transition diagram indicating motor states as circles and possible transitions as arrows.

(F–H) Ca2+ imaging in freely moving animals.

(F) Example trace showing RIM activity as normalized GCaMP/mCherry fluorescence ratio (black) and corresponding crawling speed (green). Pink bars overlay

reverse crawling periods. Asterisk indicates reversal with no detectable RIM activity peak.

(G) Regression analysis of crawling speed versus RIM Ca2+ signal slope. R2 indicates goodness of linear fit for instantaneous and maximum (in parentheses)

reverse speed (red) and instantaneous forward speed (gray). Permutation test p value ****p < 0.0001 indicates probability that correlation was obtained by chance.

(H) Average Ca2+ signals of the indicated neurons triggered to reversal start (left) or end (right). Upper and lower traces represent 90th and 10th percentile of all

data, respectively. Number of recorded worms and reversal events are indicated.

See also Figure S3.
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we calculated an estimate of low-pass filtering caused by nu-
clear Ca2+-imaging, producing a maximum delay in signal peaks
of less than 1.1 s (Figure S4). Although neurons with a common
relationship to behavior were recruited to the same sub-regions
of the manifold, their precise phase onsets and offsets varied. In
order to quantify this observation, for each onset of RISE and
FALL, we created a vector containing the phase delays of all
recruited neurons (Figure S5) (see Supplemental Experimental
Procedures for details). Across the five datasets, we detected
121 RISE and 123 FALL transitions and observed characteristic
phase delay distributions for each neuronal class (Figure S5).
Next, we searched for structure across neuronal classes by per-
forming k-means clustering separately for the RISE and FALL
phase timing vectors; we found that both could be significantly
clustered into two groups each, which we termed RISE1/2 and
FALL1/2, respectively. RISE1 differed from RISE2 mostly based
on different timing of neurons; e.g., AIB andRIB activity exhibited
phase advances during RISE1 (Figure S5). FALL1 and FALL2
mostly differed by mutually exclusive headmotor neuron recruit-
ments, SMDV/RIV versus RMED/ventral ganglion head motor
neuron (likely SMB, SMDD, or RMF) (Figure S5). The precise
ordering detected by this method may be affected by differential
Ca2+ dynamics in different cells; however, the reproducible clus-
tering would be preserved. Using this six-state classification
(LOW, RISE1/2, HIGH, and FALL1/2), we labeled the neural state
trajectory and found that each state classifies a distinct bundle of
trajectory segments (Figures 4A and 4B andMovie S2). Thus, the
twomethods (PCA and phase timing analysis) revealed the same
dynamical structure in the neural data. Bundle classification
enabled us to calculate average neural state trajectories illus-

trating the canonical brain cycle (Figure 4C). Note that, without
this single-trial clustering analysis, the cycle-averaged trajectory
would be reduced to a single loop in neural state space. Further-
more, bundle classification enabled us to estimate a contour sur-
face of the manifold (Figure 4D andMovie S3), where the extents
correspond to the standard deviations (SDs) by which the trajec-
tory path diverges from the canonical (average) path. The trajec-
tory segments across all cycles are strongly bundled; the mean
pairwise distance of points across any two phase-registered tra-
jectory time points within a bundle is!10%of the diameter of the
full trajectory, and their mean angular divergence is 22" versus
90" expected from uncorrelated orientations. In summary, we
find that many active neurons across the brain are tightly bound
to reproducible and smooth population dynamics.

The Motor Command Sequence Is Embedded in Neural
State Space
Remarkably, the relationships neurons exhibited with behavioral
transitions (Figures 2H, 3C, and 3D) matched their phase
relationships with the six state global brain cycle without excep-
tion. Assembling all of the neuronal-behavioral correlate informa-
tion gathered via Ca2+ imaging in freely moving worms enabled
us to unambiguously map the worm’s major motor command
states onto separate bundles of the neural state manifold (Fig-
ures 4B–4E)—RISE1 or RISE2, in conjunction with HIGH, corre-
spond to reversals, with HIGH corresponding to the sustained
reversal seen only in immobilized animals. FALL1 corresponds
to the post-reversal ventral turn and FALL2 to the dorsal turn.
FALL1 and FALL2, in conjunction with LOW, correspond to
forward crawling. Slowing mapped to final sections of LOW

A

C D E

B Figure 3. SMDV Signals during Ventral, but
Not Dorsal, Post-Reversal Turns
(A) Fractional histogram showing postural angle

of first post-reversal head bend (ventral, yellow;

dorsal, orange). Numbers indicate percentage

of all post reversal head bends. Dashed

vertical black line shows median of all other

head bends (no difference between ventral and

dorsal).

(B–E) SMDV Ca2+ imaging in freely moving

animals.

(B) Example trace showing SMDV activity as

normalized GCaMP/mCherry fluorescence ratio

(black) and corresponding head-bend angle (pur-

ple). Pink bars overlay reverse crawling; yellow and

orange bars overlay ventral and dorsal post-

reversal head-bends, respectively.

(C and D) Average SMDV Ca2+ signals triggered

to reversals ending with ventral (C) or dorsal (D)

head bends. Upper and lower traces represent

90th and 10th percentile of all data, respectively.

Number of recorded worms and events are

indicated.

(E) Regression analysis of normalized peak post-

reversal head-bend angle versus SMDV Ca2+

signal. Ventral and dorsal bends are shown in

yellow and orange, respectively. Black open

circles show an equal number of randomly

selected head-bend peaks during regular forward movement. R2 indicates goodness of linear fits to ventral (V), dorsal (D), and respective control groups.

Permutation test p values (****p < 0.0001, **p < 0.01, ns not significant) indicate probability that R2 value was obtained by chance.
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preceding RISEs (Figures 4B–4E, see Experimental Procedures
for the detailed mapping rules). Thus, the neural state manifold,
on a single trial basis, embeds the pirouette command sequence
described in the state transition diagram (Figures 2A–2E). The
neural trajectory follows the same unidirectional sequence
through manifold sub-regions as the corresponding behavioral
sequence executed by freely moving worms during pirouettes.
This observation motivated us to redraw the state transition dia-
gram (Figure 2E) as a continuous flow graph (Figure 4E). The
neuronal manifold, in addition to embedding the command
sequence, also contains information about graded locomotion
parameters like the drive underlying crawling speed (Figure 4F,
see Experimental Procedures for the detailed mapping rules).
Both motor command states, as well as speed drive, appear
organized on the manifold; i.e., separable sub-regions unambig-
uously delimit the distinct command states (Figure 4B) and
proximal traversals on the manifold exhibit similar speed drives
(Figure 4F). This manifold organization was clearly apparent in
all five recordings (Figure S2E).

Each branching region of the manifold represents a decision
where the subsequent motor state is determined. To explore
the process of decision execution, we quantified the time
course of trajectory separation when branching into RISE1 versus
RISE2 and FALL1 versus FALL2 and subsequent merging. This
approach calculates how significantly trajectory segments bundle
in PCA space when tested against random shuffling of member-
ship in RISE1 versus RISE2 or FALL1 versus FALL2 clusters (see
Supplemental Experimental Procedures for details). Consistent
with the significant clustering of neuronal recruitment vectors
described above, there was significant separation during the
RISE and FALL phases (Figures 4G and 4H). Interestingly, this
also uncovered memory effects: a RISE1 versus RISE2 branch
choice could, on average, be predicted during the preceding
FALL period (Figure 4G), and consistent with the previous,
FALL1 versus FALL2 trajectories remained significantly unmixed
in the following RISE phases (Figure 4H). Moreover, RISE1 and
RISE2 are associated, respectively, with long and short preceding
LOW states (Figure 4I). Both results indicate that the trajectory
path history influences the future branch choice decision.

In contrast to the state transition diagram, the neural state
manifold captures the continuous dynamical structure of motor
commands and their transitions and contains additional informa-
tion about graded metrics of motion, like crawling speed and
postural flexure. Here, we define the terms command state and
speed drive as the brain’s internal high-level representations of
the underlying motor programs, since these are readily observ-
able in immobilized animals in the absence of motor execution.

Neural State Dynamics Persist When a Hub Output
Neuron Is Inhibited
The presence of a representation of the pirouette sequence in
immobilized animals suggests that the neuronal population dy-
namics are primarily internally driven and thus represent de-
scending motor commands that can operate in the absence of
motor feedback. We sought to further test this hypothesis.
Despite the largely recurrent connectivity of theC. eleganswiring
diagram, a bottleneck exists from the head ganglia to body
motor neurons—AVA pre-motor interneurons are anatomical

network hubs linking head ganglia neurons to A-class ventral
cord motor neurons, which mediate the reversal motor program
(Chalfie et al., 1985; Kawano et al., 2011; Varshney et al., 2011).
Acutely silencing AVA via transgenic expression of a histamine-
gated chloride channel (HisCl) (Pokala et al., 2014) abolished
reversals in freely moving worms (Figure 5A). As expected, simi-
larly silenced animals under whole-brain imaging (n = 5 record-
ings) showed substantial attenuation of AVA activity and strong
uncoupling of AVA from the global brain cycle (Figures 5B and
S6A). Additionally, activity of the reverse interneurons AVE and
RIM, which are connected to AVA via gap junctions (White
et al., 1986) was slightly attenuated (Figure 5B). However, their
phase relationships with most other neurons appeared normal
(Figure S6C). A-class ventral cord motor neurons, the principal
output targets of AVA, also showed significant attenuation
(Figure 5B). Despite these effects, the cyclical dynamics and
neuronal recruitment patterns were largely preserved (Figures
5C, 5D, and S6). The distributions of network state durations
were unchanged, with the exception of a decrease in HIGH state
duration, suggesting that network HIGH state prolongation was
due in part to reinforcement from AVA (Figure 5E). These obser-
vations raised the possibility that the global brain cycle was also
intact in freely moving worms with AVA, and therefore reversals,
inhibited. Unlike in wild-type animals, where 92.5% of turns
occurred in conjunction with a preceding reversal, in worms
with silenced AVA neurons, none of the turns were preceded
by reversals; instead, 68% of turns (32 out of 47) were preceded
by prolonged slowing or pauses, while the rest occurred during
apparently normal forward locomotion. Imaging RIM in AVA-
silenced freely moving animals revealed the presence of sus-
tained RIM activity during these prolonged slowing or pauses
preceding normal turning events (Figures 5F–5H). Such tran-
sients were never seen in controls, where RIM was only active
during reversals. In AVA-silenced animals, RIM activity often
entered HIGH states during prolonged pauses, further support-
ing the above interpretation that the HIGH state occurs due to
the absence of effectual motor execution (Figures 5F and S3U–
S3X). These results show that the cyclical time course of the
brain-wide motor command is maintained in the absence of
reversal execution, the only effect of which is a prolonged
HIGH state duration. Analogously, behaviors that are not AVA-
output mediated (slowing and turns) are also preserved. Further,
these data imply that AVA is not a privileged generator of motor
commands but should instead be characterized as an output-
facing member of the collectively oscillating interneuron group.

Entrainment of the Global Brain Cycle by Sensory
Stimulation
Next, we investigated how these collective network dynamics
interact with a chemosensory input. Under whole-brain imaging,
we stimulated oxygen chemosensory neurons with consecutive
oxygen up- and down-shifts (21% versus 4%), a protocol previ-
ously shown to reliably activate BAG, URX, and AQR oxygen
sensory neurons and to entrain pirouette behavior with high
pirouette probability at 21% oxygen and low at 4% (Figures
S7A and S7B; see also references Busch et al., 2012; Schrödel
et al., 2013; Zimmer et al., 2009). To our surprise, with the
exception of one ventral ganglion neuron class (RIG or RIF)
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Figure 4. The Neural State Manifold Embeds the Action Sequence and Exhibits Organized Analog Speed Drive
(A) Phase segmentation of example AVAL trace (left). Four-state brain cycle (middle). Phase timing analysis and clustering leads to six-state brain cycle (right). See

also Figures S4 and S5.

(B) Phase plot of the same trial shown in Figure 1, colored by six-state brain cycle plus FORWARD SLOWING command state in purple (see below).

(legend continued on next page)
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(Figure S7C), we did not detect single-neuron representations of
sensory stimulus downstreamof sensory neurons (n = 13 record-
ings). Moreover, the topology of the neural state manifold did not
change upon stimulation; however, there were some magnitude
effects on the amplitude of temporal PC1 (Figure 6A). Based on
the strong entrainment effect the stimulation protocol has on
pirouette behavior, we expected that oxygen concentration
should affect bundle occupancy on the manifold. Indeed, the
stimulus protocol entrained the global phase of the brain cycle
so that the probability of the reverse motor command state
declined during 4% oxygen periods and increased during 21%
oxygen periods (Figures 6B and 6C), indicating a successful
sensorimotor transformation in our preparation. Consistent
with these findings, Ca2+ rises in BAG neurons during the
HIGH state evoked immediate FALL1 or FALL2 transitions in
56% (30/54, n = 13 recordings) of all instances (see Figure S7C
for an example). Interestingly, in 22 out of the 24 remaining in-
stances, secondary BAG Ca2+-rises coincided with a FALL1 or
FALL2 transition; these were the only times when we observed
secondary BAG transients (see Figure S7C as an example).
This finding suggests the existence of a feedback mechanism
eliciting or gating secondary Ca2+ rises in the BAG sensory neu-
rons, demonstrating that variability in the BAG sensory response
profile (Zimmer et al., 2009) can be explained when the underly-
ing brain state is known to the observer.

Finally, we looked for sensory-evoked Ca2+ activity in the
major PC1 neuron classes AVA, AVE, and RIB in freely moving
animals. Together AVE and RIB receive 47%of BAG neuron syn-
apses (White et al., 1986). Consistent with our whole-brain imag-
ing results, these neurons retained a tight correlation with motor
state andmovementmetrics and lacked obvious sensory encod-
ing activity; the magnitude of Ca2+ signals was subtly modulated
during the stimulation periods (Figures S7D–S7U).

In summary, neural state manifold organization is robust to a
salient sensory inputand thusstablyencodes themotorcommand
sequencesof thewormunder theseconditions.Themajoreffectof
sensory input was tomodulate the probability that the neural state
resides on a particular segment bundle by driving the neural state
along a lawful trajectory. The result is an entrainment of the global
brain cycle, which is consistent with the entrainment of corre-
sponding motor behaviors in freely moving worms.

DISCUSSION

In this work, we identify and characterize a brain-wide signal
in C. elegans that dominates the neural activity time series.

Although our approach required the use of a nuclear localized
Ca2+ indicator, omitting the detection of subcellular Ca2+ signals
(Chalasani et al., 2007; Hendricks et al., 2012; Li et al., 2014), it
reveals a pervasive motor state representation that is shared
among most interneuron and motor neuron layers. The neural
state trajectory exhibits directional, cyclical flow (Figure 1F)
confined to a low-dimensional manifold (Figure 4D), organized
into bundles (Figures 4B–4D) composed of stereotyped and
smoothly changing neural activity vectors (Figure S5). Each mo-
tor commandwithin the pirouette action sequence is reliably rep-
resented across several neurons. Neurons additionally encode
graded parameters of locomotion, e.g., crawling speed and
postural flexure (Figures 2, 3, and S3). These data enable us to
unambiguously map behavioral commands onto sub-regions
of the neural state manifold, enabling instantaneous behavioral
decoding throughout an experimental trial (Figures 4B and 4E).
We interpret these dynamics as corresponding to motor com-
mands, as they can be decoupled frommotor output either by re-
straint (during whole-brain imaging) or manipulation of a major
output neuron (Figure 5). Organized flow along the neural state
manifold mediates the assembly of motor commands into action
sequences (Figures 4B and 4E); it thus represents the high-level
temporal organization of behavior upstream of the generation of
the animal’s undulatory gait. This contrasts with population dy-
namics in the motor ganglia of crustaceans, mollusks, and lam-
preys that generate peristaltic and movement rhythms (Bruno
et al., 2015; Grillner, 2006; Marder and Bucher, 2007). Interest-
ingly, the brain’s forward and reversal motor commands are
coupled to corresponding rise, high, fall, and low states in the
B- and A-class ventral nerve cord (VNC) motor neurons (Figures
1 and S1), which is consistent with previous studies performed in
moving C. elegans. Additionally, VNC motor neuron activity ex-
hibits gait-related rhythmic activity superimposed on these com-
mand states (Kawano et al., 2011; Wen et al., 2012), which re-
quires proprioceptive coupling to movement (Wen et al., 2012).
Taken together, we propose that behavioral state is encoded
in the brain and coupled to the motor periphery and that this
coupling co-occurs with locally maintained rhythmic activity.
These continuous neural dynamics embed behavioral motifs,

described by the state transition diagram, and permit their su-
perposition with graded motion metrics (Figure 4F). The process
of decision making leading to execution of alternate behaviors
can be observed as the time evolution of neural trajectories
before the branches (Figures 4B–4D, 4G, and 4H). We propose
that the phenomenon of global dynamics robustly and continu-
ously encoding action sequence commands may be present in

(C) Phase-registered averages of the two RISE phase and two FALL phase bundles colored by six-state brain cycle. Semi-transparent ovals denote trajectory

bundle mixing regions.

(D) Contour surface illustrating the neural state manifold colored by six-state brain cycle.

(E) Flow diagram indicating the motor command states corresponding to the six-state brain cycle plus FORWARD SLOWING command state (purple).

(F) The same phase plot colored by forward- and reverse-speed drive inferred from neural correlate decoding. Green trajectory segments indicate the

SUSTAINED REVERSAL state, for which no drive correspondence is made. See Figure S2 for more examples.

(G and H) Quantification of inter-bundle separation and mixing for RISE (G) and FALL (H) clusters. Traces show trial-averaged p values (shading indicates SEM;

n = 5 animals) of mean normalized pairwise distance at instantaneous points in the past or future, which indicate the probability that the observed separation

between bundles occurred by chance. This calculation was done in six dimensions (PC1–3 plus their derivatives) to incorporate directional information from the

trajectory paths.

(I) Distribution of LOW state durations preceding RISE1 or RISE2 segments.

See also Movies S2 and S3.
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higher animals with more sophisticated behavioral repertoires.
This hypothesis is supported by the observation of smooth pop-
ulation dynamics maintaining navigational plans in rodents (Har-
vey et al., 2012). Its generality could be further tested by studying
the basis of well-described sequential courtship and grooming
behaviors in fruit flies (Dankert et al., 2009; Seeds et al., 2014).

The ability to find dynamical structure solely on the basis of
neural event timing (Figure S5) suggests that the structure
we observe is not a particular consequence of the graded,
non-spiking, nature of C. elegans neurons. We speculate that
neuronal population trajectories associated with action selection
in leeches (Briggman et al., 2005), limb movement in monkey

A

C

E

F G H

B D

Figure 5. Global Brain Dynamics Persist when Decoupled from Motor Output
(A) Reversal events per minute for AVA::HisCl worms without (#His) or with (+His) histamine treatment. Each data point represents a single assay, n = 20–25

worms per assay. Horizontal lines show means. Mann-Whitney test, **p < 0.01.

(B) Shifts in trial-averaged root-mean-squared power of neuronal trace derivatives of AVA::HisCl wormswith histamine treatment, relative to wild-type control (n =

5). Gray bars indicate non-significant power shifts, red bars indicate significant power shifts. Class-A motor neurons, typically 1–2 visible per recording, were

combined. Significance was determined using a permutation test, ****p < 0.0001, **p < 0.01, *p < 0.05.

(C and D) Integrated temporal PCs (C) and phase plots (D) of an example AVA::HisCl dataset.

(E) Distributions of state durations of AVA::HisCl (red) versus wild-type (blue) across multiple trials (n = 5).

(F–H) Ca2+ imaging of RIM in freely moving animals expressing HisCl in AVA.

(F) Example trace showing RIM activity in an AVA::HisCl worm after histamine treatment. Normalized GCaMP/mCherry fluorescence ratio (black) and corre-

sponding crawling speed (green) are shown. Omega turns are indicated with gray overlaid bars. These worms did not exhibit reversals.

(G and H) Averages of RIMCa2+ signals in AVA::HisCl worms triggered to omega turn onset, for worms pre-incubated without (G) or with (H) histamine. Upper and

lower traces represent 90th and 10th percentile of all data, respectively. Number of recorded worms and omega turns are indicated.

See also Figure S6.
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cortical areas (Georgopoulos and Carpenter, 2015; Shenoy
et al., 2013), and speech in humans (Bouchard et al., 2013)
may be sparsely sampled windows onto similarly well-orga-
nized, smooth global dynamics.

Our work establishes a framework for future studies aimed at
embedding more fine-scaled behaviors beyond the discrete
classifications of the state transition diagram, such as gradual
steering commands (Iino and Yoshida, 2009) and locomotory
gait (Stephens et al., 2008). By exploring more sophisticated
sensory input paradigms and studying the animal in different
contexts and life stages, we expect that the neural state
manifold will be further sub-dividable and support the map-
ping of other behavioral parameters. Additionally, in-depth
analysis of whole-brain activity may uncover previously hidden

aspects of behavior; for example, we found two types of rever-
sals (corresponding to RISE1 and RISE2) in whole-brain activity
that currently lack known behavioral correlates. Although AVA in-
hibition had only subtle effects, systematically expanding this
approach to other neurons and combinations thereof should
reveal whether individual neurons or sub-ensembles are causal
to brain dynamics. By probing the system with acute perturba-
tion using optogenetics and imaging at finer timescales and
sub-neuronal spatial resolution, it should be possible to uncover
the neuronal logic governing trajectory control and branch selec-
tion, which underlies decision making in this system. Measuring
manifold geometry changes over longer timescalesmay uncover
the characteristics of brain states such as hunger-satiety or
sleep-wakefulness.

A B

C

Figure 6. Entrainment of the Global Brain Cycle by Sensory Stimulation
Animals were recorded and stimulated with the oxygen profile indicated in (B).

(A) Phase plots of temporal PCs 1–2 from a representative recording. Top: behavioral command state coloring as in Figure 4B. Bottom: trajectory segments during

the pre-stimulus period are labeled gray; segments during the 4% and 21% shift periods are labeled blue and red, respectively.

(B) The trace shows the probability of reversal command state (REVERSAL1 + REVERSAL2 + SUSTAINED REVERSAL) calculated over n = 13 recordings.

(C) Reversal command state probability as in (B) but averaged over the six down- and up-shift periods. p values are calculated by a resampling test and indicate

the probability that the stimulus-synced profile shape occurred from a randomly time-shifted stimulus pattern.

See also Figure S7.
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Our results argue against models of largely feed-forward sen-
sory-to-motor flow where intermediate neuronal layers perform
sequential processing and the behavioral state is only ultimately
represented within the nervous system at the motor periphery.
Instead, our data support a model of an early interface between
sensory and motor representations as was suggested by recent
single-neuron studies (Hendricks et al., 2012; Luo et al., 2014).
Moreover, motor command representations affect respon-

siveness of sensory neurons and early interneurons to sensory
inputs via feedback mechanisms (Figure S7) that remain to be
identified (see also Gordus et al., 2015). Consistent with recent
distributedmodels of sensorimotor action selection inmammals,
including primates (Cisek and Kalaska, 2010), our work suggests
that the brain’s outputs—i.e., its intents and actions—make up a
large fraction of its dynamic activity state.
Our findings reveal that a large collection of neuronal classes

with distinct morphologies and connectivities (White et al.,
1986), distinct molecular compositions and neurotransmitter ex-
pression patterns (Hobert, 2013), distinct synaptic transmission
properties (Li et al., 2014), and distinct subcellular signal pro-
cessing capacities (Chalasani et al., 2007; Hendricks et al.,
2012; Li et al., 2014) nevertheless collectively share a low-dimen-
sional, pervasive neuronal signal. The class-specific phase rela-
tionships with respect to the global brain cycle (Figures S1B and
S5) suggest that neurons differentially interact with this shared
mode. We therefore propose that the neural state manifold
influences and binds local activity to a global reference frame-
work, establishing a consensus that produces stable, coherent
behavior.

EXPERIMENTAL PROCEDURES

The Supplemental Experimental Procedures contain more detailed informa-

tion on each procedure, and in addition, they include descriptions of region

of interest detection and neural time series extraction from volumetric Ca2+ im-

aging data, electrophysiology, simulation of nuclear GCaMP signals from

voltage traces, population behavior assays, statistics applied in this study,

strain genotypes, and molecular biology constructs.

Whole-Brain Ca2+ Imaging of C. elegans Head Ganglia Neurons
Animals were immobilized with 1 mM tetramisole in microfluidic devices that

allow controlled O2 stimuli as previously described (Schrödel et al., 2013; Zim-

mer et al., 2009). Recordingswere started within 5min after removal from food.

Worms were either imaged for 18 min at constant 21% O2 or, for the stimulus

protocol, imaged for 12 min with the first 6 min at 21% O2 and the remaining

6 min with 30 s consecutive shifts between 4% and 21% O2. Data were ac-

quired using an inverted spinning disc microscope (UltraViewVoX, Perki-

nElmer) equipped with an EMCCD camera (C9100-13, Hamamatsu).

Identification of Head Ganglia Neurons
In each recording, we detected 107–131 neurons, covering 55%–67% of ex-

pected neurons in the imaging area. Neurons were identified taking into ac-

count their anatomical positions, also in relation to surrounding neurons

(http://www.wormatlas.org), and their activity patterns. To confirm ambiguous

neuron identities, marker lines expressing red fluorophores in neurons of inter-

est were generated and crossed to the imaging line expressing GCaMP5K

pan-neuronally in the nucleus (ZIM504).

Time Series Analysis: PCA, Numerical Differentiation, 4-Phase
Segmentation, Phase Timing Analysis, and Clustering
PCA was performed on the time derivatives of DF/F0 neural traces, each

normalized by its peak magnitude. To compute de-noised time derivatives

without the need of smoothing that can affect precise timing of sharp transi-

tions, the total-variation regularization method (Chartrand, 2011) was applied.

To segment individual neuronal activity into 4-phase sequences, first RISE and

FALL phases for neurons were identified as periods when the time derivative

was greater or lower than a small threshold, respectively. HIGH and LOW

phases were then inferred in the remaining gaps. For trajectory segment aver-

aging (Figures 4C, 4D, and S2E) and generation of Movies S2 and S3, neuronal

time series were registered to a common phase clock by matching phase

segment starts and ends to the reference neuron (AVA or RIM) rise onsets

and fall offsets, respectively, followed by linearly interpolating within phase

segments. To perform phase timing analysis, first a set of global transitions,

either RISE or FALL onsets, were defined by the transitions of a reference

neuron (AVA or RIM in this study). Then, relative time delays of the nearest tran-

sitions found in other neurons were used to compose a feature vector for each

global transition. In the absence of a matching transition within 7 s of the refer-

ence neuron transition, a time delay of #10 s was used for the purposes of

clustering, since the absence of neurons was also considered an important

feature of transitions. K-means clustering was applied to transition feature

vectors for each full trial using L1 distance and k = 2. Detailed explanations

of the above computational analysesmay be found in the Supplemental Exper-

imental Procedures.

Behavioral Decoding of Whole-Brain Recordings
Each time point of the phase plot trajectory was first assigned to a global brain

cycle HIGH, LOW, RISE1, RISE2, FALL1, or FALL2 segment as described

above and in themain text, thenmapped to motor command states as follows.

RISE1 and RISE 2 segments were mapped to REVERSAL1 and REVERSAL2

command states, respectively. HIGH segments were mapped to the

SUSTAINED REVERSAL state. FALL1 and FALL2 segments were mapped to

VENTRAL TURN andDORSAL TURN, respectively. LOW segments weremap-

ped to FORWARD except that RIB FALL phases present during global LOW

segments were mapped to FORWARD SLOWING command states. A speed

drive was assigned to each point on the trajectory as follows, aside from those

in SUSTAINED REVERSAL phases for which no speed drive was inferred. Dur-

ing VENTRAL TURN, DORSAL TURN, FORWARD, and FORWARD SLOWING

phases, positive speed drive was taken to be the magnitude of RIB activity,

normalized to its most negative value during the trial. During REVERSAL1

and 2 phases, negative speed drive was taken to be the derivative of RIM

neuron activity, normalized to its highest value during the trial.

Ca2+ Imaging in Freely Moving Animals
Ca2+ imaging recordings were made using the automatic re-centering system

described previously (Faumont et al., 2011) with custom modifications. Young

adult worms (0–8 eggs) expressed both mCherry and GCaMP in the neuron of

interest. Animals were recorded while freely crawling on agar in a custom built

microscope stage containing an airtight chamber with inlet and outlet connec-

tors for gas flow delivery. Images were acquired using two CCD cameras

(Evolve 512, Photometrics) connected via a DualCam DC2 beam splitter (Pho-

tometrics). A long-distance 633 objective (Zeiss LD Plan-Neofluar 633, 0.75

NA) was used to obtain unbinned images streamed at 30.3 frames per second

(fps) acquisition rate. Simultaneous behavior recordings under infrared illumi-

nation (780 nm) were made using a CCD camera (Manta Prosilica GigE,

Applied Vision Technologies) at 43 magnification and 10 fps acquisition rate.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, one table, and three movies and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2015.09.034.

AUTHOR CONTRIBUTIONS

S.K. designed experiments, developed analytical methods for whole-brain im-

aging datasets, and analyzed data. H.S.K. designed experiments, generated

transgenic strains, performed Ca2+-imaging experiments in freely moving an-

imals, developed analytical methods, and analyzed data. T.S. designed

Cell 163, 656–669, October 22, 2015 ª2015 Elsevier Inc. 667

http://www.wormatlas.org
http://dx.doi.org/10.1016/j.cell.2015.09.034


experiments, generated transgenic strains, performed whole-brain imaging

experiments, and analyzed data. S.S. performed population behavioral re-

cordings and analyzed data. T.H.L. and S.L. performed electrical recordings;

E.Y. wrote code for behavioral analysis; and M.Z. designed experiments,

developed analytical methods, and led the project. S.K., H.S.K., T.S., and

M.Z. wrote the manuscript.

ACKNOWLEDGMENTS

We thank Cori Bargmann, Larry Abbott, Alipasha Vaziri, Andrew Straw, Hagai

Lalazar, Omri Barak, and Sean Escola for critically reading the manuscript, Ri-

chard Latham for technical support, andMartin Colombini formanufacturing of

mechanical components. The research leading to these results has received

funding from the European Community’s Seventh Framework Programme

(FP7/2007-2013)/ERC grant agreement number 281869 (acronym: elegans

Neurocircuits) to M.Z., the Simons Foundation (grant number 324958 to

M.Z.), an EMBO Long Term Fellowship to S.K. (number ALTF 345-2014), an

NIH training grant to T.H.L. (number F31 NS061697), an NIH T32 training grant

to E.Y. (number T32 MH015174-38), and the Research Institute of Molecular

Pathology (IMP). The IMP is funded by Boehringer Ingelheim.

Received: July 2, 2015

Revised: August 14, 2015

Accepted: September 2, 2015

Published: October 15, 2015

REFERENCES

Ahrens, M.B., Li, J.M., Orger, M.B., Robson, D.N., Schier, A.F., Engert, F., and

Portugues, R. (2012). Brain-wide neuronal dynamics during motor adaptation

in zebrafish. Nature 485, 471–477.

Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., and Keller, P.J. (2013).

Whole-brain functional imaging at cellular resolution using light-sheet micro-

scopy. Nat. Methods 10, 413–420.

Anderson, D.J., and Perona, P. (2014). Toward a science of computational

ethology. Neuron 84, 18–31.

Bouchard, K.E., Mesgarani, N., Johnson, K., and Chang, E.F. (2013). Func-

tional organization of human sensorimotor cortex for speech articulation.

Nature 495, 327–332.

Briggman, K.L., Abarbanel, H.D., and Kristan, W.B., Jr. (2005). Optical imaging

of neuronal populations during decision-making. Science 307, 896–901.

Bruno, A.M., Frost, W.N., and Humphries, M.D. (2015). Modular deconstruc-

tion reveals the dynamical and physical building blocks of a locomotion motor

program. Neuron 86, 304–318.

Busch, K.E., Laurent, P., Soltesz, Z., Murphy, R.J., Faivre, O., Hedwig, B.,

Thomas, M., Smith, H.L., and de Bono, M. (2012). Tonic signaling fromO2 sen-

sors sets neural circuit activity and behavioral state. Nat. Neurosci. 15,

581–591.

Chalasani, S.H., Chronis, N., Tsunozaki, M., Gray, J.M., Ramot, D., Goodman,

M.B., and Bargmann, C.I. (2007). Dissecting a circuit for olfactory behaviour in

Caenorhabditis elegans. Nature 450, 63–70.

Chalfie,M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., and Bren-

ner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans.

J. Neurosci. 5, 956–964.

Chartrand, R. (2011). Numerical differentiation of noisy, nonsmooth data. ISRN

Applied Mathematics 2011, 1–11.

Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyuju-

kian, P., Ryu, S.I., and Shenoy, K.V. (2012). Neural population dynamics during

reaching. Nature 487, 51–56.

Cisek, P., and Kalaska, J.F. (2010). Neural mechanisms for interacting with a

world full of action choices. Annu. Rev. Neurosci. 33, 269–298.

Cunningham, J.P., and Yu, B.M. (2014). Dimensionality reduction for large-

scale neural recordings. Nat. Neurosci. 17, 1500–1509.

Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J., and Perona, P. (2009).

Automated monitoring and analysis of social behavior in Drosophila. Nat.

Methods 6, 297–303.

Donnelly, J.L., Clark, C.M., Leifer, A.M., Pirri, J.K., Haburcak, M., Francis,

M.M., Samuel, A.D.T., and Alkema, M.J. (2013). Monoaminergic orchestration

ofmotor programs in a complex C. elegans behavior. PLoSBiol. 11, e1001529.

Faumont, S., Rondeau, G., Thiele, T.R., Lawton, K.J., McCormick, K.E., Sottile,

M., Griesbeck, O., Heckscher, E.S., Roberts, W.M., Doe, C.Q., and Lockery,

S.R. (2011). An image-free opto-mechanical system for creating virtual envi-

ronments and imaging neuronal activity in freely moving Caenorhabditis ele-

gans. PLoS ONE 6, e24666.

Georgopoulos, A.P., and Carpenter, A.F. (2015). Coding of movements in the

motor cortex. Curr. Opin. Neurobiol. 33, 34–39.

Gordus, A., Pokala, N., Levy, S., Flavell, S.W., and Bargmann, C.I. (2015).

Feedback from network states generates variability in a probabilistic olfactory

circuit. Cell 161, 215–227.

Gray, J.M., Hill, J.J., and Bargmann, C.I. (2005). A circuit for navigation in Cae-

norhabditis elegans. Proc. Natl. Acad. Sci. USA 102, 3184–3191.

Grillner, S. (2006). Biological pattern generation: the cellular and computational

logic of networks in motion. Neuron 52, 751–766.

Ha, H.I., Hendricks, M., Shen, Y., Gabel, C.V., Fang-Yen, C., Qin, Y., Colón-

Ramos, D., Shen, K., Samuel, A.D.T., and Zhang, Y. (2010). Functional organi-

zation of a neural network for aversive olfactory learning in Caenorhabditis

elegans. Neuron 68, 1173–1186.

Harvey, C.D., Coen, P., and Tank, D.W. (2012). Choice-specific sequences in

parietal cortex during a virtual-navigation decision task. Nature 484, 62–68.

Hendricks, M., Ha, H., Maffey, N., and Zhang, Y. (2012). Compartmentalized

calcium dynamics in a C. elegans interneuron encode headmovement. Nature

487, 99–103.

Hobert, O. (2013). The neuronal genome of Caenorhabditis elegans (Worm-

Book), pp. 1–106.

Iino, Y., and Yoshida, K. (2009). Parallel use of two behavioral mechanisms for

chemotaxis in Caenorhabditis elegans. J. Neurosci. 29, 5370–5380.

Jin, X., Tecuapetla, F., and Costa, R.M. (2014). Basal ganglia subcircuits

distinctively encode the parsing and concatenation of action sequences.

Nat. Neurosci. 17, 423–430.

Jolliffe, I.T. (2002). Principal Component Analysis, Second Edition (Springer).

Kawano, T., Po, M.D., Gao, S., Leung, G., Ryu, W.S., and Zhen, M. (2011). An

imbalancing act: gap junctions reduce the backward motor circuit activity to

bias C. elegans for forward locomotion. Neuron 72, 572–586.

Kimata, T., Sasakura, H., Ohnishi, N., Nishio, N., and Mori, I. (2012). Thermo-

taxis of C. elegans as a model for temperature perception, neural information

processing and neural plasticity. Worm 1, 31–41.

Laurent, P., Soltesz, Z., Nelson, G.M., Chen, C., Arellano-Carbajal, F., Levy, E.,

and de Bono, M. (2015). Decoding a neural circuit controlling global animal

state in C. elegans. eLife 4, 4.
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