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Specificity and randomness: structure–function relationships in
neural circuits
Wei-Chung Allen Lee1,2 and R Clay Reid1,2
A fundamental but unsolved problem in neuroscience is how

connections between neurons might underlie information

processing in central circuits. Building wiring diagrams of

neural networks may accelerate our understanding of how they

compute. But even if we had wiring diagrams, it is critical to

know what neurons in a circuit are doing: their physiology. In

both the retina and cerebral cortex, a great deal is known about

topographic specificity, such as lamination and cell-type

specificity of connections. Little, however, is known about

connections as they relate to function. Here, we review how

advances in functional imaging and electron microscopy have

recently allowed the examination of relationships between

sensory physiology and synaptic connections in cortical and

retinal circuits.
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Introduction
One of the major challenges in neuroscience is to make and

test realistic models of information processing in neuronal

networks. The problem remains largely unsolved, even for

networks such as the retina, arguably the best understood

part of the central nervous system, or the visual cortex,

perhaps the most studied cortical area. The biggest impe-

diment to our understanding is that we have little idea how

connections between neurons in a local circuit carry out

specific computations. Examining the relationship be-

tween cellular function and network structure — between

sensory physiology and specific synaptic connectivity —

has the potential to address this problem.

What we discuss as ‘specificity’, however, should be

clear. Most neural circuits have topographic specificity, for
www.sciencedirect.com 
instance when axons selectively target brain regions or

neuronal lamina. Specific connectivity can alternatively

be interpreted as the selective targeting of synapses onto

particular cell types or sub-cellular compartments:

examples of cell-type specificity. Here, we concentrate on

functional specificity, as it relates to information processing

in neuronal circuits.

For example, do neurons specifically connect to others

respecting functional properties, or is the network hap-

hazardly connected with respect to function? In the visual

cortex, the question might be whether neurons with

similar orientation, direction, or spatial preferences pre-

ferentially synapse with one another. In the retina, it may

be how the function of output neurons — retinal ganglion

cells — is produced by connections from bipolar or ama-

crine cells, specifically selected from other neurons of the

same class with overlapping arbors. Here, we review

recent reports examining structure–function relationships

in neuronal networks. We focus mainly on the mamma-

lian visual system where sensory physiology has been

combined with techniques for assessing connectivity: in
vitro electrophysiology and large-scale electron micro-

scopy (EM).

Connectivity and function in cortical circuits
Although some have argued that the local cortical network

is for the most part randomly connected, other than topo-

graphic specificity [1], detailed examination of cortical

connectivity supports the idea that synaptic connectivity

is specific at several different levels. Although at least one

axonal and dendritic apposition is observed for every pair of

pyramidal neurons sharing the same cortical column in

somatosensory cortex, only a fraction of appositions have

synaptic boutons reflecting synaptic connectivity [2,3].

Similarly, neurons are synaptically connected to only a

small fraction of their neighbors, and such synaptic con-

nections are specific to both cell types and sub-cellular

compartments, and thus have cell-type specificity [4–8].

Therefore, whereas the potential connectivity between

neurons in the cortex is dense, the actual synaptic connec-

tions are sparse and may be functionally specific. Finally,

statistical analysis of simultaneous recordings between a

seemingly homogeneous population of layer 5 (L5) pyr-

amidal cells has shown that connections are far more

clustered than expected from a random network [9,10]

suggesting the presence of highly interconnected sub-net-

works embedded in local circuits. Indeed, lateral connec-

tions in L2/3 are frequently observed only between cells

that received common inputs from L4 [11] and connections
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between L5 pyramidal cells are dependent on their long-

range targets [12]. Unfortunately, we still do not under-

stand how the specificity of these connections underlies

information processing in vivo.

Until recently, study of the relationship between ident-

ified neurons and their in vivo function has only been

possible one cell at a time. Most commonly, the physi-

ology of individual cortical neurons was recorded, and

neurons were labeled to determine their axonal and

dendritic morphology. With this approach, the general

features of cortical microcircuits were described [13–19].

A new combination of technologies is poised to build

upon this foundation.

The advent of optical methods to record the activity from

populations of neurons at cellular resolution in vivo,

allows investigators to simultaneously interrogate the

functional properties of hundreds or thousands of cells

[20–22]. Much of this recent work has focused on func-

tional organization of neurons at cellular resolution [22–
31], accompanied by more recent attempts at examining

the functional properties of different cell types

[32,33�,34�,35�,88]. A logical next step is to examine

the fine-scale connectivity underlying these local circuits.

In vivo multi-photon calcium imaging is ideal for studying

functional organization and cell type-specific physiology

because its inherent spatial information provides the

ability to precisely locate and identify cells with known

physiological properties. This also makes the technique

well suited to being combined with several different

approaches to measure network connectivity.

Excitatory functional connectivity
While the study of cortical connectivity may at the surface

seem an anatomical endeavor, in vitro physiology has

been the most effective approach in recent years. Because

of the relative ease of the experiments and the strong

signal-to-noise ratio of the data, dual-cell recordings have

become a fast and reliable method of assessing synaptic

connectivity [36]. Indeed, most of what we know about

the probabilities of connectivity — the likelihood that

any pair of neurons exhibit the electrophysiological sig-

nature of a synapse — within and between cortical layers

was determined by paired recordings between known cell

types [4–8,12,37,38].

Recently, Ko and colleagues combined in vivo calcium

imaging with subsequent recordings in vitro to ask if

neurons with similar functional properties were prefer-

entially connected [39��]. They used simultaneous

whole-cell patch-clamp recordings in acute slice prep-

arations to test for monosynaptic connections between

pairs of neighboring visual cortical neurons whose recep-

tive fields had been mapped before tissue sectioning.

Nearby neurons with similar orientation selectivities

exhibited a connection probability of 0.38, whereas
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neurons whose orientation preference was dissimilar

(i.e., nearly orthogonal) had a connection probability of

0.17. Moreover, neurons with highly correlated stimulus-

driven activity were connected 50% of the time. This is in

contrast to conventional slice recordings, blind to in vivo
function, that typically find 1 in 10 nearby pairs of

pyramidal cells connected in the superficial layers of

the cortex [4,37]. Taken together, these results suggest

that subnetworks are embedded in the visual cortex and

that some of their connectivity is related to processing

similar features, or to correlated activity. Although very

powerful, slice recordings suffer from a some shortcom-

ings. First, connectivity testing is limited to the volume of

the slice. More importantly, the number of cells from

which one can record is limited by the health of the slice

over time and the technical difficulties of simultaneous

electrophysiological recordings. In comparison, several

emerging anatomical circuit tracing methods may offer

some complementary advantages.

Circuit connectivity by large-scale electron
microscopy
Since its origins in the 1950s, serial-section EM [40] has

proven the only way to image all the dense neural tissue of

the central nervous system. With increases in computing

power, high-speed data acquisition, and laboratory auto-

mation, there has been a resurgence of interest in the

method [41–47]. It is now possible to extend this fine-

scale analysis of neural tissue — in which virtually every

single axon, dendrite and synapse can be visualized — to

large volumes: circuit-scale ultrastructural anatomy.

Previous reviews have previewed technology and

methods for large-scale EM [42,43,45] and championed

development of the methodology and what might be

gleaned [46,47]. For the remainder of this review, we

focus on recent applications of such techniques and their

results in the mammalian retina and cerebral cortex.

The retinal network anatomy of direction
selectivity
In the retina, the brain’s window on the world, a wealth of

information processing occurs. These are reviewed in this

issue by Azeredo da Silveira and Roska [48] and Taylor and

Smith [49], so we focus on one aspect — direction selec-

tivity — that has received renewed attention with newer

network mapping methods. Direction selectivity in some

ganglion cells is one of the clearest examples of complex

information processing that occurs in the retina. Direction

selective ganglion cells in the retina exhibit preferential

activity for motion of bars in a particular direction [50].

Mechanisms underlying this phenomenon have long been

investigated and point toward inhibition of direction se-

lective ganglion cells by starburst amacrine cells as a key

component [51–53]. Starburst amacrine cells are retinal

interneurons with radially symmetric stellate morphology

that have varicosities on their distal processes contacting

direction selective ganglion cells. Centrifugal motion along
www.sciencedirect.com
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their processes activates these dendrites [54], suggesting

that starburst cells can inhibit ganglion cells when the

direction of motion is away from the starburst’s cell body.

This inhibition, opposite to the preferred direction of the

ganglion cell’s, is thought to be a major mechanism under-

lying direction selectivity in the retina.

Two great advantages of the retina are that its visual

physiology can be studied thoroughly in vitro [55] and it
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has a relatively orderly, laminated anatomy with well-

defined cell classes [56]. Historically, many have

exploited this accessibility and anatomical simplicity,

including two groups who have recently used these

advantages to investigate its fine-scale network anatomy

[57,58�,59��]. Briggman and colleagues provided circuit-

scale ultrastructural evidence that direction selectivity

can be derived from wiring between these cell-types with

functional specificity [59��]. By combining two-photon
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calcium imaging and serial block-face scanning EM they

show that starburst amacrine cells selectively target most

of their putative inhibitory synapses onto direction se-

lective ganglion cells of the appropriate preferred direc-

tion. That is to say that, despite their morphological

symmetry, they have specific asymmetrical functional

connectivity whereby their distal inhibitory synapses

target ganglion cells with the opposite preferred direction

of motion of the starburst neurite (Figure 1a, b). This

demonstrates that inhibitory afferents can have exquisite

synaptic specificity with a critical spatial component to

shape cell physiology.

Recently, the early postnatal development of directionally

selective ganglion cells was closely examined in two stu-

dies that demonstrated a rapid and activity-independent

development of asymmetric inhibition from starburst ama-

crine cells [60�,61�]. In addition to electrophysiological

recording, one group mapped connectivity with two prom-

ising techniques: photostimulation and virally mediated

trans-synaptic tracing to demonstrate direct connectivity

between direction selective ganglion cells and starburst

amacrine cells [61�]. This viral technique uses a replica-

tion-deficient virus to specifically label only neurons that

provide synaptic input to an isolated target cell in which the

deficient viral components are expressed [62–64]. The

anatomical approach in particular will likely prove power-

ful in cortical experiments in which the in vivo physiology

of a single neuron and all its presynaptic inputs could be

compared.

Cortical network anatomy and the functional
role of interneurons
The adult visual cortex is comprised of two broad classes

of neurons 80% of which are excitatory pyramidal cells

with the remainder inhibitory interneurons. Visually

responsive pyramidal cells are generally highly selective

for specific stimulus properties. Currently, there is debate

in the field over the tuning properties of inhibitory

interneurons. Recent studies have found inhibitory inter-

neurons generally appear much more broadly tuned than

pyramidal cells [32,33�,65,66,88,89]. Several others, how-

ever, report different interneuron subtypes with quite

selective tuning [34�,67], while still others describe

examples of intermediate selectivity [35�].

Is it possible that the underlying cortical network’s

anatomy might explain interneuron receptive field prop-

erties? Bock and colleagues addressed this question,

while providing a framework for untangling cortical wir-

ing by combining in vivo two-photon calcium imaging and

large-scale serial-section transmission EM [68��]. This

study found that synapses from pyramidal neurons con-

verged onto interneurons in their general vicinity irre-

spective of presynaptic function (Figure 1c, d). Pairs of

pyramidal neurons with different preferred orientations

were found to converge input onto inhibitory targets with
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the same probability as pairs of inputs with the same

preferred orientation. This result is consistent with gener-

ally haphazard inhibitory interneuron connectivity in

light of the recent demonstration that Martinotti cells

(an interneuron subtype) appear to provide synaptic input

to nearly every local pyramidal cell in the superficial

layers of the cortex [69�] and with the convergence of

pyramidal output onto fast-spiking putative interneurons

in other regions of the neocortex [37,70]. Thus, evidence

from studies of connectivity are consistent with most

interneurons receiving a broad array of differently tuned

input, which would combine non-specifically to control

the gain of excitation in a local circuit [33�].

Conclusions
The functional connectivity of mammalian neural circuits

appears to span from specific to haphazard. Excitatory

pyramidal cells in the visual cortex and inhibitory inter-

neurons in the retina exhibit functionally specific connec-

tivity, whereas inhibitory wiring in the cortex appears less

so. What does this connectivity tell us about the function of

circuits and their components? Broadly speaking, a circuit’s

structure develops to suit its purpose. Unlike the cortex,

the retina, with its orderly tiling of cell types, appears more

like a mosaic of individual processing units with minimal

cross-talk between the same cell types, so that compu-

tations are localized to discrete retinotopic locations. A

lattice of parallel processing pathways may demand

specific connections within processing units to maintain

order and efficiency. In the cerebral cortex, however,

information being processed becomes more complex

and integrated. It is therefore reasonable that functionally

specific connections exist between excitatory neurons —

the main thoroughfare for information processing — but

that inhibitory interneurons, which largely appear to

regulate local gain of a circuit and network oscillations,

are promiscuous in their local wiring.

One benchmark of our understanding of network infor-

mation processing is the extent to which we can predict

neuronal function from connectivity. Attempts to do so

with the wiring diagram of C. elegans [71] have not see-

mingly borne this out, but critically missing was a rich

literature of single-cell physiology. Recent work using

large-scale EM in mammalian systems has demonstrated

that structure appears to confirm predictions from func-

tion in systems with well-understood physiology. This is

reassuring, as it suggests that we may soon have sufficient

understanding of how information flows and is trans-

formed through some networks to make accurate predic-

tions of their function from circuit structure.

Ultimately, a variety of approaches — and likely a

synergy of methods — will be employed to reach a satis-

fying understanding of how neural circuits process infor-

mation. Circuit-scale EM is now among the tools

available [41,57,58�,59��,68��,72]. EM datasets and their
www.sciencedirect.com



Specific and random wiring in neural circuits Lee and Reid 805
analysis will get ever larger and richer. This richness can

be in the form of more function [59��,68��,73–75], corre-

lated labeling for cell identity or biochemical analysis

[57,58�,76,77], EM dense labeling [78–80] for information

on long-range connections, and more complete 3D seg-

mentation [45,81,82,90] for volumetric properties like

synaptic strength as correlated to synapse size [83–85].

Large-scale EM datasets should also serve as resources that

can be mined by multiple investigators. The EM dataset

from Bock and colleagues is publicly available online from

the UCSD Cell Centered Database [86] (http://ccdb.ucsd.

edu/, accession number 8448) and browsable [87] from

Open Connectome Project at Johns Hopkins University

(http://openconnectomeproject.org/). A potentially useful

analogy is with that of a perpetual slice experiment where

investigators can test for synaptic connectivity between

any cells in the volume. Higher-order patterns of connec-

tivity can be found in such datasets as the reconstruction

becomes increasingly dense, generating many-to-many

graphs of network connectivity, currently unachievable

with other methods. Finally, recently acquired EM data-

sets demonstrate our coming ability to routinely image at

synaptic resolution the entire nervous systems of model

organisms such as C. elegans, Drosophila, and zebrafish.

Thus, with recent advances in imaging techniques — in
vivo two-photon calcium imaging and large-scale serial-

section EM — as well as traditional slice physiology and

sophisticated transynaptic tracing methods, the stage is set

to achieve a deeper functional and structural understand-

ing of neuronal networks.

Note added in proof
Very recent reports show additional examples of broadly

tuned interneurons in the adult visual cortex [88,89] and

describe a new suite of annotation tools that will likely

accelerate manual reconstruction of large-scale EM data-

sets with high-fidelity [90].
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