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Abstract

Over the last five decades, progress in neural recording techniques has allowed the number of
simultaneously recorded neurons to double approximately every 7 years, mimicking Moore’s law.
Such exponential growth motivates us to ask how data analysis techniques are affected by
progressively larger numbers of recorded neurons. Traditionally, neurons are analyzed
independently on the basis of their tuning to stimuli or movement. Although tuning curve
approaches are unaffected by growing numbers of simultaneously recorded neurons, newly
developed techniques that analyze interactions between neurons become more accurate and more
complex as the number of recorded neurons increases. Emerging data analysis techniques should
consider both the computational costs and the potential for more accurate models associated with
this exponential growth of the number of recorded neurons.

Since computers were introduced, their processing speed has grown exponentially, doubling
approximately every 2 years, as formalized by Moore’s lawl. This growth means that the
time it takes to process a given amount of data is halved every 2 years. However, although
processing speeds grow exponentially, datasets are also growing. For data processing to be
feasible, it is essential that algorithms scale well with the amount of data, and scaling
analysis is one of the central tools of theoretical computer scienceZ. As neuroscience
fundamentally aims at understanding the processing of huge numbers of neurons, we want to
understand how recording and analysis techniques scale. Specifically, we examined how the
number of simultaneously recorded neurons grows over time, what computational
challenges this growth introduces and how well analysis techniques can take advantage of
this growth to improve the prediction of neural activity.

Growth in the number of simultaneously recorded neurons

Since the advent of multi-electrode recordings in the 1950s, there has been tremendous
growth in the number of simultaneously recorded single neurons3. With current multiple-
electrode technology, signals from hundreds of individual neurons can be recorded
simultaneously*®. Using an in-depth search of the literature, we identified the studies with
the highest numbers of simultaneously recorded neurons since the development of multi-
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Advances

electrode recording (see Supplementary Table 1 and Supplementary Methods). We found
that, in good approximation, the number of recorded neurons has grown exponentially since
the 1950s, doubling every 7 years (Fig. 1a). Although this growth is slower than that of
computer speeds, it may have important implications for methods used to analyze neural
data.

Growth in the number of simultaneously recorded neurons has been driven by a number of
innovations in the production, implementation and wiring of electrodes (Fig. 1b). For
example, initially electrodes were made one-by-one, by hand; later, they were made by
bundling hand-made wires. Recently developed silicon processing techniques allow many
electrodes to be fabricated as arrays in a fully automated process3. Advances in neural
recording techniques have also been facilitated by progress in computer hardware, such as
data transfer speeds and storage capacity. Many innovations have jointly driven the
exponential growth in neural recordings and many of today’s systems would have seemed
impossible 30 years ago.

The pace of technological change is easy to underestimate. Soon after Moore’s law was
formulated it was argued that computer processing speed or, more precisely, the number of
components that could be placed on an integrated circuit would have to plateau in a few
years®. Although there are certainly physical limits to the density of transistors that can be
placed in a finite amount of space, computer speeds continue to grow rapidly. Similarly, as
neuroscientists, it is difficult to imagine neural recordings doubling every 7 years. If this
exponential growth were to continue, future electrophysiologists would be able to record
from all of the approximately 100 billion neurons in the human brain in 220 years.

This prediction, extrapolated from the past 50 years of growth, seems absurd given today’s
technology. Tissue displacement, for instance, may fundamentally limit the density with
which electrodes can be implanted and bleaching and toxicity may limit the effectiveness of
many optical techniques. Although experimental tools’, as well as improvements in
automated spike-sorting techniques8, are beginning to lessen the need for human
intervention, manual spike sorting may also be a substantial bottleneck for large-scale multi-
electrode recordings. Despite these limitations, whole-brain spike recordings may not be
beyond the realm of possibility. For example, one might imagine a system in which each
neuron records spike times onto RNA molecules that could then by read-out by sequencing
the results, one neuron at a time. Just as microchip fabrication technology has evolved
drastically since the introduction of Moore’s law, progress in neural recording technology
may allow growth beyond our current expectations.

in neural recording and models of neural coding

Just as Moore’s law has an influence on the design of algorithms in computer science,
advances in neural recording can and should influence the design of techniques for
analyzing neural data. ldeally, data analysis techniques should be able to leverage larger
numbers of simultaneously recorded neurons to better understand how the brain represents
and processes information while avoiding the necessity for massive supercomputers. We
first asked how the spike prediction accuracy of two commonly used neural data analysis
methods scales with the number of simultaneously recorded neurons.

Understanding what makes neurons fire is a central question in neuroscience and being able
to accurately predict neural activity is at the heart of many neural data analysis techniques®.
These techniques generally ask how information about the external world is encoded in the
spiking of neurons0. On the other hand, a number of applications, such as brain-machine
interfaces, aim to use neural firing to predict behavior or estimate what stimuli are present in
the external world. These two issues are together referred to as the neural coding problem.
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We want to understand how neurons encode information about the external world and we
want to understand how neural signals can be decoded to provide information about the
external world. In most cases, encoding and decoding models are tightly linked; leading
decoding models are usually based on explicit models of encoding®1-13,

We focused on models of neural encoding and two general approaches to the neural coding
problem. Many methods focus on describing how neural firing relates to stimuli or the
movement produced by an animal, using tuning curves or receptive fields. For example, in
motor cortex, the firing of the majority of neurons appears to depend sinusoidally on the
direction of the animal’s hand movement. A second class of methods focuses on describing
how neurons interact and influence one another!4-20 and assume that each neuron’s spiking
may influence the spiking probability of other neurons. We fitted typical versions of both
model classes to multi-electrode data recorded from the cortices of awake, behaving (motor
task) or anesthetized (visual task) monkeys and determined how spike prediction accuracy
scaled with the number of recorded neurons.

We analyzed datasets of recorded spikes using two models that both aim at predicting trial-
by-trial spike counts: a tuning curve model that makes predictions based on external stimuli
and a pair-wise interactions model that makes predictions based on the activity of the other
simultaneously recorded neurons (Fig. 2a). In both models, we assumed that spike counts on
a given trial were generated by a linear nonlinear Poisson model21, where the firing rate is
determined either by a tuning curve or by coupling with the other recorded neurons. We
estimated the parameters of these two models using maximum a posteriori estimation and
assessed the spike prediction accuracy on trials that were not used during the estimation
(Supplementary Methods). We were particularly interested in how the number of
simultaneously recorded neurons affects spike prediction accuracy. For the interaction
model, we varied the ‘network size’ by using a random subsample of the other recorded
neurons and examined how prediction accuracy varies with the number of neurons used in
the model.

Spike data from 143 primary and pre-motor cortical neurons were recorded while a monkey
performed a center-out reaching task?2. In addition, spike data from 106 primary visual
cortical neurons were recorded while an anesthetized monkey viewed oriented gratings3. In
data from motor cortex, we considered sinusoidal tuning to the direction of hand movement,
while in the data from visual cortex we considered tuning to the movement direction of an
oriented grating. As the tuning curve model describes each neuron independently, spike
prediction accuracy is constant as a function of the number of recorded neurons. For the
interaction model, however, it is possible for spike prediction accuracy to vary as a function
of the number of neurons (Fig. 2b). We found that spike prediction accuracy under the
interaction model grows with the number of recorded neurons in both motor and visual
cortex (as approximately log N). This result implies that accurately modeling interactions
between neurons should become more important as the number of simultaneously recorded
neurons continues to grow over time. Models that allow nonlinear interactions between
neurons or that take into account higher-order interactions such as triplets may allow even
more rapid growth in spike prediction accuracy, and developing such data analysis
approaches is an essential topic for future research.

Although modeling larger numbers of neurons can certainly allow for more accurate
prediction of spikes, the growth in the number of simultaneously recorded neurons is not
without computational challenges. One issue in modeling these large, complex datasets is
computer runtime. Modeling larger numbers of neurons requires more tuning curves (linear
in the number of neurons) or more pair-wise interactions (quadratic in the number of
neurons), which increases the computational complexity of these models. Models of higher-
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order interactions such as triplets require even more parameters. The increases in runtime
associated with increases in the number of parameters are, at least partially, offset by
increases in computer speed and Moore’s law, but it is still essential for the run-time of
algorithms to scale well with the number of recorded neurons and recording lengths.
Improving the efficiency of data analysis algorithms and developing hardware to accelerate
them are currently active areas of research.

A second computational challenge is the curse of dimensionality. As the number of free
parameters in a model increases, precisely estimating the parameters from a finite amount of
data becomes more and more difficult. Modeling the pair-wise interactions between 100
neurons, for instance, requires ~10,000 parameters, and precisely estimating these
parameters from a few hundred trials becomes difficult. Collecting more data is one solution
to this problem, but we can also use modeling approaches that constrain the number of free
parameters. For example, assuming that interactions between neurons are weak or rare
markedly reduces the number of free parameters1®16, Alternatively, we may assume that
neural activity is inherently low-dimensional and that only a few patterns of interactions
exist or that interactions exist only between nearest-neighbors. Both of these techniques,
regularization and dimensionality reduction, are active areas of research in machine
learning. Ultimately, knowledge from anatomy and other physiological experiments can
provide powerful constraints, and constraints that are tailored to neural data will be
necessary to keep data analysis methods feasible in the face of growing numbers of recorded
neurons. Although modeling interactions between neurons does introduce computational
issues, statistical approaches to neural data analysis are being developed to address these
problems.

Understanding massive neural populations

Understanding the high-dimensional datasets generated by modern recording techniques
seems outstandingly complicated. After all, computational neuroscientists face the problem
of condensing these massive datasets into simplifying principles about population activity.
Ultimately, data from simultaneously recorded neurons promises to yield insight into the
structure of the nervous system, hierarchical and modular information processing, neuronal
microcircuits, as well as adaptation and learning at the network level. At the moment, many
of these questions have not yet been formulated in a way that would allow data analysis to
produce clear and concise answers. It may be argued that an important emerging objective of
computational neuroscience is to find order in rich multi-neuron data.

Modeling the interactions, or functional connections, between neurons with multi-electrode
recordings is beginning to shed light on the function and organization of the nervous system.
Recent efforts modeling interactions between retinal ganglion cells, for instance, have
revealed strong local neighborhood structure in addition to traditional ON/OFF receptive
fields!®. Similar models applied to cortical data have revealed modularity in primary motor
cortex and dorsal pre-motor cortex24, as well as weak, functional interactions across
cortex?®. These methods have also been used to clarify the role of feedback in the
thalamus25, the relationship between spikes and local field potentials??, and, on a small
scale, the effects of spike timing—dependent plasticity28.

Considering interactions between neurons may offer some insight into the principles
underlying neural activity, but there are also a number of recently developed methods that
aim at providing simpler models of neural activity by assuming that the nervous system is
inherently low dimensional?%:30 (Fig. 2c). Such state-space methods allow the extraction of a
small number of factors, much fewer than the number of neurons, which can be used to
visualize and denoise multi-unit spike train data. Although interpreting these low-
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dimensional factors may present another set of challenges, these approaches have already
led to insights into the activity of populations of neurons. Notably, features of the
trajectories in state space can be correlated with a number of behavioral variables, such as
reaction times30, and results using a state-space approach have shown that stimulus onset
reduces neural variability across cortex in a wide range of areas3?.

An important aspect of both state-space models and models of interactions between neurons
is that they do not necessarily require modeling how individual neurons represent the
external world. Although tuning curves and receptive fields have been enormously
successful as models of neural encoding, they make it easy to overlook the importance of
correlations between neurons and the fact that, excepting peripheral neurons, the functional
properties of each neuron are caused by the inputs it receives from other neurons. By
attempting to model the interactions and correlated activity of populations of simultaneously
recorded neurons, state-space models and functional connectivity models may be able to
shed light on how networks of neurons represent and process information.

Discussion

We observed that the number of simultaneously recorded single neurons has been growing
rapidly, doubling approximately every 7 years. The trend described here predicts that in 15
years physiologists should be able to record from approximately 1,000 neurons. This seems
feasible with a range of techniques. First, standard recording techniques using micro-wire
arrays have been used with up to ~700 electrodes and recordings using on the order of 1,000
electrodes should appear in the near future. Second, population, two-photon calcium
imaging using neuron-targeted scanning techniques have been used to record from hundreds
of neurons. Advances in dyes and scanning methods, as well as statistical methods for
extracting spikes from fluorescence signals promise to make this approach feasible for
thousands of neurons as well32:33, Although prediction is notoriously difficult, especially
about the future, it seems very likely that a 7-year doubling in the number of simultaneously
recorded neurons will continue over the next couple of decades.

These advances in neural recording are an important consideration for emerging data
analysis techniques. We examined how growth in the number of recorded neurons affects
spike prediction accuracy in two approaches to neural encoding. The spike prediction
accuracy of tuning curve models is unaffected by growth in the number of recorded neurons,
as neurons are treated independently. However, in both primary visual cortex and motor
cortex, modeling interactions between neurons allows spike prediction accuracy to scale
with the number of recorded neurons. It is important to note that the log N scaling that we
observed likely depends on a number of factors. These data are from an incomplete, highly
under-sampled set of neurons in cortex. In more complete recordings, spike prediction
accuracy is expected to saturate as more and more of the relevant inputs are observed!8:34,
Even in cortex, there is evidence to suggest that the strength of correlations between neurons
depends strongly on the spatial scale?3 and that very nearby neurons may be relatively
independent3®. In a given dataset, the spatial distribution of the recorded neurons, the
strength of the interactions and the completeness of the recordings are all important
considerations for our understanding of how spike prediction accuracy scales with the
number of recorded neurons.

Advances in neural recording will undoubtedly affect many other areas of computational
neuroscience. As the number of simultaneously recorded neurons grows, models that have
traditionally only been tested using large-scale neural simulations will be able to access
large, comparable datasets26-37. Models of network dynamics and population coding38:32
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will be able to draw from increasingly complete neural data. However, making these links
will likely require more sophisticated tools for statistical inference and data analysis.

Unlike Moore’s law, which is driven by consumer demand, advances in neural recording are
ultimately driven by scientific questions. Functional connectivity methods that describe the
interactions between neurons have the potential to provide increasingly accurate spike
prediction as the number of simultaneously recorded neurons grows. However,
understanding the activity of large populations of neurons will require even better data
analysis tools and computational techniques that allow simplifying conclusions to be drawn
from complex, high-dimensional data. Exponential growth in the number of simultaneously
recorded neurons introduces additional computational challenges both in terms of computer
run-time and the dimensionality of models. However, new models can also leverage this
growth to improve prediction accuracy and better understand the representation and
processing of information in populations of interacting neurons. The trends described here
suggest that advances in neural recording should be a standard consideration when designing
these new data analysis methods. Techniques such as regularization and dimensionality
reduction that are explicitly aimed at improving scaling behavior and are tailored to neural
data will be important tools for understanding growing neural datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Thanks to A. Kohn and members of the Kohn laboratory for providing data from visual cortex (US National
Institutes of Health EY016774) and N. Hatsopoulos and J. Reimer for providing data from motor cortex. All animal
use procedures were approved by the institutional animal care and use committees at Albert Einstein College of
Medicine and the University of Chicago, respectively. Thanks to B. Yu and J. Cunningham for providing the GPFA
code and B. Yu for insightful discussions. This work was supported by the Chicago Community Trust and US
National Institutes of Health grants 1R01INS063399 and 2P01NS044393.

References

. Moore GE. Cramming more components onto integrated circuits. Electronics. 1965; 38
. Papadimitriou, CH. Computational Complexity. John Wiley and Sons; 2003.
. Nicolelis, M. Methods for Neural Ensemble Recordings. 2nd edn. CRC Press; 2007.

. Nicolelis M, et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl.
Acad. Sci. USA. 2003; 100:11041-11046. [PubMed: 12960378]

5. Kelly R, et al. Comparison of recordings from microelectrode arrays and single electrodes in the
visual cortex. J. Neurosci. 2007; 27:261-264. [PubMed: 17215384]

6. Moore, G. Understanding Moore’s Law: Four Decades of Innovation. Brock, DC., editor. Chemical
Heritage Foundation; 2006. Ch. 7

7. Harris K, Henze D, Csicsvari J, Hirase H, Buzsaki G. Accuracy of tetrode spike separation as
determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 2000;
84:401-414. [PubMed: 10899214]

8. Lewicki M. A review of methods for spike sorting: the detection and classification of neural action
potentials. Network. 1998; 9:R53-R78. [PubMed: 10221571]

9. Brown EN, Kass RE, Mitra PP. Multiple neural spike train data analysis: state-of-the-art and future
challenges. Nat. Neurosci. 2004; 7:456-461. [PubMed: 15114358]

10. Kass R, Ventura V, Brown E. Statistical issues in the analysis of neuronal data. J. Neurophysiol.

2005; 94:8-25. [PubMed: 15985692]
11. Paninski L, et al. A new look at state-space models for neural data. J. Comput. Neurosci. 2009;
29:1-20.

A W NP

Nat Neurosci. Author manuscript; available in PMC 2012 August 02.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Stevenson and Kording

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Page 7

Paninski L, Pillow J, Lewi J. Statistical models for neural encoding, decoding, and optimal
stimulus design. Prog. Brain Res. 2007; 165:493-507. [PubMed: 17925266]

Brockwell A, Rojas A, Kass R. Recursive Bayesian decoding of motor cortical signals by particle
filtering. J. Neurophysiol. 2004; 91:1899-1907. [PubMed: 15010499]

Okatan M, Wilson MA, Brown EN. Analyzing functional connectivity using a network likelihood
model of ensemble neural spiking activity. Neural Comput. 2005; 17:1927-1961. [PubMed:
15992486]

Pillow JW, et al. Spatio-temporal correlations and visual signaling in a complete neuronal
population. Nature. 2008; 454:995-999. [PubMed: 18650810]

Stevenson IH, Rebesco JM, Miller LE, Kdrding KP. Inferring functional connections between
neurons. Curr. Opin. Neurobiol. 2008; 18:582-588. [PubMed: 19081241]

Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. A point process framework for
relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects.
J. Neurophysiol. 2005; 93:1074-1089. [PubMed: 15356183]

Schneidman E, Berry MJ 11, Segev R, Bialek W. Weak pairwise correlations imply strongly
correlated network states in a neural population. Nature. 2006; 440:1007-1012. [PubMed:
16625187]

Maynard E, et al. Neuronal interactions improve cortical population coding of movement direction.
J. Neurosci. 1999; 19:8083-8093. [PubMed: 10479708]

Harris K, Csicsvari J, Hirase H, Dragoi G, Buzsaki G. Organization of cell assemblies in the
hippocampus. Nature. 2003; 424:552-556. [PubMed: 12891358]

Paninski L. Maximum likelihood estimation of cascade point-process neural encoding models.
Network. 2004; 15:243-262. [PubMed: 15600233]

. Hatsopoulos N, Joshi J, O’Leary JG. Decoding continuous and discrete motor behaviors using

motor and premotor cortical ensembles. J. Neurophysiol. 2004; 92:1165-1174. [PubMed:
15277601]

Smith M, Kohn A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J.
Neurosci. 2008; 28:12591-12603. [PubMed: 19036953]

Stevenson IH, et al. Bayesian inference of functional connectivity and network structure from
spikes. IEEE Trans. Neural Syst. Rehabil. Eng. 2009; 17:203-213. [PubMed: 19273038]
Truccolo W, Hochberg L, Donoghue J. Collective dynamics in human and monkey sensorimotor
cortex: predicting single neuron spikes. Nat. Neurosci. 2009; 13:105-111. [PubMed: 19966837]
Babadi B, Casti A, Xiao Y, Kaplan E, Paninski L. A generalized linear model of the impact of
direct and indirect inputs to the lateral geniculate nucleus. J. Vis. 2010; 10:22. [PubMed:
20884487]

Kelly R, Smith M, Kass R, Lee T. Local field potentials indicate network state and account for
neuronal response variability. J. Comput. Neurosci. 2010; 29:567-579. [PubMed: 20094906]
Rebesco JM, Stevenson IH, Koerding K, Solla SA, Miller LE. Rewiring neural interactions by
micro-stimulation. Front. Syst. Neurosci. 2010; 4:39. [PubMed: 20838477]

Yu B, et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural
population activity. J. Neurophysiol. 2009; 102:614-635. [PubMed: 19357332]

Churchland M, Yu B, Sahani M, Shenoy K. Techniques for extracting singletrial activity patterns
from large-scale neural recordings. Curr. Opin. Neurobiol. 2007; 17:609-618. [PubMed:
18093826]

Churchland M, et al. Stimulus onset quenches neural variability: a widespread cortical
phenomenon. Nat. Neurosci. 2010; 13:369-378. [PubMed: 20173745]

Vogelstein J, et al. Spike inference from calcium imaging using sequential monte carlo methods.
Biophys. J. 2009; 97:636—655. [PubMed: 19619479]

Stosiek C, Garaschuk O, Holthoff K, Konnerth A. /n vivo two-photon calcium imaging of neuronal
networks. Proc. Natl. Acad. Sci. USA. 2003; 100:7319-7324. [PubMed: 12777621]

Shlens J, et al. The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 2006;
26:8254-8266. [PubMed: 16899720]

Nat Neurosci. Author manuscript; available in PMC 2012 August 02.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Stevenson and Kording

35.

36.

37.

38.

39.

40.

41.

42.

43.

Page 8

Ecker A, et al. Decorrelated neuronal firing in cortical microcircuits. Science. 2010; 327:584-587.
[PubMed: 20110506]

Vogels T, Rajan K, Abbott L. Neural network dynamics. Annu. Rev. Neurosci. 2005; 28:357-376.
[PubMed: 16022600]

Brette R, et al. Simulation of networks of spiking neurons: a review of tools and strategies. J.
Comput. Neurosci. 2007; 23:349-398. [PubMed: 17629781]

Averbeck B, Latham P, Pouget A. Neural correlations, population coding and computation. Nat.
Rev. Neurosci. 2006; 7:358-366. [PubMed: 16760916]

Pouget A, Dayan P, Zemel R. Information processing with population codes. Nat. Rev. Neurosci.
2000; 1:125-132. [PubMed: 11252775]

Barna J, Arezzo J, Vaughan H Jr. A new multielectrode array for the simultaneous recording of
field potentials and unit activity. Electroencephalogr. Clin. Neurophysiol. 1981; 52:494-496.
[PubMed: 6171417]

Kruger J, Bach M. Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp.
Brain Res. 1981; 41:191-194. [PubMed: 7202614]

Rousche P, Normann R. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using
the Utah Intracortical Electrode Array. IEEE Trans. Rehabil. Eng. 2002; 7:56-68. [PubMed:
10188608]

Blanche T, Spacek M, Hetke J, Swindale N. Polytrodes: high-density silicon electrode arrays for
large-scale multiunit recording. J. Neurophysiol. 2005; 93:2987-3000. [PubMed: 15548620]

Nat Neurosci. Author manuscript; available in PMC 2012 August 02.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Stevenson and Kording

d

Simultaneously recorded neurons

108

10°

T T T T

10°

0

S
1
()]
D

Doubling time,

7.4 +0.4 years

10
1950

1960

1970 1980 1990
Publication date

Figure 1.
Exponential growth in the number of recorded neurons. (a) Examining 56 studies published
over the last five decades, we found that the number of simultaneously recorded neurons
doubled approximately every 7 years. (b) A timeline of recording technologies during this
period shows the development from single-electrode recordings to multi-electrode arrays
and /n vivo imaging techniques. Images of recording techniques reprinted from refs. 40-43
with permission of Elsevier, Springer Science + Business Media, and Am. Physiol. Soc.
Image of Utah array reprinted from ref. 42, © 1999 IEEE. Ca2* imaging reprinted from ref.
33, © 2003 Natl. Acad. Sci. USA.
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Figure2.

Approaches to neural data analysis and the scaling of spike prediction accuracy. (a) There
are two main approaches to modeling multi-electrode data: mapping tuning properties to
describe how neurons relate to stimuli or movement and mapping interactions between
neurons. These techniques aim to predict spiking based on either external variables or other
neural signals. (b) In data recorded from motor cortex (top) and visual cortex (bottom),
spike prediction accuracy grows when modeling interactions between neurons, but is
constant when modeling tuning curves. Shaded regions denote + s.e.m. across neurons. (c)
An alternative approach is to consider simultaneously recorded neural activity as an
expression of a latent, low-dimensional state space. These spaces can be extracted by first
estimating smooth firing rates for each neuron and then using a dimensionality reduction
technique such as factor analysis. Features of these state spaces can then be used to predict
reaction times or reach targets on a trial-by-trial basis or to describe neural variability.
Purple and green ellipses represent neural variability at target onset and movement onset,
respectively.
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