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Recurrent neural networks (RNNs) are useful tools for learning nonlin-
ear relationships between time-varying inputs and outputs with complex
temporal dependencies. Recently developed algorithms have been suc-
cessful at training RNNs to perform a wide variety of tasks, but the
resulting networks have been treated as black boxes: their mechanism of
operation remains unknown. Here we explore the hypothesis that fixed
points, both stable and unstable, and the linearized dynamics around
them, can reveal crucial aspects of how RNNs implement their com-
putations. Further, we explore the utility of linearization in areas of
phase space that are not true fixed points but merely points of very slow
movement. We present a simple optimization technique that is applied
to trained RNNs to find the fixed and slow points of their dynamics.
Linearization around these slow regions can be used to explore, or
reverse-engineer, the behavior of the RNN. We describe the technique,
illustrate it using simple examples, and finally showcase it on three high-
dimensional RNN examples: a 3-bit flip-flop device, an input-dependent
sine wave generator, and a two-point moving average. In all cases, the
mechanisms of trained networks could be inferred from the sets of fixed
and slow points and the linearized dynamics around them.

1 Introduction

A recurrent neural network (RNN) is a type of artificial neural network
with feedback connections. Because the network has feedback, it is ide-
ally suited for problems in the temporal domain such as implementing
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temporally complex input-output relationships, input-dependent pattern
generation, and autonomous pattern generation. However, training RNNs
is widely accepted as a difficult problem (Bengio, Simard, & Frasconi, 1994).
Recently, there has been progress in training RNNs to perform desired be-
haviors (Maass, Natschläger, & Markram, 2002; Jaeger & Haas, 2004; Maass,
Joshi, & Sontag, 2007; Sussillo & Abbott, 2009; Martens & Sutskever, 2011).
Jaeger and Hass (2004) developed an echostate network, a type of RNN
that achieves good performance by allowing a random recurrent pool to
receive feedback from a set of trained output units. Sussillo and Abbott
(2009) derived a rule to train the weights of such an echostate network
operating in the chaotic regime. Further, Martens and Sutskever (2011) em-
ployed a second-order optimization technique, Hessian-free optimization,
to train all the weights in an RNN using backpropagation through time to
compute the gradient (Rumelhart, Hinton, & Williams, 1985). Given these
recent developments, it is likely that RNNs will enjoy more popularity in
the future than they have to date.

Because such supervised training algorithms specify the function to
perform without specifying how to perform it, the exact nature of how
these trained RNNs implement their target functions remains an open
question. The resulting networks are often viewed as black boxes. This
is in contrast to network models that are explicitly constructed to imple-
ment a specific known mechanism (see Wang, 2008; Hopfield, 1982). One
way to make progress may be to view an RNN as a nonlinear dynami-
cal system (NLDS), and in this light, there is a rich tradition of inquiry to
exploit.

A nonlinear dynamical system is, as the name implies, nonlinear. As
such, the qualitative behavior of the system varies greatly between different
parts of phase space and can be difficult to understand. A common line of
attack when analyzing NLDSs is therefore to study different regions in
phase space separately. The most common anchors to begin such analyses
are fixed points—points in phase space exhibiting zero motion, with the
invaluable property that the dynamics near a fixed point are approximately
linear and thus easy to analyze. Other, faster points in phase space can
also provide insight into the system’s mode of operation but are harder to
systematically locate and analyze.

In this article, we show that there are other regions in phase space, which
we call slow points, where linearization is valid. Our hypothesis is that un-
derstanding linearized systems around fixed and slow points in the vicinity
of typical network trajectories can be insightful regarding computational
mechanisms of RNNs. We provide a simple optimization technique for
locating such regions. The full analysis would therefore entail finding all
candidate points of the RNN, linearizing the dynamics around each one,
and finally trying to understand the interaction between different regions
(Strogatz, 1994; Ott, 2002). We illustrate the application of the technique
using both fixed and slow points. The principles are first illustrated with
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a simple two-dimensional example, followed by high-dimensional trained
RNNs performing memory and pattern generation tasks.

2 Fixed Points

Fixed points are common anchors to start an analysis of the system. They
are either stable or unstable, meaning that the motion of the system, when
started in the vicinity of a given fixed point, either converges toward or
diverges away from that fixed point, respectively. Stable fixed points, also
known as attractors, are important because the system will converge to
them or, in the presence of noise, dwell near them. Unstable fixed points
come in more varieties, having one or more unstable modes, up to the case
of a completely unstable fixed point (repeller). A mode is an independent
pattern of activity that arises when the linear system is diagonalized. In
efforts to understand the interaction of different attractors, unstable fixed
points with a few unstable modes are often very useful. For instance, a sad-
dle point with one unstable mode can funnel a large volume of phase
space through its many stable modes and then send them to two dif-
ferent attractors depending on which direction of the unstable mode is
taken.

Finding stable fixed points is often as easy as running the system dynam-
ics until it converges (ignoring limit cycles and strange attractors). Finding
repellers is similarly done by running the dynamics backward. Neither of
these methods, however, will find saddles. The technique we introduce
allows these saddle points to be found, along with both attractors and
repellers. As we will demonstrate, saddle points that have mostly stable
directions, with only a handful of unstable directions, appear to be highly
significant when studying how RNNs accomplish their tasks (a related idea
is explored in Rabinovich, Huerta, Varona, & Afraimovich, 2008).

3 Linear Approximations

Consider a system of first-order differential equations

ẋ = F(x), (3.1)

where x is an N-dimensional state vector and F is a vector function that
defines the update rules (equations of motion) of the system. We wish to
find values x∗ around which the system is approximately linear. Using a
Taylor series expansion, we expand F(x) around a candidate point in phase
space, x∗:

F(x∗ + δx) = F(x∗) + F′(x∗)δx + 1
2
δxF′′(x∗)δx + . . . (3.2)
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Because we are interested in the linear regime, we want the first deriva-
tive term of the right-hand side to dominate the other terms. Specifically,
we are looking for points x∗ and perturbations around them, δx ≡ x − x∗,
such that

|F′(x∗)δx| > |F(x∗)|, (3.3)

|F′(x∗)δx| >

∣∣∣∣
1
2
δxF′′(x∗)δx

∣∣∣∣ . (3.4)

From inequality 3.3, it is evident why fixed points (x∗ such that F(x∗) = 0)
are good candidates for linearization: the lower bound for δx is zero, and
thus there is always some region around x∗ where linearization should be
valid. They are not, however, the only candidates. A slow point, having a
nonzero but small value of F(x∗), could be sufficient for linearization. In this
case, examining the linear component of the computations of an RNN may
still be reasonable because the inequalities can still be satisfied for some
annulus-like region around the slow point.

Allowing |F(x∗)| > 0 means we are defining an affine system, which
can be done anywhere in phase space. However, inequalities 3.3 and 3.4
highly limit the set of candidate points we are interested in. So we end up
examining true linear systems at fixed points and affine systems at slow
points. The latter are not generic affine systems since the constant is so
small as to be negligible at the timescale on which the network operates. It
is in these two ways that we use the term linearization.

This observation motivated us to look for regions where the norm of the
dynamics, |F(x)|, is either zero or small. To this end, we define an auxiliary
scalar function,

q(x) = 1
2

|F(x)|2 . (3.5)

Intuitively, the function q is related to the speed, or kinetic energy, of the
system. Speed is the magnitude of the velocity vector, so q is the squared
speed divided by two, which is also the expression for the kinetic energy of
an object with unit mass.

There are several advantages to defining q in this manner. First, it is
a scalar quantity and thus amenable to optimization algorithms. Second,
becasue q is a sum of squares, q(x∗) = 0 if and only if x∗ is a fixed point of F.
Third, by minimizing |F(x)|, we can find candidate regions for linearization
that are not fixed points, assuming inequalities 3.3 and 3.4 are satisfied, thus
expanding the scope of linearization techniques.
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To understand the conditions when q is at a minimum, consider the
gradient and Hessian of q:

∂q
∂xi

=
N∑

k

∂Fk

∂xi
ẋk, (3.6)

∂2q
∂xi∂x j

=
N∑

k

∂Fk

∂xi

∂Fk

∂x j
+

N∑

k

ẋk
∂2Fk

∂xi∂x j
. (3.7)

For q to be at a minimum, the gradient (see equation 3.6) has to be equal
to the zero vector, and the Hessian (see equation 3.7) has to be positive
definite. There are three ways for the gradient to be zero:

1. If ẋk = 0, for all k, then the system is at a fixed point, and this is a global
minimum of q.

2. If the entire Jacobian matrix, ∂Fi
∂x j

(x), is zero at x and the second term of
the Hessian is positive definite, then q may be at a local minimum.

3. Finally, q may be at a minimum if ẋ is a zero eigenvector of ∂F
∂x . For

high-dimensional systems, this is a much less stringent requirement
than the previous one, and thus tends to be most common for local
minima in RNNs.

In summary, our approach consists of using numerical methods to min-
imize q to find fixed points and slow points. Because the systems we study
may have many different regions of interest, the optimization routine is run
many times from different initial conditions (ICs) that can be chosen based
on the particular problem at hand. Typically these ICs are points along
RNN system trajectories during computations of interest. In the following
sections, we demonstrate our approach on cases involving fixed points for
both low- and high- dimensional systems. Then we show the advantages
of linearizing around regions that are not fixed points.

3.1 Two-Dimensional Example. A simple 2D example helps to demon-
strate minimization of the auxiliary function q and evolution of ẋ = F(x).
For this section, we define the dynamical system ẋ = F(x) as follows:

ẋ1 = (1 − x2
1)x2, (3.8)

ẋ2 = x1/2 − x2. (3.9)

The system has three fixed points: a saddle at (0, 0) and two attractors
at (1, 1/2) and (−1,−1/2). Based on this definition of F, the function q is
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Figure 1: A 2D example of the behavior of minimization of q relative to the
defining dynamical system. The trajectories of a simple 2D dynamical system,
ẋ = F(x), defined as ẋ1 = (1 − x2

1)x2, ẋ2 = x1/2 − x2 are shown in thick black
lines. Shown with a black x are the two attractors of the dynamical system.
A saddle point is denoted with a green x. Gradient descent on the auxiliary
function q is shown in thick red lines. Minimization of q converges to one of
the two attractors or to the saddle point, depending on the IC. The value of q is
shown with a color map (bar indicates log10 q) and depends on the distance to
the fixed points of ẋ = F(x).

defined as q(x) = 1
2 (x2

2(1 − x2
1)

2 + (x1/2 − x2)
2). Note that the fixed points

of ẋ = F(x) are the zeros of q.
A number of system trajectories defined by evolving the dynamical sys-

tem ẋ = F(x) are shown in Figure 1 in thick black lines. The three fixed
points of ẋ = F(x) are shown as large x’s. The color map shows the values
of q(x), with pink coding large values and cyan coding small values. This
color map helps in visualizing how minimization of q proceeds.

Studying the system trajectories alone might lead us to suspect that a
saddle point is mediating a choice between two attractors (black x). But the
location of this hypothetical saddle is unknown. Using trajectories that are
close to the saddle behavior, we can initiate several sample minimizations
of q (thick red lines) and see that indeed two of them lead to the saddle
point (green x). For this example, two different minimization trajectories
originate from the same trajectory of the dynamical system.
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3.2 RNNs. Now consider ẋ = F(x) defined as a recurrent neural
network,

ẋi = −xi +
N∑

k

Jikrk +
I∑

k

Bikuk, (3.10)

ri = h
(
xi

)
, (3.11)

where x is the N-dimensional state called the “activations,” and r = h(x)

are the firing rates, defined as the element-wise application of the nonlinear
function h to x. The recurrence of the network is defined by the matrix J, and
the network receives the I-dimensional input u through the synaptic weight
matrix B. In the cases we study, which are typical of training from random
initialization, the matrix elements, Jik, are taken from a normal distribution
with zero mean and variance g2/N, where g is a parameter that scales the
network feedback.

After random initialization, the network is trained, typically with a su-
pervised learning method. We assume that such an RNN has already been
optimized to perform either an input-output task or a pattern generation
task. Our goal is to explore the mechanism by which the RNN performs
the task by finding the fixed points and slow points of ẋ = F(x) and the
behavior of the network dynamics around those points.

To employ the technique on the RNN defined by equations 3.10 and 3.11,
we define q as before: q(x) = 1

2 |F(x)|2. The Jacobian of the network, useful
for defining the gradient and Hessian of q, is given by

∂Fi

∂x j
= −δi j + Ji jr

′
j, (3.12)

where δi j is defined to be 1 if i = j and otherwise 0. Also, r′
j is the derivative

of the nonlinear function h with respect to its input, xj.

3.3 3-Bit Flip-Flop Example. We now turn to a high-dimensional RNN
implementing an actual task. We first define the task, then describe the
training and show the performance of the network. Finally, we use our
technique to locate the relevant fixed points of the system and use them to
understand the underlying network mechanism.

Consider the three-bit flip-flop task shown in Figure 2. A large recurrent
network has three outputs showing the state of three independent memory
bits. Transient pulses from three corresponding inputs set the state of these
bits. For instance, input 2 (dark green) is mostly zero, but at random times,
it emits a transient pulse that is either +1 or −1. When this happens, the
corresponding output (output 2, light green) should reflect the sign of the
last input pulse, taking and sustaining a value of either +1 or −1. For
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Figure 2: Example inputs and outputs for the 3-bit flip-flop task. (Left) Sample
input and output to the 3-bit flip-flop network. The three inputs and outputs are
shown in pairs (dark red/red, dark green/green, and dark blue/blue, respec-
tively). Brief input pulses come in with random timing. For a given input-output
pair, the output should transition to +1 or stay at +1 for an input pulse of +1.
The output should transition to −1 or stay at −1 if the corresponding input pulse
is −1. Finally, all three outputs should ignore their nonmatching input pulses.
(Right) Network with echostate architecture used to learn the 3-bit flip-flop task.
Trained weights are shown in red.

example, the first green pulse does not change the memory state because the
green output is already at +1. The second green pulse, however, does. Also,
the blue and red pulses should be ignored by the green output. An RNN
that performs this task for three input-output pairs must then represent
23 = 8 memories and so is a 3-bit flip-flop device, while ignoring the cross
talk between differing input-output pairs.

We trained a randomly connected network (N = 1000) to perform the
3-bit flip-flop task using the FORCE learning algorithm (Sussillo & Abbott,
2009) (see section 6). We then performed the linearization analysis, using the
trajectories of the system during operation as ICs. Specifically, we spanned
all possible transitions between the memory states using the inputs to the
network and then randomly selected 600 network states out of these tra-
jectories to serve as ICs for the q optimization. The algorithm resulted in
26 distinct fixed points, on which we performed a linear stability analy-
sis. Specifically, we computed the Jacobian matrix, equation 3.12, around
each fixed point and performed an eigenvector decomposition on these
matrices.

The resulting stable fixed points and saddle points are shown in
Figure 3 (left). To display the results of these analyses, the network state x(t)
is plotted in the basis of the first three principal components of the network
activations (the transient pulses reside in other dimensions; one is shown in
the right panel of Figure 3). In black “x” are the fixed points corresponding
to each of the eight memory states. These fixed points are attractors, and the
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Figure 3: Low-dimensional phase space representation of 3-bit flip-flop task.
(Left) The eight memory states are shown as black x. In blue are shown all
24 1-bit transitions between the eight memory states of the 3-bit flip-flop. The
saddle fixed points with one unstable dimension are shown with green x. A
thick red line denotes the dimension of instability of these saddle points. In thin
red are the network trajectories started just off the unstable dimensions of the
saddle points. These are heteroclinic orbits between the saddles that decide the
boundaries and the attractor fixed points that represent the memories. Finally,
the pink x show other fixed points, all with four unstable dimensions. Thick
red lines show these dimensions of instability, and thin red lines show net-
work trajectories started just off the fixed points in these unstable dimensions.
(Right) Demonstration that a saddle point mediates the transitions between at-
tractors. The input for a transition (circled region in left panel) was varied from
0 to 1, and the network dynamics are shown (blue for normal input pulse and
cyan for the rest). As the input pulse increased in value, the network came ever
closer to the saddle and then finally transitioned to the new attractor state.

perturbative linear dynamics around each fixed point are stable. Shown in
blue are the 24 neural trajectories (activation variable x) showing the effect
of an input pulse that flips the 3-bit flip-flop system by one bit. The green
crosses are saddles—fixed points with 1 unstable dimension and N − 1 sta-
ble dimensions. Shown in thin red lines are network trajectories started just
off the saddle on the dimension of instability. As we will show, the system
uses the saddles to mediate the transition from one memory state to another
(shown in detail on the right panel). Finally, shown in pink “x” are two fixed
points with four unstable dimensions each (thick red lines). Again, sample
network trajectories were plotted with the ICs located just off each fixed
point on the four dimensions of instability. The unstable trajectories appear
to connect three memory states, with no obvious utility.

To verify whether the saddle points are used by the system to switch
from one memory to another, we focus on a single transition, specifically
from memory (−1, −1, −1) to memory (1, −1, −1). We chose a visualization
space that allows both the effects of input perturbation and memory transi-
tions in state space (PC3 and the relevant input vector) to be seen. We varied
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the amplitude of the relevant input pulse in small increments from 0 to 1
(see Figure 3, right panel). In blue is shown the normal system trajectory
(pulse amplitude 1) during the transition for both the input-driven phase
and the relaxation phase. In cyan are shown the results of an input pertur-
bation experiment using intermediate pulse sizes. Intermediate amplitude
values result in network trajectories that are ever closer to the saddle point,
illustrating its mechanistic role in this particular memory transition.

It is important to note that this network was not designed to have eight
attractors and saddle points between them. In fact, as Figure 3 shows, there
can be more than one saddle point between two attractors. This is in contrast
to networks designed to store eight patterns in memory (Hopfield & Tank,
1986) where no such “redundant” saddle points appear.

3.4 Sine Wave Generator Example. Next, we demonstrate that our
analysis method is effective in problems involving pattern generation. Be-
cause pattern generation may involve system trajectories that are very far
from any particular fixed point, it is not obvious a priori that finding fixed
points is helpful. For our pattern generation example, we trained a net-
work (N = 200) that received a single input, which specified 1 out of 51
frequency values in radians per unit time. The output of the network was
defined to be a sine wave with the specified target frequency and unity am-
plitude. The target frequency was specified by a static input (see section 6
and Figure 4A). Again, we performed the analysis starting from ICs in the
51 different oscillation trajectories. We took care to include the correct static
input value for the optimization of q (see section 6). This means the fixed
points found were conditionally dependent on their respective static input
value and did not exist otherwise. With this analysis, we found a fixed point
for all oscillations centered in the middle of the trajectory.1

For all 51 fixed points, a linear stability analysis revealed that the lin-
earized system had only two unstable dimensions and N − 2 stable di-
mensions. A state-space portrait showing the results of the fixed-point and
linear stability analyses is shown in Figure 4B. The network state (activation
variable x) is plotted on the basis of the first three principal components
of the network activations. Shown in blue are the neural trajectories for all
51 oscillations. The green circles show each of the 51 fixed points, with the
unstable modes denoted by red lines. As mentioned above, the actual dy-
namics are far from the fixed points and thus not necessarily influenced by
them. To show that the linear analysis can provide a good description of the
dynamics, we compared the absolute value of the imaginary components

1For the four slowest oscillations, we found exactly two fixed points—one centered
in the middle of the oscillation with the other outside the trajectory. All other oscillations
had exactly one fixed point. Based on the results of our stability analysis, for these four
oscillations with two fixed points, we focused on the fixed point centered in the middle
of the oscillation, which was consistent with how the oscillations with one fixed point
worked.
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Figure 4: Input-dependent sine generator task. (A) Task definition. The network
was given a static input whose amplitude denoted a frequency in radians/sec,
and the network was trained to output a sine wave with the specified target
frequency with unity amplitude. Shown in red and green are two input-output
conditions. The trained weights of the network are shown in red. (B) State-
space depiction of trajectories and fixed points (projected to first 3 PCs). Shown
in blue are the network trajectories for each of the 51 frequencies during pattern
generation. The green circles are 51 fixed points, one for each frequency, that
are conditionally defined based on corresponding static input. Shown in red are
the two eigenvectors of the unstable plane of the linearized system around each
fixed point that are responsible for the oscillatory dynamics. (C) Comparison of
the target frequency with that predicted by the fixed points. The abscissa indexes
the 51 input dependent fixed points found in the system. The ordinate shows
the values of the imaginary part of the eigenvalue of the linearized systems
(red) and the desired frequency in radians/sec (black) for all fixed points.

of one of the two unstable dimensions (they come in complex conjugate
pairs) to the desired frequency in radians/sec in the target trajectories (see
Figure 4C). There is very good agreement between the target frequency
and the absolute value of the imaginary part of the unstable mode of the
linearized systems (proximity of red circles to the black dots), indicating
that the oscillations defined by the linear dynamics around each fixed point
explained the behavior of the RNN for all target frequencies. We verified
that the validity of the linear approximation stems from inequalities 3 and
4 by computing the norms of the linear and quadratic terms of the Taylor
expansion. Indeed, for all 51 trajectories, the norm of the linear term was at
least twice that of the quadratic term (not shown).
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Figure 5: Ghosts and local minima of q. (Left) Dynamics of the system described
by equations 4.1 and 4.2 with a = −0.3. There are two fixed points, a saddle
and a node (red points), both located at the intersection of the two nullclines
(green lines), and are global minima of q. (Right) The same system with a = 0.3.
There are no fixed points, but the local minimum of q (red point) denotes a
ghost of a fixed point and clearly influences the dynamics. The linear expansion
around this ghost reveals a strongly attracting eigenvector (pink inward arrows),
corresponding to the dynamics, and a zero eigenvector (pink lines), along which
the dynamics slowly flows because the system is not at a true fixed point.

4 Beyond Fixed Points

While fixed points are obvious candidates for linearization, they are not the
only points in phase space where linearization makes sense. Minimizing q
can lead to regions with a dominating linear term in their Taylor expan-
sion, even if the zero-order term is nonzero. We first show a 2D example
where considering a local minimum of q can provide insight into the sys-
tem dynamics. Then we analyze a high-dimensional RNN performing a
2-point moving average of randomly timed input pulses and demonstrate
that points in phase space with small, nonzero values of q can be instructive
in reverse engineering the RNN.

4.1 Local Minima of q. Consider the 2D dynamical system defined by

ẋ1 = x2 −
(
x2

1 + 1/4 + a
)
, (4.1)

ẋ2 = x1 − x2. (4.2)

This system has two nullclines that intersect for a ≤ 0. In this case, q will have
two minima coinciding with the fixed points (see Figure 5, left). At a = 0, the
system undergoes a saddle node bifurcation, and if a is slightly larger than
0, there is no longer any fixed point. The function q, however, still has a local
minimum exactly between the two nullclines at xg = (1/2, 1/2 + a/2). This
can be expected, because q measures the speed of the dynamics, and this
“ghost” of a fixed point is a local minimum of speed. The system trajectories
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shown in Figure 5 (right) indicate that this point represents a potentially
interesting area of the dynamics, as it funnels the trajectories into one com-
mon pathway and the dynamics are considerably slower near it (not shown
in the figure).

While finding the location of such a ghost can be useful, we will go
beyond it and consider the linear expansion of the dynamics around this
point:

(
ẋ1

ẋ2

)

= F

(

xg +
(

dx1

dx2

))

=
(

−1 1

1 −1

) (
dx1

dx2

)

− a
2

(
1

1

)

. (4.3)

As expected from our discussion of conditions for minima of q, the Jaco-
bian has one zero eigenvalue with eigenvector (1, 1). The second eigenvalue
is −

√
2, with an orthogonal eigenvector (1,−1). The full behavior near xg

is therefore attraction along one axis and a slow drift along the other, the
latter arising from the fact that xg is not a true fixed point (pink lines in the
figure inset). Though lacking any fixed point, the dynamics of this system
can still be understood using linearization around a candidate point, with
the additional understanding that the drift will affect the system on a very
slow timescale.

In general, when linearizing around a slow point, xs, the local linear
system takes the form

δ̇x = F′(xs) δx + F(xs), (4.4)

where the zero-order contribution, F(xs), can be viewed as a constant input
to the system. While equation 4.4 makes sense for any point in phase space,
it is the slowness of the point as defined by inequalities 3.3 and 3.4 that
makes the equation useful. In practice, we have found that the constant
term, F(xs), is negligible, but we include it for correctness.

4.2 Approximate Plane Attractor. So far we have shown the utility of
considering both fixed points of the dynamics and local minima of q. The
inequalities, equations 3.3 and 3.4, suggest, however, that any region with
a small value of q(x) is a good candidate for linearization. We demonstrate
this point using an RNN trained on a 2-point moving average task. In this
task, the network receives analog-valued input pulses at random times.
Following each pulse, the network has to output the average of the last two
input pulses (see Figure 6).

A perfect implementation of a 2-point moving average requires storage
of two values in memory. In a designed network, one might implement
such a memory requirement by explicitly constructing a plane attractor:
a 2D manifold of attracting fixed points—for example, one dimension to
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Figure 6: Example inputs, outputs, and targets for the 2-point moving average
task. The 2-point moving average task implements the average of the last two
input pulses (black). The target moving average is shown in green, and the
output of the trained RNN is shown in red.

remember the last input, I1, and another dimension to remember the input
before the last, I0.

Continuing with the black box optimization approach, we trained a ran-
domly initialized 100-dimensional RNN to perform this task and then used
our algorithm to locate any fixed points, local minima of q, and slow points
(see section 6). Our analysis revealed that the network instead created a
two-dimensional manifold of slow points, an approximate plane attractor,
as shown in Figures 7A and 7B. The black dots in Figure 7A show all points
with values of q smaller than 1e-4 in the space of the first three principal com-
ponents. The linearized dynamics around all slow points had two modes
with approximately zero eigenvalues and N − 2 fast decaying modes.

In addition to the many slow points, the optimization found two fixed
points. These two fixed points organize the extremely slow dynamics on the
approximate plane attractor. Shown in Figure 7B is the dynamical structure
on the 2D manifold. Each slow point was used as an IC to the network,
and the network was run for 1000 s (blue trajectories with arrows). These
trajectories demonstrate the precise dynamics at slow timescales that be-
come the approximately fixed dynamics at the timescale of normal network
operation. To demonstrate the fast-decaying dynamics to the manifold, the
network was run normally with a single trial, which took around 30 s
(orange trajectory).

To test the utility of linearizing the RNN around the slow points, we
attempted to replace the full nonlinear system with a succession of linear
systems defined by the slow points (see Figure 8). Specifically, we defined
a linear time-varying dynamical system (LTVDS; see section 6), in which
the dynamics at each time point were the linear dynamics induced by the
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Figure 7: 2D approximate plane attractor in 2-point moving average task. The
2-point moving average task requires two variables to complete the task. The
RNN holds those two variables in an approximate plane attractor. (A) The slow
points (q ≤ 1e-4) form a 2D manifold. The black dots show the slow points of the
network. All slow points have two modes with approximately zero eigenvalues.
(B) Dynamical picture of 2D manifold of slow points. There are two fixed points
(black crosses)—one with two stable directions tangent to the manifold and
another with one stable and one unstable dimension tangent to the manifold.
The network was simulated for 1000 s from slow points on the manifold
(q ≤ 1e-7) as the ICs. These slow trajectories are shown with blue lines ending
in arrows. To compare with the fast timescales of normal network operation,
we show the network computing a moving average that includes a new input.
This network trajectory lasted for about 30 s (orange). Each #t of the 1 s input
is shown with orange squares.

closest slow point. We then compared the state transition induced by a
single input pulse as implemented by both the RNN and the LTVDS across
many random inputs and ICs (Figures 8A and 8B show examples). Note
that whenever a new input pulse comes in, the network dynamics must
implement two transitions. The I1 value must shift to the I0 value, and the
latest input pulse value must shift to the I1 value. Our test of the LTVDS
approximation thus measured the mean squared error between the RNN
and the LTVDS for the shifted values I1 to I0 and input to I1 (see Figures
8C and 8D, respectively). The errors were 0.074, and 0.0067 for I1→I0 and
input→I1.

Finally, we demonstrate that our method is not dependent on a finely
tuned RNN. We structurally perturbed the RNN that implemented the
2-point moving average by adding to the recurrent matrix random gaussian
noise with zero mean and standard deviation, η (see section 6). The depen-
dency of the output error on the size of the structural perturbation is shown
in Figure 9A. An example perturbed RNN with network inputs and output
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Figure 8: Comparison of the transition dynamics between the RNN and the
linear time-varying approximation. (A) Four separate trials of the RNN (red
lines) and the LTVDS approximation (dotted red lines). (B) The same trials
plotted in the space of the first three PCs of the network activity. The orange
squares show the ICs, based on the input pulse, given to both RNN and LTVDS.
The RNN trajectories are orange; the LTVDS are dotted orange. Black dots are
the 2000 slow points used in simulating the LTVDS. (C, D) In implementing the
2-point moving average, whenever a new input pulse comes in, the RNN must
successfully shift the value of the last input (I1) to the value of the input before
the last (I0) (panel C) and move the input pulse value to the the value of the
last input (I1) (panel D). In blue are the transitions implemented by the RNN.
In red are the transitions implemented by the LTVDS using the same ICs. The
mean squared error between the LTVDS and the RNN for both transitions was
0.074 and 0.0067, respectively.

is shown in Figure 9B, with η = 0.006. Unsurprisingly, the main problem is
a drift in the output value, indicating that the quality of the approximate
plane attractor has been heavily degraded. We applied our technique to
the structurally perturbed network to study the effects of the perturbation.
Figures 9C and 9D show that the same approximate plane attractor dy-
namical structure is still in place, though much degraded. The slow point
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Figure 9: Structural perturbations. (A) To study the ability of our method to
find meaningful structure in a perturbed network, gaussian noise was added
to the recurrent matrix of the RNN with 0 mean and standard deviation η.
We show a plot of mean squared error of the RNN output as a function of
the noise level, η. The red x marks the η = 0.006 noise level used in further
studies. (B) Example of perturbed network with η = 0.006. Same color scheme as
Figure 6. (C) A view of the 2D slow point manifold showing the variability in
values of q along the manifold for the original network. (D) Similar to panel C
for the perturbed network. Note that all q values are higher in this case.

manifold is still in the same approximate place, although the q values of all
slow points increased. In addition, there is a fixed point detached from the
manifold. Nevertheless, the network is able to perform with mean squared
error less than 0.01, on average.

5 Discussion

Recurrent neural networks, when used in conjunction with recently devel-
oped training algorithms, are powerful computational tools. The downside
of these training algorithms is that the resulting networks are often ex-
tremely complex so their underlying mechanism remains unknown. Here
we used methods from nonlinear dynamical system theory to pry open the
black box. Specifically, we showed that finding fixed points and slow points
(points where inequalities 3.3 and 3.4 are satisfied) near relevant network
trajectories and studying the linear approximations around those points is
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useful. To this end, we outlined an optimization approach to finding slow
points, including fixed points, based on the auxiliary function q. Depending
on use, minimization of this function finds global and local minima and also
regions in phase space with an arbitrarily specified slowness.

We demonstrated how true fixed points were integrally involved in how
an RNN solves the 3-bit flip-flop task, creating both the memory states and
the saddle points to transition between them. We also analyzed an RNN
trained to generate an input-dependent sine wave, showing that input-
dependent fixed points were responsible for the relevant network oscilla-
tions, despite those oscillations occurring far from the fixed points. In both
cases, we found that saddle points with primarily stable dimensions and
only a couple of unstable dimensions were responsible for much of the in-
teresting dynamics. In the case of the 3-bit flip-flop, saddles implemented
the transition from one memory state to another. For the sine wave gener-
ator, the oscillations could be explained by the slightly unstable oscillatory
linear dynamics around each input-dependent saddle point.

Finally, we showed how global minima, local minima, and regions of
slow speed were used to create an approximate plane attractor, necessary to
implement a 2-point moving average of randomly timed input pulses. The
approximate plane attractor was implemented using mainly slow points
along a 2D manifold.

Studying slow points, and not only fixed points, is important for several
reasons. First, a trained network does not have to be perfect: few realistic
tasks require infinite memory or precision, so it could be that forming a slow
point is a completely adequate solution for the defined timescales of a given
input-output relationship. Second, in the presence of noise, the behavior of
a fixed point and a very slow point might be indistinguishable. Third,
funneling network dynamics can be achieved by a slow point, and not a
fixed point (see Figure 5). Fourth, neither trained networks nor biological
ones can be expected to be perfect. Studying the slow points of the perturbed
plane attractor showed that our technique is sensitive enough to detect
dynamical structure in a highly perturbed or highly approximate structure.

The 3-bit flip-flop example was trained using the FORCE learning rule
(Sussillo & Abbott, 2009), which affected the network dynamics by modi-
fying the three output vectors. The input-dependent sine wave generator
and 2-point moving average were trained using the Hessian-free optimiza-
tion technique for RNNs (Martens & Sutskever, 2011), and all the synaptic
strengths and biases were modified. Despite the profound differences in
these two training approaches, our fixed-point method was able to make
sense of the network dynamics in both cases.

Although the RNNs we trained were high dimensional, the tasks we
trained them on were intentionally simple. It remains to be seen whether
our technique can be helpful in dissecting higher-dimensional problems,
and almost certainly it depends on the task at hand as the input and task
definition explicitly influence the dimensionality of the network state.
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Our technique, and the dynamical concepts explored using it, may also
provide insight into the observed experimental findings of low-dimensional
dynamics in in vivo neuroscience experiments (Romo, Brody, Hernández,
& Lemus, 1999; Stopfer, Jayaraman, & Laurent, 2003; Jones, Fontanini,
Sadacca, Miller, & Katz, 2007; Ahrens et al., 2012). For example, we found
that a saddle point funnels large volumes of phase space into two directions
and so may be a dynamical feature used in neural circuits that inherently
reduces the dimension of the neural activity. Since the networks we studied
were trained as opposed to designed, and therefore initially their implemen-
tation was unknown, our method and results are compatible with studies
attempting to understand biological neural circuits, for example (Huerta &
Rabinovich, 2004; Machens, Romo, & Brody, 2005; Rabinovich et al., 2008;
Liu & Buonomano, 2009; Ponzi & Wickens, 2010).

There are several possible interesting extensions to this technique. While
the system and examples we studied were continuous in nature, the appli-
cation of our technique to discrete RNNs presents no difficulties. Another
extension is to apply the fixed-point and slow-point analysis to systems
with time-varying inputs during those times that the input is varying. Be-
cause the auxiliary function we used relies only on part of the inequalities,
equations 3.3 and 3.4, it is possible that a more elaborate auxiliary function
could be more efficient. Finally, an interesting direction would be to apply
this technique to spiking models.

6 Methods

6.1 Minimizing q(x). Our proposed technique to find fixed points,
ghosts, and slow points of phase space involves minimizing the nonconvex,
nonlinear scalar function q(x) = 1

2 |F(x)|2. Our implementation involves
using the function f minunc, Matlab’s unconstrained optimization front
end. For effective optimization, many optimization packages, including
f minunc, require as a function of a particular x the gradient (see equation 3.6)
and the Hessian (see equation 3.7). Because q(x) is a sum of squared func-
tion values, we implemented instead the Gauss-Newton approximation to
the Hessian. We found it to be effective and simpler to compute (Boyd &
Vandenberghe, 2004). It is defined by neglecting the second term on the
right-hand side of equation 3.7:

Gi j =
N∑

k

∂Fk

∂xi

∂Fk

∂x j
. (6.1)

The Hessian matrix approaches the Gauss-Newton matrix as the optimiza-
tion approaches a fixed point. In summary, the core of our implementation
included a single function that computes three objects as a function of a
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specific state vector: q(x), ∂q
∂x (x) (see equation 3.6) and G(x) (see equation 6.1)

for the generic RNN network equations defined by equation 6.4.
Since q(x) is not convex, it is important to start the minimization from

many different ICs. For all the RNN examples, we first ran the RNN to
generate state trajectories during a typical operation of the RNN. Random
subsets of these state trajectories were chosen as ICs for the optimization of
q(x). After the optimization terminated, depending on whether the value
of q(x) was below some threshold, either the optimization was started
again from a different IC or the optimization routine ended successfully. To
find fixed points and ghosts, the optimization was run until the optimizer
returned either success or failure. Assuming a successful optimization run,
we called a candidate point a fixed point if the value of q was on the
order of magnitude of the tolerances set in the optimization. We called a
candidate point a ghost if q was greater than those tolerances, indicative of
a local minimum. To find arbitrarily defined slow points, the value of q was
monitored at every iteration, and if the value fell below the arbitrary cutoff,
the optimization was terminated successfully at that iteration.

For the 3-bit flip-flop and sine wave generator examples, the function
tolerance was set to 1e-30.

For the 3-bit flip-flop and 2-point moving average, the input was not
used when finding fixed points, as the inputs were simple pulses and we
were interested in the long-term behavior of the two systems. However,
for the sine wave generator, since the input conditionally defines a new
dynamical system for each oscillation frequency, the input was used in
finding the fixed points. Concretely, this means ẋ in equation 3.6 included
the static input that specified the target frequency and that the fixed points
found did not exist in the absence of this input.

6.2 3-Bit Flip-Flop. We extend equations 3.10 and 3.11 to include inputs
and outputs of the network,

ẋi =−xi +
N∑

k

Jikrk +
3∑

k

WFB
ik zk +

3∑

k

Bikuk, (6.2)

zi =
N∑

k

Wikrk, (6.3)

where u is a 3D input variable coupled to the system through the input
weight matrix B. The output z is the 3D linear readout of the network de-
fined by the output matrix W. In echostate networks, the output is fed back
into the system via feedback weights, here denoted WFB. In this example,
tanh was used as the nonlinear transfer function, h. Randomly timed input
pulses were placed on the input lines and the targets were defined as in



646 D. Sussillo and O. Barak

section 3.3. The result of the FORCE training algorithm (Sussillo & Abbott,
2009) was a modification to the output weights W, which, due to output
feedback, is a rank 3 modification to the effective recurrent connectivity and
thus a modification of the network dynamics (see Figure 2, right panel). As
the sample input and output traces on the left panel of Figure 2 show, the
trained network performed the task well.

6.3 Sine Wave Generator. We used a randomly connected network of
the form defined by

ẋi = −xi +
N∑

k

Jikrk +
I∑

k

Bikuk + bx
i , (6.4)

z =
N∑

k

wkrk + bz, (6.5)

with network dimension N = 200 and input dimension I = 1. We used tanh
as the nonlinearity and added bias terms bx

i and bz to the two equations,
respectively. To allow the training to go through, before each training batch,
the network was initially driven with the signal sin(ω jt) + j/51 + 0.25 to set
the initial state of the network, where j indexes the 51 different frequency
values for the sine waves. During training, the input signal was static at
j/51 + 0.25. The target frequencies, ω j, were equally spaced between 0.1
and 0.6 radians/sec. After training, the 1D network readout, z, success-
fully generated sin(ω jt) with only the static input j/51 + 0.25 driving the
network (no initial driving sinusoidal input was necessary). We trained the
network to perform this task using the Hessian-free optimization technique
for RNNs (Martens & Sutskever, 2011). The result of this training algorithm
was a modification to matrices B and J, vector w, and biases bx and bz.

6.4 2-Point Moving Average. The network trained to implement the
2-point moving average was of the same form as equations 6.4 and 6.5. The
size of the network was 100 dimensions, with two inputs and one output.
The first input contained randomly timed pulses lasting 1 second, with each
pulse taking a random value between −1 and 1 uniformly. The second input
was an indicator variable, giving a pulse with value 1 whenever the first
input was valid and was otherwise 0. The minimum time between pulses
was 5 s, and the maximum was 30 s. The target for the output was the
average of the last two input pulses. To minimally affect the dynamics, the
target was specified for only a brief period before the next input pulse and
was otherwise undefined (see the green traces in Figure 6). The target was
also defined to be zero at the beginning of the simulation. This network
was also trained using the Hessian-free optimization technique for RNNs
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(Martens & Sutskever, 2011). The network mean squared error was on the
order of 1e-7.

For Figure 7, we selected the best local minima we could find by setting
the optimizer tolerance to 1e-27 with a maximum number of iterations set
to 10,000. This resulted in two ghosts or fixed points whose values were on
the order of 1e-21. Given the potential for pathological curvature (Martens,
2010) in q in an example with a line or plane attractor, it is possible that the
two fixed points found are actually ghosts. However, the value of q at these
two points is so small as to make no practical difference between the two,
so we refer to them as fixed points in the main text, since the dynamics are
clearly structured by them.

We also selected slow points by varying the slow point acceptance
(q value) between 1e-19 and 1e-4, with 200 attempts for a slow point per
tolerance level. Slow points with a q value greater than the tolerance were
discarded. To visualize the approximate plane attractor, we performed prin-
cipal component analysis on the slow points of the unperturbed system with
q ≤ 1e-4. The subspace shown is the first three principal components.

In the comparison of the LTVDS against the full RNN, we compared the
transitions of the current input to the last input (I1) and to the input before
last (I0). We decoded both I1 and I0 using the optimal linear projection found
by regressing the respective I0 or I1 values against the network activations
across all trials.

The linear time-varying dynamical system was defined as follows:

for t = 1 to T, steps of #t

xs = closest slow point to x(t)

δx(t) = x(t) − xs

δ̇x(t) = F′(xs) δx(t) + F(xs)

δx(t + #t) = δx(t) + #t δ̇x(t)

x(t + #t) = xs + δx(t + #t)

end,

where xs is the closest slow point to the current state and F′(xs) is the Jacobian
around that slow point. The set of potential xs was 2000 slow points from
the 2D manifold, found by setting the optimizer tolerances such that the
q optimization found slow points with values just below 1e-10. This value
was chosen as a compromise between the quality of the linearized system
at the slow point, which requires a stringent q tolerance, and full coverage
of the approximate plane attractor, which requires a larger q tolerance. The
transition simulations were initialized by choosing a random input pulse
value for every slow point. Then the full RNN was simulated for 1 s to
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correctly simulate the strong input. The network state at the end of the 1 s
was used as the IC for the comparison simulations of both the RNN and
the LTVDS. The simulations were run for 20 s, allowing for equilibration to
the 2D manifold for both the full RNN and the LTVDS approximation.

For the perturbation experiments, we chose η values between 1e-7 and
0.1. For each value of η, we generated 50 perturbed networks where the per-
turbation was zero-mean gaussian noise with standard deviation η added
to the recurrent weight matrix. For each of the 50 networks, 1000 random ex-
amples were evaluated. The error for each η value was averaged across net-
works and examples. The approximate plane attractor shown in Figure 9D
is with η = 0.006, a large η value, but where the network still functioned
with some drift.
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