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A neural network that finds a naturalistic solution for
the production of muscle activity

David Sussillo!, Mark M Churchland?, Matthew T Kaufman!* & Krishna V Shenoy!>3

It remains an open question how neural responses in motor cortex relate to movement. We explored the hypothesis that motor
cortex reflects dynamics appropriate for generating temporally patterned outgoing commands. To formalize this hypothesis, we
trained recurrent neural networks to reproduce the muscle activity of reaching monkeys. Models had to infer dynamics that could
transform simple inputs into temporally and spatially complex patterns of muscle activity. Analysis of trained models revealed
that the natural dynamical solution was a low-dimensional oscillator that generated the necessary multiphasic commands.

This solution closely resembled, at both the single-neuron and population levels, what was observed in neural recordings from the
same monkeys. Notably, data and simulations agreed only when models were optimized to find simple solutions. An appealing
interpretation is that the empirically observed dynamics of motor cortex may reflect a simple solution to the problem of generating

temporally patterned descending commands.

Considerable controversy has centered on whether neural responses in
motor cortex encode high-level parameters, such as reach direction, or
low-level parameters, such as force or muscle activity!-!1. An equally
fundamental question remains largely unaddressed: how are those
temporally complex responses generated. To execute a movement,
such as a reach, there must presumably exist some pattern genera-
tor that receives the relevant parameters and produces the necessary
output. Pattern generation might occur entirely upstream of motor
cortex, with motor cortex representing and conveying the generated
commands. In this case, motor cortex responses would be expected
to resemble muscle responses. A second possibility is that pattern
generation may occur downstream, such that motor cortex param-
eterizes a high-level command. This possibility is suggested by the
decoding of high-level features from the population response®1213. A
final possibility is that motor cortex is a key participant in generating
outgoing commands!4-16. This possibility, as with the first possibility,
predicts a close relationship between neural and muscle activity»16-20,
However, it also predicts there will be additional response features
that are signatures of pattern generation. Thus, many aspects of
the neural response may be quite ‘non-muscle like’ even if muscle
commands are the final output?!.

We recently reported?>23 that the motor cortex population state
exhibits quasi-oscillatory features that provide a potential basis set
for outgoing muscle-like commands. A simple linear model of the
underlying dynamics captured much of the response structure. These
results are consistent with the third possibility described above. Yet
the theoretical foundation for these observations remains unclear.
Why do quasi-oscillatory dynamics dominate when many other
solutions are presumably possible? We explored the hypothesis that

the observed dynamics are a consequence of generating descending
motor commands in as simple a fashion as possible. We optimized a
family of recurrent neural networks (RNNs?#) to generate the electro-
myographic (EMG) signals recorded from multiple muscles during
the experiments described in ref. 23. We parameterized the family of
RNNs by the complexity of allowable dynamics, from very simple to
extremely complex.

Notably, RNNs were not trained to reproduce the empirical neural
responses, only to reproduce our proxy for the descending motor com-
mands, the recorded EMG. Beyond parameterizing the complexity
of the RNN dynamics, we deliberately avoided imposing additional
constraints. We did not constrain connectivity or attempt to impose
structure based on known features of cortical connectivity. This allowed
the RNNs to seek an optimum over a very broad range of dynamics,
unconstrained by prior knowledge. Nevertheless, we found that the
dynamics learned by the models resembled the dynamics seen in
motor cortex. This was true both qualitatively and quantitatively and at
both the single-neuron and population levels. However, the similarity
between data and model was strong only if the RNN was heavily
‘regularized’ to encourage extremely simple solutions. This find-
ing suggests that cortex displays the empirically observed dynamics
because those dynamics provide a simple solution to the problem of
generating temporally structured outputs.

RESULTS

Task

Two monkeys (J and N) performed a delayed reach task (Fig. 1a)?3.
To begin each trial, the monkey fixated and touched a central target.
A maze configuration and target(s) then appeared, but the monkey
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Figure 1 Monkey task and network task definition. (a) Monkeys performed a delayed reach maze task. After fixating and touching a central point, the
target and maze turned on. Some conditions included distractor targets. During the preparatory period, the monkeys had to determine which target was
reachable and prepare a reach that avoided any intervening barriers. A go cue prompted the monkey to execute the reach. We employed 27 conditions,
each consisting of a particular configuration of target and barriers. The resulting reaches included a variety of straight and curved paths. (b) Example
PSTH for a single neuron. Each trace plots the mean across-trial firing rate for one condition (27 total). Traces are colored green to red based on

the level of preparatory activity. The first gray line shows the timing of target onset, that is the beginning of the preparatory period. The second gray
line shows the end of the preparatory period. Vertical and horizontal scale bars indicate 20 spikes per s and 200 ms. (c) Networks were optimized to
generate EMG. Network inputs consisted of a condition-independent hold cue (purple) and a six-dimensional condition-specific input (black), which
specified the condition for which the network should generate EMG. This example shows the levels of those six inputs for condition 1. From these
inputs the RNN generated the multi-dimensional EMG: green traces plot the recorded EMG from seven muscles for condition 1. To ensure the model

fit signal and not noise, we filtered EMG signals and removed the (very minimal) noise during the baseline (Online Methods). (d) Three example
conditions showing the multiple muscle target EMG (green, one trace per muscle) and the corresponding trained outputs of the regularized model
for monkey J (red). Normalized error between the empirical EMG and the model output was 7%. Horizontal scale bars indicate 200 ms.

was required to withhold his reach until a ‘go cue’ appeared. Each
maze and target configuration enforced a particular reach trajectory.
We analyzed 27 such configurations, termed conditions. We defined
the preparatory period as the interval from maze onset until 150 ms
after the go cue, the moment at which neural activity begins to change
rapidly just before reach onset. During the preparatory period,
the monkey had complete information regarding the reach to be
performed, but had not yet begun to move.

Responses of neural populations were recorded from primary
motor cortex (M1) and the adjacent region of dorsal premotor
cortex (PMd). Neurons typically displayed different levels of prepara-
tory activity depending on the upcoming movement?>>2¢ (Fig. 1b).
Approximately 150 ms before movement onset, the relatively stable
plateau of preparatory activity transitioned to a complex pattern
of movement-related activity. Muscle activity, recorded from the
principal muscles of the upper arm, changed little during the
preparatory period, but exhibited temporally complex patterns
just before and during the movement.

We previously proposed that a purpose of preparatory neural
activity is to initialize a dynamical system whose subsequent
evolution during movement generates descending muscle-like
commands!®?3 (Fig. 1b). If so, what is the nature of those dynamics?
We examined solutions naturally found by recurrent neural networks.
The resulting trained networks yielded a set of simple, but empirically
constrained, hypotheses whose predictions could be compared against
the experimentally observed patterns of neural activity. We stress that
these are models of emergent dynamics, not of cortical architecture
or implementation.

A simplified modeling framework for reach generation

Under natural circumstances, a stream of inputs guides reaching.
These inputs include those that motivate and initiate the reach (for
example, the sight of a desirable object and the decision to obtain
it) and subsequent sensory feedback. We adopted a simplified set of
just two inputs (Fig. 1c). We assumed that, during the preparatory

period, cortex receives inputs specific to the reach being prepared.
To avoid making assumptions about the reference frame of those
inputs, we derived the static levels of the reach-specific inputs
from the empirically recorded preparatory neural activity (Online
Methods). We assumed that movement unfolds when a condition-
independent ‘hold’ signal is released. The goal of the network was to
utilize these temporally simple inputs (Fig. 1¢) to produce, at the right
moment, the temporally complex patterns of activity recorded across
multiple muscles (Fig. 1d).

Ideally, we would have included a third input stage: the sensory
feedback that arrives after the reach begins. We decided to not
include this stage for two practical reasons. First, the structure of
the feedback is difficult to estimate. Second, many of the features of
the neural population response are apparent even before movement
begins: the establishment of preparatory activity and its relation-
ship to early movement-period activity unfold before feedback can
have had an effect. Empirically, movement-period neural responses
lead the motion of the hand by ~150 ms. Sensory feedback takes at
least 25 ms to influence cortical responses and >50 ms to reflect the
current goal?’. Thus, during this ~200-ms interval, the neural dynamics
are not yet affected by sensory feedback and should presumably be
explained via internal dynamics. This is true even of optimal feed-
back control architectures, which employ a dynamically varying
control policy and internal ‘efference-copy’ recurrence to generate
time-varying output patterns before the arrival of feedback?®2°. Given
the practical choice to use a model without sensory feedback, we
verified with additional simulations that the solutions found by the
model were robust to the addition of reasonable forms of feedback
(Supplementary Fig. 1a,b).

We used RNNs as a modeling tool for three reasons. First, an
RNN can approximate any dynamical system?®’. Second, an RNN is
an abstract model that is nevertheless inspired by biological neural
circuits; the units are individually simple and must work together in
a parallel and distributed fashion. Third, internal recurrent feedback,
a defining aspect of RNNs, is essential for many forms of pattern
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Figure 2 Example PSTHs from monkey J and
the regularized and complicated models for
monkey J. (a) Example PSTHs from five neurons
for monkey J (data are presented as in Fig. 1b).
Examples were chosen to illustrate the range

of responses, including neurons with strong
preparatory activity (first two rows), neurons
with a broad rise in activation during the
movement period (middle row) and neurons with
oscillatory activity during the movement period
(bottom two rows). Vertical and horizontal scale
bars indicate 20 spikes per s and 200 ms.

(b) Example PSTHs chosen from the regularized
model for monkey J. Examples were chosen to
both highlight the similarities between neural
and model responses and to be representative
of the patterns exhibited by the model units.

(c) Example PSTHs from five units from the
complicated model for monkey J. The PSTHs

of the complicated models rarely bore a strong
resemblance to those of the neural data.

generation. We produced two classes of
trained networks: a regularized model and
a complicated model. For the regularized
model, we included regularization terms
during optimization to encourage simple
solutions. We included no regularization terms
in the complicated model (Supplementary
Table 1). For each monkey, we trained one
network from each complexity class. All
models successfully reproduced the recorded
muscle activity for the 27 reaches (Fig. 1d).
The normalized error was 7% for both
models for monkey J and 3% for both models
for monkey N.

L]
Target

Comparison of the model to data Target

Notably, networks were never trained

to reproduce neural responses, only to generate the empirical
EMG. This allowed us, after training, to compare network activ-
ity with recorded neural activity. To gain intuition, we first used
the traditional single-neuron peristimulus time histogram (PSTH)
format to qualitatively compare responses of single neurons and
model units. We then used dimensionality reduction techniques
to compare key features of the recorded and simulated population
responses. Finally, we directly and quantitatively compared recorded
and simulated population responses using canonical correlation
analysis (CCA) (monkey J; Figs. 2-8; monkey N; Supplementary
Figs. 2-8).

Single-unit PSTHs are shown for five neurons (Fig. 2a) and five
units from the regularized model (Fig. 2b). Color-coding was based
on the average preparatory period firing rate. We selected these
PSTHs to illustrate a range of common patterns found in the neural
and model populations. Such patterns included plateaus of preparatory
activity and a variety of multi-phasic and monophasic movement-
period responses. Representative PSTHs from the complicated
model are shown in Figure 2¢c. The PSTHs of the complicated model
are much more complex than, and bear little resemblance to, most
neural responses. Thus, although both simple and complicated mod-
els generate a basis set of responses adequate to produce EMG, only
the regularized model employs a basis set that qualitatively resembles
the recorded neural responses.

Move onset

ARTICLES

>
=

Z

=

ML |

LAY
\

=
-

=5

7

i

r/.’
YA

X

| o
NN

| ‘N\\b\ié’& éu

l
WehY,

Ta.rget Mo;e org

Is the similarity at the single-neuron level also present at the
population level? We first leveraged the recent observation?? that pro-
jections of the neural data reveal population responses that follow
roughly oscillatory dynamics (quasi-oscillatory dynamics). Because
quasi-oscillatory dynamics have been robustly observed across many
data sets, any hypothesis that does not predict such dynamics can be
rejected. To compare data with model, we therefore applied a dimen-
sionality reduction technique (jPCA?3, Online Methods) that isolates
any, if present, quasi-oscillatory structure in the data.

Projections of the neural population responses revealed rotations
of the neural state across multiple dimensions (Fig. 3a), consistent
with quasi-oscillatory dynamics, as previously reported. Projections
of the regularized model population response revealed similar
rotations (Fig. 3b). These projections were obtained by fitting the
population response with a purely oscillatory linear dynamical
system. The goodness of fit (R?) of those fits was similar for the
neural and regularized model data: 0.60 and 0.61. Thus, ~60% of the
temporal evolution of the population response could be explained by
oscillatory dynamics. The frequencies found by jPCA were 2.1, 1.3
and 0.9 Hz (neural data), and 2.4, 1.6 and 0.9 Hz (regularized model).
The total variance captured by the three jPC planes was 45% (neural)
and 50% (model). Thus, roughly half of the structure of the data was
captured by six dimensions (three planes), with oscillatory frequen-
cies that were similar for neural and model data. We have previously
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Figure 3 jPCA projections of the population
responses. (a) jPCA projections for the neural
data recorded from monkey J. Each trace shows
the evolution of the neural state over 500 ms.
Traces start —180 ms before movement onset,
at the moment when the relatively stable
preparatory state (circles) transitioned to the
movement period trajectory. For visualization
purposes, traces are colored on the basis of

the preparatory-state projection onto jPC;

(a.u., arbitrary units). The three projections
correspond to the largest magnitude complex
eigenvalue pairs of the matrix Mgyew, found
when fitting the data with x = Mg, X (Online
Methods). These eigenvalues correspond to
frequencies of 2.1, 1.3 and 0.9 Hz (left to right)
with a quality of fit (R?) for the optimal purely
oscillatory linear system of 0.60. (b) jPCA
projections for the regularized model of monkey
J. Data are presented as in a. Frequencies are
2.4, 1.6 and 0.9 Hz. The linear system,

X = My, X, had a quality of fit (R?) of 0.61.

o
o
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shown that standard models of motor cortex (for example, models
assuming tuning for kinematics or muscle activity) do not display
a strong rotational component?3. It is therefore non-trivial that the
network naturally produces strongly rotational dynamics with a set
of frequencies similar to those observed in the data.

Rotational structure was also present for the complicated models,
but was less strong overall (Supplementary Fig. 9). The R? of the
best purely oscillatory linear system was 0.35, compared with 0.60
for the data and 0.61 for the regularized model. The rotational planes
captured a reasonable proportion of data variance for the complicated
model (41%), but the observed frequencies were roughly half what was
found for the data: 1.3, 0.8 and 0.6 Hz. Thus, relative to the regularized
model and the neural data, the dynamics of the complicated model
were less well approximated by an oscillatory linear system. Notably,
those oscillations that were present were considerably slower.

To directly compare neural and model populations and quantify
their similarity, we applied canonical correlation analysis (CCA).
Briefly, CCA attempts to find weightings for the individual units in
both data sets such that the reweighted data sets are maximally cor-
related. In other words, CCA attempts to find the patterns common
across two data sets. The reweighted data sets are called the canoni-
cal variables. The two sets of canonical variables are ordered by their
degree of correlation, providing a series of correlation coefficients:
the canonical correlations. If all canonical correlations are unity, then
the two data sets are differently weighted versions of the same set of
underlying patterns. If all canonical correlations are zero, then the two
data sets have no underlying patterns in common. In practice, two
data sets that share any broad similarity will typically have at least one
or two canonical correlations that are high. The key question is across
how many canonical variables do correlations remain high.

Figure 4a,b shows the canonical variables for the neural and regu-
larized model. Each row captures a basic response pattern shared
between neural and model populations. Each pattern is a response
component, a firing rate versus time across conditions, present in the
population. The canonical correlations give the correlation between
the corresponding patterns. To illustrate the range of correlations,
we plotted both the best and the most weakly correlated canonical
variables. Neural and model patterns matched strongly among the
top canonical variables, and matched modestly well even for the later
canonical variables. Thus, the neural and regularized model data

Projection onto jPC, (a.u.)
o
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sets share many population-level patterns that unfold in a similar
way across both time and condition. As expected, given the analysis
in Figure 3, some of these patterns were oscillatory in nature,
although some were not. Shown in Figure 4c,d are the canonical vari-
ables for the neural data and the complicated model. Correlations
fall more quickly for the complicated model than for the regular-
ized model. Thus, there are fewer matching patterns between the
complicated model and the data than between the regularized model
and the data.

We used the canonical coefficients to quantitatively compare the
neural data with a variety of models: the regularized RNN (Fig. 5a),
the complicated RNN, a traditional velocity model tuned for
kinematic variables, such as velocity and position, and a more
elaborate complex kinematic model. Given that some correlation
is expected between almost any two data sets, we also analyzed an
untrained complicated model (a random network that receives the
correct inputs, but was not trained) as a baseline. For all models,
there was at least one canonical variable with a very high correlation;
all models shared basic temporal features with the data (for example,
preparatory activity followed by movement activity). However, the
canonical correlations remained higher for the regularized model
than for any other model. To summarize, we computed the average
canonical correlation across the first ten canonical variables (Fig. 5b).
The average correlation was highest for the regularized model (0.74)
and lower for the other models: 0.51, 0.49, 0.58 and 0.59. Thus, there
were more shared patterns between the data and the regularized
model than between the data and any of the other models.

How regularized dynamics produce EMG

Why does the regularized RNN most strongly resemble the data?
What is the solution found by training? Do the essential features of
that solution appear in the data? Because the parameters of the trained
RNN are known, we can directly dissect its mechanism in the lan-
guage of dynamics. The analyses described above suggested the fol-
lowing broad framework. First, preparatory inputs cause the network
state to differ for each of the 27 reaches. The offset of the hold signal
then ‘turns on’ strong dynamics with large oscillatory components.
The resulting oscillatory neural trajectories successfully reproduce
EMG when projected onto the output weights. Is this indeed what
occurs? If so, how does the RNN achieve it?
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Figure 4 Canonical correlations analysis for a
monkey J. (a,b) CCA projections (canonical
variables) of the neural population response (a)
and the regularized model for monkey J (b).
These projections involve the directions in
state-space that maximally correlate the neural
data with the model data, resulting in a series
of maximally to minimally correlated variables.
Each row shows one of the canonical variables
(CVs) 1, 2, 5, 9 and 10, highlighting the most
and least similar projections. The correlation
ris also shown. Traces are colored on the basis
of the value of the projection at the beginning
of the trace. The vertical scale bars indicate

1 arbitrary unit and the horizontal scale bars
represent 200 ms. (c,d) Canonical variables

of the neural population response (c) and the
complicated model for monkey J (d) (data are
presented as in a and b).

To understand how the RNN generates the
EMG, we performed an additional step of
reverse engineering3!. This discovery phase
employed standard procedures for analyzing
nonlinear systems (for example, see ref. 32).
How is preparatory activity transformed into
a pattern of movement-period activity that
produces the correct EMG output? For the
regularized model, the underlying mecha-
nism was surprisingly simple. The offset of
the hold signal produced a single fixed point,
and the dynamics around this fixed point
governed the evolution of the neural state
for all reach conditions.

A three-dimensional visualization of the
RNN activity that highlights these dynamics
is shown in Figure 6b, which plots the
evolution of the network population in state
space (Online Methods) for all 27 conditions.
There exists a single fixed point that organ-
izes oscillatory neural trajectories for all
reach conditions. During preparation, the neural state is far from this
fixed point. Just before the onset of EMG generation, there is a left-
to-right translation of the neural state, for all conditions, toward the
fixed point. The neural state then rotates around the fixed point in a
consistent direction (some conditions rotate out of the page and some
conditions rotate into the page). This rotation is similar for every
condition, but with a different phase and amplitude. This is the same
rotation that can be seen ‘head on’ (Fig. 3b). The neural population
trajectories exhibited a notably similar structure (Fig. 6a). This simple
pattern was specific to the neural data and the regularized model.
The complicated RNNs did not show single fixed points, but did dis-
play a very large number of approximate fixed points, indicative of a
highly nonlinear and complex mechanism for producing EMG. Thus,
the solution found by the regularized model is not inevitable. There
are many other dynamical solutions; they simply don’t resemble
the neural data as closely.

To directly characterize dynamics (Fig. 7), we analyzed the linear
dynamics around the single fixed point in the regularized RNN?3!
(Fig. 7b). Linearization revealed multiple modes in the eigenvalue
spectrum. The vast majority of linear modes decayed rapidly; a small
handful of persistent modes dominated the local dynamics. At least
three of these modes were strongly oscillatory in nature (that is, the

. —
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ARTICLES

.« —
Move onset

Move onset

Move onset

eigenvalues have a sizeable imaginary component) and all had a time
constant between ~100 and ~400 ms. This range of time constants was
consistent with the neural data and with the time span over which
EMG showed strong high-frequency features. The range of oscillatory
frequencies (~0.5-2.5 Hz) of the persistent modes agreed with the
frequencies seen in Figure 3b, where oscillations were between 0.9
and 2.4 Hz. In summary, dynamics around the fixed point are notably
simple: they are dominated by a small number of oscillatory modes
that decay on timescales consistent with the neural data.

Dynamics can be inferred either by analysis of connectivity (as
above) or by fitting the data directly with a dynamical system (a step
in jPCA). Both methods involve approximations, but one would nev-
ertheless hope that they would roughly agree. If they do not, then the
goal of inferring dynamics from data would be unobtainable without
a full connectome. We therefore compared, for the model, the eigen-
values found by analyzing connectivity (Fig. 7b) with the eigenvalues
found by applying jPCA. The eigenvalues reported by jPCA (which
were constrained to be purely imaginary) revealed three frequencies
that closely agreed with the top three frequencies found by analyzing
connectivity. The key planes in the RNN state space (determined
by the associated eigenvectors) were also very similar for the
jPCA and connection-based approaches (Fig. 7c). The two planes
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Figure 5 Comparison of simulated and neural population responses.

(a) Summary of canonical correlations. CCA analysis provides a spectrum
of correlation coefficients that can be used to directly compare one multi-
dimensional data set to another. The canonical coefficients are shown for
the various models, each compared with the neural data (blue indicates
regularized dynamical model, also shown in Figure 4; red indicates
complicated dynamical model, black indicates untrained complicated
dynamical model with inputs, green indicates velocity model, dark green
indicates complicated kinematic model). (b) The average of the canonical
correlations (average of lines in a) between the models and the data. The
average canonical correlation provides a single number for each model
that quantifies how closely the model population response matches the
recorded population response.

closely overlapped. Thus, the first jJPCA plane corresponded closely
with the plane containing the fastest oscillation found by analyzing
the connectivity (the plane corresponding with the third eigenvalue).
Thus, both approaches agree that oscillations in the ~0.5-2.5-Hz
range form a large component of the dynamics.

For the recorded neural data, it is impossible to perform analyses
that require knowing all connections. However, one can still esti-
mate dynamics by fitting the responses themselves. Doing so via jJPCA
revealed a set of eigenvalues (Fig. 7a) that closely match those of the
model: one slightly faster than 2 Hz, one at about 1.5 Hz and one
slightly below 1 Hz. We also computed the top eigenvalues for an
unconstrained linear fit to the neural data. The frequency content
of the unconstrained linear model also closely matched that of the
regularized model. This confirms the results of the jPCA analysis in
Figure 3: both the data and the model showed prominent oscillatory
structure with a similar set of frequencies.

Dynamical models that match the data are simple
The above analyses indicate that the regularized RNN finds a solution
that resembles, in many ways, that seen in the recorded population of
motor cortex neurons. This is potentially quite surprising: the RNN was
not fit to neural data and was not constrained to obey any particular
connectivity. Furthermore, it seems unlikely that RNN optimization
imitates either biological learning or evolution. Why did the regularized
model find the solution of a single fixed point that produces oscillatory
dynamics? Is there an advantage to this solution that might explain
the similarity between model and data? To address this question, we
constructed models that initially had extremely complicated dynamics,
but, as a result of strong regularization during training, end up finding
dynamically simple solutions (as a technical side-note, this exercise
employed slightly simplified model parameters to ensure robustness
across multiple optimizations; Online Methods).

As optimization proceeded, we saved ‘snapshots’ of networks
during optimization and compared their responses with neural
responses using CCA (as in Fig. 5). The average canonical correlation,
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and thus the similarity to data, rose steadily with optimization
(Fig. 8a). As expected, EMG fit error falls during training (Fig. 8b).
However, this effect was rapid, and fit error actually increased very
slightly over the second half of the training. During this period, the
regularization term is driving the model to find simpler and sim-
pler solutions. As it does so, the similarity between model and data
increases steadily. This did not occur when regularization was turned
off: the fully trained complicated model fits EMG very well, but
resembles the data only slightly more than a completely untrained
network. Thus, model responses become more similar to the neural
data during optimization as a result of the constraint that the network
must use simple dynamics to reproduce EMG.

Do simpler solutions convey benefits? We analyzed the robustness
of the fully trained regularized model (Fig. 8a) and the fully trained
complicated model. To simulate the effects of trial-by-trial noise, we
analyzed how the models responded to random perturbations in the
preparatory period inputs (Online Methods). The regularized network
yielded a much smaller error in the EMG output (Fig. 8¢). To simulate
the effects of synaptic changes, such as dying neurons or unreliable
synapses, we examined robustness to structural perturbations of the
connectivity matrix (J in equation (1)). Again, the regularized network
was much more robust than the complicated model (Fig. 8d).

Further model comparisons and extensions

Does the regularized model (having been built to generate EMG)
perhaps resemble the neural data simply because the neural data
resemble the EMG? Or are there response features in the model
and neural populations that match, above and beyond, what is seen
in the EMG? In short, there are, in multiple ways. First, both the
regularized model population and the neural population showed
rotational dynamics (Fig. 3), something not present in the muscle
population?3. Second, both the model and neural populations showed

Figure 6 Monkey J and regularized model state-space visualizations.

(a) Three-dimensional visualization of the neural data during the
movement period for monkey J. The projection is comprised of the first
jPC plane (Fig. 3a, left panel) and an additional dimension that captures
variance from the cross-condition mean. Each trace is color-coded to show
one of the 27 reach conditions. For all conditions, the trajectory during the
preparatory period is colored blue. Time shown is 400 ms before to 220 ms
after movement onset. Note that the jPC1 axis is projecting into the page.
(b) Analogous three-dimensional visualization of the regularized model for
monkey J (data are presented as in a). In addition, the single, condition-
independent fixed point of the model, which organizes the dynamics of
movement generation, is shown with an orange x. Time shown is 1,000 ms
before to 220 ms after movement onset.
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Figure 7 Frequency analysis of neural data and

regularized model for monkey J. (a) Eigenvalue a4 Ghance
analysis of the neural data. Shown on the line P oL ‘ 1 80
of stability (Inf, neither decaying nor growing) v ox ‘2 70
are the purely imaginary eigenvalues associated 1F v 1k . 3

with the jPCA analysis of the neural data in o 60
Figure 3a (blue squares). Also shown are the top or 0 %x b 2

eigenvalues of an unconstrained linear fit to the g L v g Ll LI 3 50
neural data (blue triangles). (b) The complex : v ; 2% ‘2 0
eigenvalue spectrum of the linearized system ol ol ‘ 3

around the fixed point in the regularized model M 3x 11 30
for monkey J (red x marks) based on a structural Y — ! e — ! ; 5 3 . s

analysis of the weight matrix. Highlighted ® S & \°°q,°°\°\ RS »SQQ,QQ\“‘\

with red numbers are those modes of the Decay half-life (ms) Decay half-life (ms) Structural analysis eigenvector plane number
linearized system that have a slow decay.

Shown along the line of stability are the purely imaginary eigenvalues associated with the jPCA analysis of the regularized model data (green squares).
Gray lines show the connection between the jPCA analysis and the structural analysis, as given by subspace angle analysis of eigenvectors in c.

(c) Subspace angle analysis for the model, comparing the jPC planes (b, green squares) with the eigenvectors of the linearized system around

the fixed point (b, red x marks). On the horizontal axis are listed the five slowest decaying oscillatory modes of the linearized system (corresponding to
the red numbered modes in b). On the vertical axis are listed the three oscillatory planes found by jPCA (corresponding to the green numbered modes
in b). Color indicates the minimum subspace angle (the minimum angle between the corresponding planes). For comparison, the minimum subspace
angle between two randomly chosen planes in a N = 300 D space is 84 +2 degrees (mean and s.d., black arrow labeled chance). Thus, a minimum
subspace angle of 30-40 degrees indicates highly overlapping subspaces. In the present case, jPC plane 1 overlapped heavily with mode 3 (the highest
frequency), jPC plane 2 overlapped heavily with oscillatory mode 2 (the second highest frequency) and jPC plane 3 overlapped more modestly with
oscillatory mode 5 (the third highest frequency).

o
w

1
o
w

1

(2]

Oscillation frequency (Hz)
Oscillation frequency (Hz)
JPCA plane number
(sea16ap)

preparatory activity, which is essentially absent in the EMG. Third, data resemble the regularized model more strongly than they do the
both the model and the data were higher dimensional than the EMG ~ EMG itself. Indeed, of all the possible comparisons—EMG activity,
itself (Supplementary Fig. 11¢,d). For the model (and, by extension, the regularized model, the complicated model, the various kinematic
possibly for the data), this higher dimensionality is a straightforward models—the one that most resembled the data is the regularized
consequence of the fact that the internal dynamics that generate EMG ~ model (Supplementary Fig. 11a,b). Finally, models that incorporate
must be higher dimensional than the final output. Finally, quantita- muscle synergies or spinal cord modules also resembled the neural
tive comparison via canonical correlation analysis revealed that the  data closely (Supplementary Fig. 1c,d).

Figure 8 Regularization affects similarity

to data and model robustness. (a) Average aomnr i i c

canonical correlation, as training progresses, -

between the regularized model and the neural 2 065 %

data from monkey J. To provide a baseline, ° <

the black bar shows the mean canonical 3 0.60 %

correlation between the untrained model with § 3

correct inputs and the neural data (0.50). As % 0.55 E

training with regularization progresses (blue), 2 5

the model becomes more and more similar to é 0.50 =

the neural data, ending with a mean canonical

correlation of 0.67 for this model (blue arrow). 0.45 0

When trained to generate EMG without any |  Continuedtraining ~ —> | 0.0001  0.001 0.01 01 1
regularization, the model has a mean canonical Normalized initial °°_rt‘dgi°” perturbation
correlation with the dat_a of 0.53 (rgd arrow). b 10 — Regularized dynamical model d magniluce

Black shows the cgnomcal correlation of the — Gomplicated dynamical model

untrained model with the data from monkey J. 80 —— Untrained dynamical model

(b) The normalized error of the network output = ®

for the regularized model. Error decreased 5 ‘g

very quickly, even while the mean canonical 5 60 5

correlation (a) continued to increase over a § §

much longer period of training. The final error § 40 é

for the regularized model was comparable to 5 S

the final training error for the complicated Z 2 =

model (red). (c) Perturbation test of the initial } 1

conditions for the regularized and complicated 0 m 0

models analyzed in a (blue and red arrows, \ Continued training —> ‘ 0.0001 0.001  0.01 01 1 10

Normalized structural perturbation magnitude

respectively). The inputs were randomly
perturbed according to a normalized percentage of the input strength (as given on horizontal axis). The network was then run and the mean normalized
EMG error of the outputs (vertical axis) was averaged across 50 repetitions of this procedure. Error bars show s.d. The vertical axis is truncated at
100% error. (d) A structural perturbation test of the recurrent connectivity matrix in equation (1) for the regularized and complicated models analyzed
in a (blue and red arrows, respectively). The connectivity matrix was randomly perturbed 50 times according to a normalized percentage of the mean
absolute connection strength (as given on horizontal axis). The perturbed network was then run and the mean normalized EMG error of the outputs was
averaged (vertical axis). Error bars show s.d. The vertical axis is truncated at 100% error.

NATURE NEUROSCIENCE VOLUME 18 | NUMBER 7 | JULY 2015 1031



© 2015 Nature America, Inc. All rights reserved.

&

ARTICLES

DISCUSSION

Our central result is that an RNN trained to produce EMG exhibited
dynamics that strongly resemble the empirically estimated dynamics
of motor cortex, but only if model optimization promoted a highly
regularized (that is, simple) solution. The resemblance between the
regularized model and data was manifested at the level of single neu-
ron PSTHs, at the level of oscillatory population trajectories and in
direct quantitative comparison via CCA. Notably, this agreement
was not achieved by fitting the RNN to the neural data. The simple
preparatory period inputs to the RNN were derived from the neural
data, but the RNN had no inputs that indicated the ‘correct’ patterns
of movement period activity, nor was it trained to reproduce those
patterns. Rather, the agreement between model and data emerged as a
result of two factors: the need to generate the actual patterns of EMG
and the requirement that the model use simple dynamics.

Analysis of regularized model dynamics revealed a sequence of
four events. First, during the preparatory period, condition-specific
inputs produce a set of states (one per condition) that act as initial
states for the upcoming movement-period dynamical system. Second,
the movement-period dynamical system is produced by the simul-
taneous removal of the hold cue and the condition-specific inputs.
Third, movement-period dynamics are dominated by a single,
condition-independent fixed point with approximately linear and
strongly oscillatory dynamics. Fourth, those dynamics yield neural
trajectories whose projections onto the output dimensions produce
the patterns of EMG. The similarity of this sequence in model and
data lend support to the view that motor cortex concerns itself with
low-level features of movement generation-2411,17,18,33,34,

Our modeling study provides a unified dynamical framework in
which to understand a number of experimental findings. The model
solution accords with the proposal that a key purpose of preparatory
activity is to establish an attractive neural state that is appropriate,
when triggered, to produce the desired movement?>3>. Although we
did not seek to model movement variability, the basic mechanics of
the model are consistent with the finding that preparatory variability
has behavioral consequences3®. Finally, the network successfully gen-
erated unchanging EMG during the preparatory period. To achieve
this, the model employed a muscle-null space to prevent preparatory
period dynamics in the network from perturbing the output®’.

Two key features emerged when the network was optimized with
regularization. First, the network became much more robust to
perturbations of both inputs and connectivity, an anticipated and
desirable consequence of regularization. Second, the network
developed simple oscillatory dynamics that resembled the data. This
resemblance increased steadily with training as the network found
simpler and simpler solutions. These results indicate that relatively
simple quasi-oscillatory dynamics are a natural and robust way of
solving the problem of pattern generation.

This finding suggests an intriguing analogy between pattern gen-
eration in the motor cortices and encoding in the visual cortices. A
previous study3® optimized a feedforward neural network to encode
natural images. Optimization yielded Gabor filters, resembling
empirical receptive fields, but only when regularization encouraged
sparseness. By analogy, there are many ways to generate EMG, and
our network produces cortex-like responses only when regularized
to encourage simple solutions.

It has long been debated whether spatial tuning in motor cortex
(that is, cosine tuning for direction) reflects an abstract code for
direction or a mechanistic role in the production of muscle forces.
Recent models that embody the latter view*16:19:3940 successfully
predict properties of directional tuning, including the presence of

broad tuning, the distribution of ‘preferred directions, and shifts in
tuning and response gain with starting position (see ref. 2). The model
presented here is very much in this vein—the network was trained
to produce patterns of EMG, but we concentrated much more on
temporal response properties. For fast reaches, the empirical neural
responses were very temporally complex and defied concise descrip-
tion in terms of a preferred direction. These same properties were
seen in our model and reflect the mechanism used to produce EMG.
That mechanism involved a set of rotations spanning a handful of
planes in state space. The response of each individual neuron was an
essentially random projection of this rotational subspace, resulting
in the observed complexity and heterogeneity.

Our focus on temporal pattern generation is shared with a number of
other models. In particular!41, it was proposed that response complex-
ity might naturally be explained by a recurrent network. A recent study!”
employed a model with oscillatory (and rectilinear) components as a
means for controlling a simple arm model. A major difference between
the two approaches is that we began with EMG data and employed a
systems identification strategy to discover the mechanism of a dynami-
cal system that could generate the empirical EMG. The solution is in
broad conceptual agreement with the previous study!>.

More generally, there has been considerable recent focus on the broad
topic of pattern generating networks?442-44, For example, inhibition-
stabilized networks can generate temporally patterned outputs®®
via a basis set that includes quasi-oscillatory patterns, in qualitative
agreement with ref. 23. However, the resulting ‘non-normal’ dynam-
ics were not trained to produce any particular pattern—they simply
contain a rich basis set of useful patterns. The generic nature of those
patterns makes it unlikely that the model population quantitatively
resembles the neural data from motor cortex. Yet it is quite possible
that future modifications of that model, including optimization and
regularization, might allow it to successfully fit EMG and match the
neural data. More broadly, pattern-generating network models derive
dynamics from recurrence, which can result from either internal con-
nections (for example, the present model*1#%) or external sensory
feedback (for example, see ref. 16). Although these represent different
model classes, one can anticipate unifying extensions. For example, a
previously described model'® employs only external feedback, but its
replication of empirical preferred-direction distributions would likely
hold were it extended to include efference copy or other internal feed-
back. Similarly, our model continued to find the same basic dynamical
solution if provided with sensory feedback that was a filtered version of
its output (Supplementary Fig. 1a,b,e,f). In this context, it should be
stressed that, although our model reveals robust dynamical solution to
the problem of producing multiphasic EMG, the scope of the recurrent
circuitry, cortical, central and/or feedback, supporting those dynam-
ics remains an open question. What is clear is that dynamics similar
to those exhibited by the model can be seen in motor cortex. This is
consistent with the interpretation that, however broad the relevant
recurrent circuitry might be, motor cortex is sufficiently central that
many key aspects of the dynamics can be observed there.

The dynamical systems view of movement generation carries some
general implications. First, model units contain a variety of responses
that sometimes resemble the time course of position, velocity, speed
and other variables. Yet none of these parameters is truly represented
by the model. Furthermore, although the model certainly contains
an implicit representation of the upcoming EMG, individual-neuron
responses rarely match the patterns of EMG. The reason is not only
that EMG-like signals are ‘mixed’ across neurons, but also that the
network contains response components that are required for pattern
generation, but do not resemble the final output. Just as a simple
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two-dimensional oscillator needs both a sine and a cosine as a dynam-
ical necessity, pattern generation will typically require extra internal
patterns necessary to support the dynamics. In the case of the model,
and by extension possibly in the case of the data, it would be a mistake
to explain each neuron’s response as a representation of meaningful
variables. Rather, the model should be understood through the set
of population-level latent variables, their response to inputs, their
internal dynamics and their influence on the output projection. This
will be true not only of pattern generating networks, but of many
networks with strong dynamics that subserve internal computations
(for example, see ref. 32). In summary, it should be no surprise that
individual-neuron responses are often quite mysterious!%-11:2332,46,
Understanding neuronal responses in recurrent networks necessi-
tates going beyond population analyses that read out variables and
instead adopting population analyses that capture the internal dynam-
ics underlying the central computations.

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Recordings of physiological data. Recordings were made from the cortex of
two monkeys performing a delayed reach task (Fig. 1a). Animal protocols were
approved by the Stanford University Institutional Animal Care and Use Committee.
Our basic methods have been described previously?>234748, Briefly, monkeys
performed both straight reaches and reaches that curved around one or more
intervening barriers. This task was beneficial because of the large variety of dif-
ferent reaches, and thus EMG patterns, that were evoked. There were 27 different
reach types (conditions), each of which was repeated many times (~20-50 trials).
Each trial began when a central spot was visually fixated, touched and held briefly.
The onset of a target (and any accompanying barriers) marked the beginning of
the preparatory period. If the hand or eye moved during this period the trial was
aborted. The preparatory period ranged from 0-1,000 ms. Only trials with prepara-
tory periods >400 ms were analyzed. Physiological recordings (neural and EMG)
were averaged across trials and filtered?? to create a smooth rate as a function of
time. Averages were made locked to target onset, the go cue and movement onset.
To create a single trace as a function of time, these three traces were truncated and
aligned, and the resulting gaps between them were interpolated®>.

Recordings were made from M1 (both surface and sulcal) and from the adjacent
(caudal) aspect of dorsal premotor cortex (PMd) using both standard single-electrode
and array recording techniques (Blackrock Microsystems). For each monkey we
created a single large data set that included neurons recorded using both techniques
(161 and 307 units for monkeys J and N). Sulcal M1, surface M1 and caudal PMd are
contiguous. While there are important differences in their average response prop-
erties (for example, preparatory period activity is more common in PMd), these
differences are far from absolute: M1-like neurons are frequently found in caudal
PMd and vice versa. Our principal analyses thus considered all neurons without
attempting to divide based on either anatomy or response properties. Supplementary
Figure 10 provides an additional analysis where anatomy is considered.

EMG data were recorded, as described previously3?, from the major muscles
of the upper arm. When feasible we included repeated recordings from different
aspects of key muscles, and the target of the model was based on the highest qual-
ity recordings (7 and 8 for monkeys J and N, respectively). For both monkeys we
employed recordings from the anterior, medial and posterior deltoid, pectoralis
major, trapezius and biceps brachii. For monkey J we included a second recording
from the biceps brachii. For monkey N we included two additional recordings
from the trapezius, and one additional recording from the anterior deltoid. EMG
records were rectified, smoothed and averaged before further analysis. Sampling
error (due to a finite number of trials) resulted in small idiosyncratic differences
between conditions during the baseline and preparatory periods. To avoid hav-
ing the model attempt to fit these small differences, they were simply removed
before fitting.

Representational models. In addition to the RNNs, we simulated two models,
the velocity model and complex kinematic model, for which neural activity was
‘tuned’ for standard movement parameters (Fig. 5 and Supplementary Figs. 5
and 11). These models took the general form

1,(t) = f,(paramy(t), paramy(t), params(t),...)

where r,(t) is the firing rate of neuron # at time ¢, f, is a tuning function, and
paramy (t), param; (t)... are represented parameters such as hand velocity or tar-
get position. These models are described in ref. 23. Briefly, in the velocity-tuned
model, movement-period activity was tuned for horizontal reach velocity, verti-
cal reach velocity and reach speed. Each unit thus had a ‘preferred direction’ in
velocity space. Preferred directions were assigned randomly. Preparatory activity
was based upon three additional underlying factors: horizontal reach endpoint,
vertical reach endpoint and peak reach speed. The complex kinematic model was
similar, but units were tuned to a greater variety of kinematic factors: position,
velocity, acceleration and jerk.

RNN definition. We implemented the dynamical system, x = F(x,u), using a
standard continuous-time RNN equation of the form

1

N
—xi+ Y Tur () + z (1) + b (6§)]
k=1 k=1

T}'(i(t) =

where the x; variables are the activations of the network units and ry are the
corresponding firing rates. The network has N units and I inputs. The firing
rates are related to the activation variables via a saturating nonlinearity (see
Supplementary Table 1 and other details below). The variables in the network
interact through the synaptic weight matrix, J. The inputs to the system are given
by ug and come into the system through input weights, B. The units each have an
offset bias, b;". A single time constant, 7, sets the time-scale of the network.
In order to compose EMG from network activity, we define a linear readout

t)—z

ik t) + b

The readout, z;, is a weighted sum of the firing rates with weights, W;, plus a bias
term, b7 . There are M readouts, one per recorded muscle.

For all models, the value of 7 was 50 ms, and N was 300 (see Supplementary
Table 1 for parameters that varied by model). The condition-specific inputs were
six-dimensional (see below). In addition we added a condition-independent hold
cue input. Thus, I was 7. The elements of J were initialized with zero mean,
Gaussian entries with variance g%/N. The elements of B were initialized with
zero mean, Gaussian entries with variance h%/I. The output weights and all biases
were initialized to 0. The network was simulated using Euler integration with
time steps of 7/ 10 = 5 ms. There were two sets of models per monkey, one for
Figures 1-7, and a second for the analysis of training in Figure 8.

Training the network. Networks were optimized to generate multidimensional EMG.
The error function was the squared error between the network output and the EMG

CMT Z 2 _[ z,(c,t) — EMG,, (c,t))%d

where EMG(c, t) is the M-dimensional EMG across all C = 27 reach conditions
and across all time, T, including the baseline, preparatory and movement periods.
The set of parameters modified to minimize E was {B, J, W, b¥, b?}. We report
normalized error, which is E normalized by the EMG variance averaged over all
conditions and muscles.

For the regularized models we modified the cost function to encourage the
network to generate EMG as simply as possible. To this end, we included three
separate regularization terms in the overall objective function: a standard L2
regularization on the weights, Ry,; a regularization on the firing rates, Rgg; and
a novel regularization that encouraged simple dynamics, R;. The error function
minimized during training was

ER =E+ oRp, + PR + YRy

with the ¢, B and yhyperparameters setting the relative strengths of the regu-
larization (Supplementary Table 1). The four terms that comprise the regular-
ized error, taken together, dictate that the optimization procedure should create
networks that produce an output very close to the empirical EMG (E), and do so
as simply as possible in terms of dynamics (R, Rpg and Ry).

The first regularization term is a standard L2 penalty on the input weights and
the output weights, defined as

NI M,N

2 2

Ro= 3 B4 X W
ij=1 ij=1

We included a second regularization term, defined as
1 ¥,
Rpp = —— ri(c,t) dt
negrd s

This regularization helped to keep the simulated units from permanently
saturating, something that rarely happens with biological neurons.

Finally, we included a novel form of regularization inspired by, but conceptu-
ally different from®’, and defined by

a(Ir(c 1))
ax(c t)
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where [|-|| is the Frobenius norm. Conceptually, R; penalizes the network for
making unnecessarily complicated state-space trajectories. It accomplishes this
by forcing the first-order Taylor series expansion of network equation (1) to be a
low-dimensional system, with all unnecessary modes decaying very quickly on
atime scale of 7 (that is R; preserves only the decay term in equation (1)). As the
linearized dynamical system around the single fixed point explains the function-
ing of the nonlinear RNN to good approximation?!, this is an intuitive approach
to simplifying state-space dynamics. In implementing the derivative of R; with
respect to the network weights, we used a simplified derivative that computed
the direct dependence of R; on the parameter J, namely

OR; /9] —iiff (1f(c,t))2dt
1190 = 2 )y Jutite

The second portion of the derivative, which gives the indirect dependence of
R;on previous values of r(c,t), was not used for two reasons. First, the majority of
terms in the expression for the Hessian of the second portion are not guaranteed
to be positive definite. Positive definiteness in the Hessian is required for the
Hessian-Free optimization technique®® used in this study. Second, the indirect
term goes to zero as R; goes to zero. Use of L2 weight regularization on J achieves
similar results.

We optimized all network weights and biases to minimize EX using the Hessian-
Free (HF) training method for RNNs. HF is an exact second order method that
uses back-propagation-through-time to compute the gradient of the error with
respect to the network parameters. After training, all networks performed the
task well; within 7% normalized error for monkey J and 3% normalized error
for monkey N for the EMG during the movement period. While it was possible
to reduce the EMG error quite a bit further, the ultimate goal of the study was
to compare the model internals to the neural data collected for the monkeys.
As such, we found that optimizing further did not help make the models more
similar to the data, presumably due to irrelevance or noisiness of small features
of the recorded EMG.

Model hyperparameters. There were a number of hyperparameters that were
set manually when training the models, (for example, input gain, recurrent gain,
amount of regularization, etc.; Supplementary Table 1). The hyperparameter g
sets the scale of the recurrent weight matrix. If one picks g < 1, then the network
will suffer from the vanishing gradient problem and be very difficult to train.
If g > 1, then the network will be chaotic and may under some circumstances
be difficult to train. In our studies, we examined the g > 1 and g > 1 chaotic
initialization ranges.

To produce a model with rich dynamics (the complicated model) we used
g >>1to produce dynamics that were initially rich, and did not regularize further
during optimization (¢, 3, and y= 0). To produce a model with simple dynamics
(the ‘regularized model’) we used g > 1 to produce less rich initial dynamics and
then simplified dynamics further via regularization during optimization. This
successfully led to two classes models that both reproduced the EMG but with
very different degrees of dynamic complexity. As a technical aside, versions of
the regularized model could also be produced by initialization with g >> 1 and
allowing regularization to produce the simplification. However, when using the
rectified tanh function in combination with heavy regularization, in practice this
nearly always led to stalled optimizations, presumably due to either local minima
or pathological curvature. For this reason we avoided this regime (g >> 1 and
regularization) for all simulations that use the rectified tanh (Figs. 1-7).

For the simulations in Figure 8, the goal was specifically to examine network
behavior when dynamics are initially very rich (¢g>>1) and are then regularized
slowly over the course of training. For this set of simulations we did not use the
rectified tanh for the technical reason discussed above, and used the simpler tanh
function instead. It would have been slightly preferable to continue to use the
rectified tanh as it disallows negative firing rates and thus produces more real-
istic single-neuron responses. However, the use of the tanh allowed for robustly
repeatable results for the analysis in Figure 8 as the optimization was reliable
for this simpler function, even under challenging circumstances. In practice the
quantitative match between the neural and model responses was very nearly as
good with the tanh as with the rectified tanh.

In summary, for each monkey we used two sets of hyperparameters (regular-
ized and complicated model), each tailored to the needs of the simulations being

performed. The first set was used for nearly all analyses, and the second was used
for the analysis in Figure 8 (Supplementary Table 1).

Inputs to the RNNs. The input to the RNNs contained a condition-independent
hold cue, preceded by condition-specific inputs that indicated reach condition.
Condition-specific inputs were derived from the preparatory period neural activ-
ity as follows: we took the time-and-trial averaged preparatory activity, a matrix
of size N x C, where N is the number of recorded neurons, and performed PCA to
reduce it to a matrix of size K x C. This yielded K numbers that allowed prepara-
tory activity to encode a particular reach condition. We chose K = 6 to ensure that
while inputs were not overly complex, they still captured much of the variance in
the empirical data (81% and 72% for monkeys J and N) and were thus rich enough
to distinguish between conditions. We created a simple temporal profile that
turned this K-dimensional input on and off (Fig. 1¢). The condition-independent
hold cue was on at the beginning of the each simulation, and it turned off with
the same offset dynamics of the condition-specific input (Fig. 1¢). In summary,
the networks received a seven-dimensional input, with K = 6 reach-dependent
inputs and a single, condition-independent hold cue.

The regularized models of Figures 1-7 (Supplementary Table 1) employed
multiple delays between the onset of the preparatory input and the onset of the
hold cue. We added this feature to avoid concerns about implicit time locking of
model activity to the beginning of the simulation, and to ensure that the model
was in fact producing EMG in response to the offset of the hold cue. Timing was
thus as follows: the condition-specific inputs were followed, after a 100-800-ms
delay, by the offset of the hold cue. The model EMG output began to change
~100 ms later. All simulation data shown had a delay of 650 ms.

jPCA. jPCA is described at length in ref. 23. Briefly, jJPCA considers the neural
state across times and conditions, x(t, ¢), and its temporal derivative, x(t,c),
and fits a linear model x(¢,c) = Mx(t,c), where M is constrained to be skew-
symmetric in order to test the hypothesis that the population state evolves
according to oscillatory dynamics. jPCA provides summary features relevant
to that hypothesis, including the quality of the fit, the eigenvalues and the
associated frequencies. jPCA also allows visualization of any two-dimensional
projections of the data that contain rotational structure. To ensure that jPCA
focused on patterns that were robustly present, data were preprocessed using
PCA to reduce dimensionality from the number of neurons or units in the
data set to the 12 dimensions that captured the most variance. We analyzed a
time period where neural activity was in strong flux: 280 ms before movement
onset to 220 ms after movement onset. Unlike most analyses in ref. 23, the
cross-condition mean was not subtracted from the neural responses. Some
projections thus capture structure that is very similar across conditions. For
present purposes, by not subtracting the mean we gain the advantage that it
becomes straightforward to compare structure found via jPCA with structure
found by linearizing around fixed points (see below). To do so, we compare
the eigenvalues of the linearized dynamics with the eigenvalues of M (Fig. 7b).
To ensure that the eigenvalues of M were not oscillatory simply due to the
skew-symmetric constraint, we removed that constraint for one analysis (Fig. 7a
and Supplementary Fig. 7a).

CCA. CCA was used to directly compare model and neural population responses.
As a preprocessing step, both the monkey and model data were first reduced to
ten dimensions using PCA. This ensured that CCA did not find dimensions of
high correlation but low data variance. The period of comparison was broader
than that for jPCA: from —400 ms to 400 ms relative to movement onset. This
allowed CCA to compare activity before, during, and after the period where
neural activity was in strong flux.

Fixed-point finding. To understand the mechanism embodied in the trained
models, we used standard nonlinear dynamical systems methods of linearization
around a fixed point. The application of this technique to high-dimensional
RNNs was described in detail in ref. 31. The result is a set of points in state-space,
{x1", x2', x3, ...}, where the dynamics described by equation (1) are at
equilibrium, for example, x* = F(x*,u®"')=0, for some constant input,
uonst, These points are particularly insightful as the linearized dynamics
around them approximately describe the nonlinear dynamics for some volume
around the fixed point. Thus, for some region around the fixed point we can
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exchange the nonlinear dynamical system (1) for the linear dynamical system,
8x = Mdx, with 8x =x — x*, and M= F'(x*), the first-order Taylor series expan-
sion of F(x, u®™t) around x*.

For the regularized models, we performed the fixed-point analysis during the
movement period. During the movement period, when all inputs were turned off,
that is u®”s! = 0, the fixed-point analysis yielded a single fixed point for almost
all randomly initialized models (the remaining models had a tight cluster of
2-3 fixed points). In Figure 7b,c (Supplementary Fig. 7b,c) we examined the
eigenvalues and eigenvectors of M, the linear dynamical system around the single
fixed point, to determine the nature of the dynamical system that generated the
EMG signals.

Three-dimensional visualization. We visualized the population response by
projecting it into a three-dimensional subspace (Fig. 6 and Supplementary
Fig. 6). We chose the subspace spanned by the first jPC plane (labeled j1 and j2 in
the figures) as well as an additional dimension that captured the variance of the
cross-condition mean, labeled c1. We did so because such a dimension was prom-
inent for both the neural and model data. The cross-condition mean was defined
as the trajectory through time when all 27 conditions were averaged together. To
find dimensions that reveal this trajectory, we computed the top two PCs of the
N x T cross-condition mean data matrix. For both the data and the regularized
data sets this always revealed a dimension that captured a largely monotonic
change in the cross-condition mean. For example this was PC2 for monkey J and
PC1 for monkey N. Since the variance in the top two PCs is roughly comparable,
the choice of whether to use PC 1 or PC 2 was based on which captured the
monotonic trajectory. The visualization subspace was defined by orthogonalizing
these three vectors (j1,j2 and c1). The axes in each plot indicate the original three
vectors before orthogonalization. The vector describing the cross-condition mean
was largely orthogonal to the plane described by j1 and j2.

Subspace overlap analysis. The first subspace angle (also known as the first
principal angle) was used to compare how closely two subspaces overlapped
(Fig. 7c and Supplementary Fig. 7c). The first subspace angle gives the largest of
all the angles necessary to rotate one high-dimensional subspace into the other.
A subspace angle of zero indicates that the two subspaces span the same space.
A subspace angle of 90 degrees indicates that there is at least one dimension in

one subspace that is orthogonal to all dimensions in the other. However, there
may still be considerable overlap among the other dimensions. Thus, the sub-
space angle is conservative when considering many dimensions: a subspace angle
of 30 degrees in an N = 300D space indicates that two subspaces are extremely
similar. In Figure 7c, for the regularized model, we compared the subspace
spanned by each of the jPCA planes to that spanned by each of the five oscillatory
planes, found by eigenvector analysis applied to the matrix M, of the linearized
system, dx = Mdx.

Input perturbation robustness analysis. We added a random, Gaussian distrib-
uted constant to each of the six condition-specific inputs that specified which
of the 27 reaches the network should generate. The random constant was scaled
as a normalized percentage of input scale. This process was repeated 50 times
for each perturbation level and the errors were averaged to yield Figure 8c
(Supplementary Fig. 8c). The period of comparison was between 400 ms before
movement onset to 400 ms after movement onset.

Structural robustness analysis. Structural noise was added to the J matrix in the
form of additive Gaussian perturbations. Specifically, a trained recurrent matrix, J,
was transformed by Ji< T+ Bij’ where ﬁij was sampled from a zero-mean, Gaussian
distribution. The variance of this distribution was scaled to the normalized mean
absolute weight of the regularized model. This process was repeated 50 times
for each perturbation level and the errors were averaged to yield Figure 8d
(Supplementary Fig. 8d). The period of comparison was between 400 ms before
movement onset to 400 ms after movement onset.
A Supplementary Methods Checklist is available.
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