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A framework for relating neural activity to freely moving behavior
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Abstract— Two research communities, motor systems neu-
roscience and motor prosthetics, examine the relationship
between neural activity in the motor cortex and movement.
The former community aims to understand how the brain
controls and generates movement; the latter community focuses
on how to decode neural activity as control signals for a
prosthetic cursor or limb. Both have made progress toward
understanding the relationship between neural activity in the
motor cortex and behavior. However, these findings are tested
using animal models in an environment that constrains behavior
to simple, limited movements. These experiments show that, in
constrained settings, simple reaching motions can be decoded
from small populations of spiking neurons. It is unclear whether
these findings hold for more complex, full-body behaviors in
unconstrained settings. Here we present the results of freely-
moving behavioral experiments from a monkey with simultane-
ous intracortical recording. We investigated neural firing rates
while the monkey performed various tasks such as walking
on a treadmill, reaching for food, and sitting idly. We show
that even in such an unconstrained and varied context, neural
firing rates are well tuned to behavior, supporting findings of
basic neuroscience. Further, we demonstrate that the various
behavioral tasks can be reliably classified with over 95% ac-
curacy, illustrating the viability of decoding techniques despite
significant variation and environmental distractions associated
with unconstrained behavior. Such encouraging results hint at
potential utility of the freely-moving experimental paradigm.

I. INTRODUCTION

A goal of motor systems neuroscience is to explain how
cortical areas involved in movement control behavior. Ex-
tensive studies over the past several decades in monkeys

*These authors contributed equally.
The work of J. D. Foster is supported by a Texas Instrument Stanford

Graduate Fellowship. The work of P. Nuyujukian is supported by a Stanford
NIH Medical Scientist Training Program grant. The work of M. J. Black is
supported by NIH-NINDS EUREKA (R01-NS066311). The work of K.
V. Shenoy is supported in part by a Burroughs Wellcome Fund Career
Award in the Biomedical Sciences, DARPA REPAIR (N66001-10-C-2010),
McKnight Foundation, Simbios, Weston Havens Foundation, NIH-NINDS
BRP (R01-NS064318), NIH-NINDS EUREKA (R01-NS066311), and an
NIH Director’s Pioneer Award (DP1-OD006409).

J. D. Foster is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA justinf@stanford.edu

P. Nuyujukian is with Bioengineering and Stanford Medical School,
Stanford University, Stanford, CA 94305 USA paul@npl.stanford.edu

O. Freifeld is with the Division of Applied Mathematics, Brown Univer-
sity, Providence, RI 02912 USA freifeld@dam.brown.edu

S. Ryu is with the Department of Neurosurgery, Palo Alto Medical
Foundation, Palo Alto, CA 94301 USA seoulman@stanford.edu

M. J. Black is with the Max Planck Institute for Intelligent Systems,
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Fig. 1. System overview. Unconstrained behavior of a monkey is
recorded synchronously with video streams while broadband neural activity
is recorded and transmitted wirelessly.

have developed many models of motor behavior [1], [2],
[3], [4]. These findings have fostered the development of
translational work in brain-machine interfaces (BMIs). Such
systems aim to decipher cortical activity into meaningful
control signals such as computer cursors or robotic limbs
[5], [6], [7], [8], [9], [10], [11]. Both bodies of research
have led to many insights and show great promise, how-
ever a fundamental limitation is their applicability to less
constrained movements. It is unclear whether neuroscientific
findings and BMIs will generalize beyond the limited subset
of behaviors tested experimentally. Investigations into such
generalizations were hampered by the lack of experimental
tools and techniques, limiting research to the restrictive, but
highly controlled environment of neuroelectrophysiological
experimental rigs. Only in such setups could accurate mea-
surements of behavioral kinematics and neurophysiological
activity be taken. However, with the continued evolution
of wirelessly transmitting neural recording amplifiers and
computer vision technology, preliminary research with un-
constrained animal models may be possible [12], [13], [14],
[15]. In this study we aim to show that basic motor sys-
tems neuroscientific findings of neurally tuned behavior are
consistent in unconstrained behavior in one monkey. Further,
we show preliminary evidence that general types of behavior
can be differentiated and decoded quite accurately despite
the lack of rigid behavioral restrictions. Both findings are
important so that we may 1) verify the applicability of
in-rig results to broader domains of behavior and 2) have
confidence that BMIs may successfully translate to complex
use cases such as ambulatory patients.
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Fig. 2. Behavior and spike raster. Behavior was measured from 8 camera views as the monkey performed complex coordinated movements. Location
of the wrist, elbow, and shoulder (contralateral to implant) are triangulated from video frames as the monkey moves through a the swing phase and b
the stance phase of walking, c reaches for food, d brings food to his mouth, and e drops his arm down. Simultaneously, broadband neural activity was
recorded from PMd. f Neural spiking from 32 channels is plotted with the behavior epochs highlighted.

II. EXPERIMENTAL SETUP

A. Behavioral Task

All protocols were approved by the Stanford University
Institutional Animal Care and Use Committee. We trained
an adult male rhesus macaque (Monkey I) to walk on a
treadmill at speeds ranging from 2.0 kph to 3.5 kph as
shown in Fig. 1. Each session lasted approximately 10
minutes and was divided into blocks where the monkey
walked continuously for up to 2 minutes before a break.
During the break, the monkey reached for food at the front
of the environment. In some blocks, labeled ‘walk-reach’
blocks, food was presented at the front of the environment
while the animal was walking. After taking a step, the
monkey would reach out with his right arm to grab food,
put it in his mouth, and then continue walking. An example
trajectory is presented in Fig. 2a-e. This study comprises
one day’s session (I120130) where the monkey walked at
speeds ranging from 2.0-3.5 kph for 4 walking blocks and 2
‘walk-reach’ blocks.

B. Video Capture

Video was captured at 24 fps at a resolution of 1624⇥1224
pixels using eight Point Grey Grasshopper GRAS-20S4M/C
cameras. These cameras were placed around the workspace
of the monkey at various positions to capture multiple angles
of view. Image acquisition and export was performed using
a 4DViews 2DX Multi-Camera system.

C. Neural Recording

Monkey I was implanted with a 96-channel multielec-
trode array (Blackrock Microsystems, Salt Lake City, UT)
implanted in dorsal premotor cortex (PMd) as determined
by visual anatomical landmarks. Broadband neural activ-
ity on 32 electrodes was sampled at 30 kSamples/s and
transmitted wirelessly using the HermesD system [13]. An
OrangeTree ZestET1 FPGA was programmed to package
the HermesD output datastream into a UDP Ethernet packet
stream, which was saved to disk. In addition, the ZestET1
was programmed to record times when video frames were
captured by listening to the video camera synchronization
line. We tested the synchronization by illuminating distinct
patterns on 4 LEDs visible in multiple camera views to
guarantee accuracy between neural recordings and video
frames. Thus, synchronization between the neural and video
data streams was accurate to within +/-5 ms.

D. Neural Data Processing

Each channel of neural recordings was filtered with a zero-
phase highpass filter to remove the local field potential (LFP),
since LFP is not the focus of the present study. Specifically,
a fourth order Butterworth filter with cutoff frequency of 250
Hz was used forward and reverse to ensure zero phase delay.
Spike timing was determined with a single threshold. Points
where the signal dropped below -4.0⇥ the RMS value of the
channel were spike candidates. Occasional artifacts, likely
due to static discharge, were automatically rejected from the
candidate spike set based on the shape and magnitude of the
signal near the threshold crossing point.
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Recurrent	Neural	Networks	(RNNs)
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Recurrent	Neural	Networks	(RNNs)
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Tools	to	understand	how		
RNNs	work

Sussillo*	&	Barak*,		
Neural	Computa(on	2013

with	Omri	Barak
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What	is	a	fixed	point?

Why	are	they	important?
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Any	nonlinear	dynamical	system		
(e.g.	neural	circuit)
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Recurrent	neural	networks	are	a	natural	model	class	for	
modeling	cor(cal	phenomenon:		dynamical,	nonlinear,	
distributed.	

Recent	advances	have	enabled	the	training	of	RNNs.	
In	“simple”	cases,	one	can	understand	how	an	RNN	

implements	its	computa(on	in	the	language	of	
dynamical	systems	(e.g.	fixed	points,	saddle	points,	
oscilla(ons).	

One	simple	descrip(on	of	an	RNN	is	as	a	bunch	of	linear	
systems	(ling	the	state	space.

Conclusions	from		
technical	part
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Context-dependent	ga(ng	in	monkeys
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Mixed	signals	in	FEF	neurons
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Task-relevant	variables	are	mixed	in	the	responses	of	
single	neurons,	but	separable	and	systema(cally	
represented	in	the	popula(on.	

Irrelevant	inputs	are	not	filtered-out.	Selec(on	of	
relevant	inputs	occurs	late,	possibly	within	PFC.	

Sensory	inputs	elicit	popula(on	responses	that	differ	
from	those	corresponding	to	a	choice.	

The	direc(ons	of	choice	and	of	the	inputs	are	largely	
independent	of	context	(only	shii	in	state	space)	

Conclusions	from	data
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These	vectors	we’ve	talked	about	are	context	independent	
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Flexible	selec(on	and	integra(on
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		We	trained	an	abstract	model	to	make	a	contextual	
decision	based	on	two	noisy	input	streams.	
		The	model	made	a	contextual	integrator	with	bounds.	
		Like	the	data,	the	model	represents	the	relevant	and	
irrelevant	inputs	in	separable	dimensions.	
		Two	context	dependent	line	amractors	are	responsible	for	
the	integra(on.	
		Network	dynamics	generated	through	feedback,	not	input	
ga(ng,	are	responsible	for	context	dependent	integra(on.	
		The	network	is	flexibly	reconfigured	by	the	context	input,	
which	is	seen	as	two	different	line	amractors	in	state	
space.

Conclusions	from	model



Ga7ng	of	sensory	signals:	
			Does	not	require	modula(on	of	sensory	responses.	
			Is	not	about	suppressing	the	irrelevant	input,	but	about	
selec(ng	the	relevant	input	in	state	space.	

			Is	one	aspect	of	a	dynamical	process	occurring	in	the	same	
cor(cal	circuit	as	integra(on	of	evidence.	

			Everything	is	happening	at	the	popula(on	level.	
			Our	works	suggests	a	possible	mechanism,	which	is	not	
exclusive	of	others.	

Computa7on	through	dynamics:	mixed,	separable	
representa(ons	are	contextually	and	dynamically	
linked	to	generate	the	desired	output.	

Final	conclusions
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