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Complex neural data

Complex
behavior

Foster et al. IEEE EMBS 2012
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ing rates of many neurons

What are the
biophysical
correlates of these
variables?

N\

| work at the level of rates @ few principal
because we can make components
networks do interesting
computations!
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Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks (RNNs)

nonlinear
distributed
feedback
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Dynamics in RNNs (Spontaneous Activity)

time (ms)

Sompolinsky et al., PRL 1988
Rajan et al., PRE 2010



Tools to understand how
RNNs work

with Omri Barak

Sussillo™ & Barak’,
Neural Computation 2013



How does a sine-wave generator work?
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Martens & Sutskever, ICML 2011






What is a fixed point?

Any nonlinear dynamical system
F (X) (e.g. neural circuit)

0 Zero “motion”

Why are they important? y = My

Sussillo™ & Barak’,
Neural Computation 2013






The linear system is a very good
approximation!

Input frequency + + +

Linear system frequency © ¢
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Conclusions from

technical part

Il Recurrent neural networks are a natural model class for
modeling cortical phenomenon: dynamical, nonlinear,
distributed.

] Recent advances have enabled the training of RNNs.

& In “simple” cases, one can understand how an RNN
implements its computation in the language of
dynamical systems (e.g. fixed points, saddle points,
oscillations).

I One simple description of an RNN is as a bunch of linear
systems tiling the state space.



Contextual decision making
(data)

with Valerio Mante and Bill Newsome

Mante®, Sussillo™, Shenoy & Newsome



Computations in cortical circuits are flexible

Prefrontal cortex Attend relevant stimuli

Ignore irrelevant stimuli

Suppress inappropriate responses
Represent context

contributes to
flexibility of decisions



Context-dependent gating in monkeys




Context-dependent gating in monkeys
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Stimuli '

color coherence
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Averaging over color shows effects of motion

color strength

motion strength

“Average over”



Averaging over motion shows effects of color

color strength

N A A A 4
motion strength

“Average over”



Behavior
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Behavior
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Where are sensory inputs selected?

DECISION

(LIPPFC)SC)

COLOR
(V4,IT)

Integrated evidence

Sensory evidence

One could easily frame this work in the context
of routing information in the brain.



Mixed signhals in FEF neurons
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Mixed signhals in FEF neurons
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Verbal aside on how to make sense of this data via a state-space.



PFC population response during motion context

“dots on” to “dots off” (750ms)
Correct trials only!
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PFC population response during motion context

“dots on” to “dots off” (750ms)
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PFC population response during motion context
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PFC population response during motion context
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PFC population response during motion context
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PFC population response during motion context
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PFC population response during color context
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PFC population response during color context
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PFC population response during color context
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Choice and input signals in PFC

Color towards
Target 1

Choice
Target 2

Motion towards
Target 2

Motion towards

Choice Target 1

Target 1

Color towards
Target 2



Representation of context in PFC

Motion context

Color context

uopow



The structure of task related signals in PFC

Motion context

Color context



How does selective integration occur?

Motion context

Color context




How does selective integration occur?

Motion context

Color context

Context-dependent
gating (“attention”)



How does selective integration occur?

Motion context

Color context

Context-dependent
input direction




How does selective integration occur?

Motion context

Color context

Context-dependent
choice direction




How does selective integration occur?

Motion context

Color context




Conclusions from data

I Task-relevant variables are mixed in the responses of
single neurons, but separable and systematically
represented in the population.

I Irrelevant inputs are not filtered-out. Selection of
relevant inputs occurs late, possibly within PFC.

I Sensory inputs elicit population responses that differ
from those corresponding to a choice.

I The directions of choice and of the inputs are largely
independent of context (only shift in state space)



Contextual decision making

(model)

How could selective integration occur?



Traditional Modeling Framework

guess mechanism task

\4

e



Traditional Modeling Framework

guessed

. task
mechanism

N\

But what should the solutions look like?
Are we too clever?
Not clever enough?



Optimized Modeling Framework

discover task

mechanism \




Optimized Modeling Framework

discovered

. task
mechanism

N\

This is a concrete and detailed hypothesis
generating mechanism.

Zipser & Andersen, 1988
Fetz, 1993



A neural-network model of selective integration

context

sensory
evidence

motion choice
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A neural-network model of selective integration
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A neural-network model of selective integration
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Model “Behavior”
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The trained network creates a bounded integrator

context

sensory
evidence

750ms

Network Output
Bounded Integrator



Model trajectories during color trials
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Model trajectories during color trials
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Model trajectories during color trials
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How does integration happen?

choice
left



What is a fixed point?

. Any nonlinear dynamical system
x =F (X) (e.g. neural circuit)

x — () Zero “motion”
Why are they important? Yy = My

A Seung, PNAS 1996
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Fixed points make a line attractor

s

choice
left



Two line attractors for two contexts

color

context

sensory
evidence

=

The line attractors are context
dependent and never exist at
the same time.



Fixed points make a line attractor
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A simulated perturbation experiment
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color context
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A simulated perturbation experiment
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A simulated perturbation experiment
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A simulated perturbation experiment
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A simulated perturbation experiment
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A simulated perturbation experiment
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A simulated perturbation experiment
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A simulated perturbation experiment
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A simulated perturbation experiment
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color context
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A simulated perturbation experiment
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color context
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So what causes this difference between
integration of color and ignoring motion?

choice

color context
left

choice
right



Projections onto the line attractor

color
trials

line attractor line attractor



color trials

line attractor
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color
INput

line attractor
choice axis

choice 1 choice 2

motion
INput

These vectors we’ve talked about are context independent



color trials
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color trials
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The dynamics are context dependent



color trials

color
input

line attractor

choice axis

choice 1 choice 2

The dynamics are context dependent



color trials
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color trials

line attractor
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color trials
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color trials

line attractor
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color trials
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motion trials

line attractor
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The dynamics are context dependent



motion trials

line attractor
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The dynamics are context dependent



motion trials
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The dynamics are context dependent



motion trials
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motion trials
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The dynamics are context dependent



motion trials
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color trials
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The dynamics are context dependent



Flexible selection and integration
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How does selective integration occur?

Motion context

Color context

Context-dependent
selection vector




A prediction of the model
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I We trained an abstract model to make a contextual
decision based on two noisy input streams.

Il The model made a contextual integrator with bounc

I Like the data, the model represents the relevant anc
irrelevant inputs in separable dimensions.

Conclusions from model

S.

I Two context dependent line attractors are responsible for

the integration.

I Network dynamics generated through feedback, not input
gating, are responsible for context dependent integration.

I The network is flexibly reconfigured by the context input,

which is seen as two different line attractors in state
space.



Final conclusions

G)

ating of sensory signals:

Does not require modulation of sensory responses.

Is not about suppressing the irrelevant input, but about
selecting the relevant input in state space.

Is one aspect of a dynamical process occurring in the same
cortical circuit as integration of evidence.

Everything is happening at the population level.

Our works suggests a possible mechanism, which is not
exclusive of others.

Computation through dynamics: mixed, separable
representations are contextually and dynamically
linked to generate the desired output.
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