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FiIrst we need a
schematic

D 100 pm voxet

Whole brain = 493,878 voxels

Someday this will be Big Data
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Microcircuitry for Computation
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MODALITY AND TOPOGRAPHIC PROPERTIES OF SINGLE
NEURONS OF CAT’S SOMATIC SENSORY CORTEX!

VERNON B. MOUNTCASTLE

Department of Physiology, The Johns Hopkins University School of Medicine,
Baltimore, Maryland
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THE PRESENT PAPER describes some observations upon the modality and
topographical attributes of single neurons of the first somatic sensory area
of the cat’s cerebral cortex, the analogue of the cortex of the postcentral gy-

o s % rus in the primate brain. These data, together with others upon the response
:.‘ ;; o (e latencies of the cells of different layers of the cortex to peripheral stimuli,
\;‘: ' ‘J‘zu_f;#: support an hypothesis of the functional organization of this cortical area.
2 'i‘q‘::‘fl “.,,".;"0.,4" This is that the neurons which lie in narrow vertical columns, or cylinders,
e i extending from layer II through layer VI make up an elementary unit of
‘a}‘.‘ i ':\g’ lj}i?"{-‘ b organization, for they are activated by stimulation of the same single class of
t‘q’:?ﬂ‘ i;?; J? by te peripheral receptors, from almost identical peripheral receptive fields, at
‘ff i 14 | ‘}'4"‘;“ v latencie:s which are not significantly different for the cells of the various lay-
ittt t y : ! ers. It is en.ll.)hamzed that this pattern of organization obtains only for the
:é’; i '!‘!”‘i’ : { early repetitive responses of cortical neurons to brief peripheral stimuli.
/ s
“\{ “.'l”} '{0"

clocked
register
(asic)

visual cortex motor cortex “cortex”
adult adult infant

Santiago Ramon y Cajal, taken from the book "Comparative study of the
sensory areas of the human cortex", pages 314, 361, and 363




Why?

® \\/hat Is a type?

® Doesn’t genetics make this all
obsolete ?

® Computational Neuroanatomy

type matrix Volgyi, B., S. Chheda, et al. (2009). J. Comp. MacNeil, M. A, ). K, Heussy, et al, (1999), J. cetainty of
row/column depth/width ID Neurol. 512(5): 664-687. comp. neurol. 413(2): 305-326. correspondence  Common name Other references
1 gcl0-40 G11 medium
2 gel4-30
3 gel5-42 G7 medium
4 gc21-69 G4 low
5 ge35-41 G4 low
medium Sivyer, B., S. Venkataramani, et al. (2011). J. Comp.
6 ge37-46 G5 Neurol. 519(16): 3128-3138.
high local motion detector , local edge detector, Kim, 1. )., Y. Zhang, et al. (2010). J. Neurosci. 30{4): 1452-
"w3i" 1462.
Zhang Y., 1. J. Kim, et al. (2012). PNAS 109(36): E2391-
7 ge31-56 G8,13 2398.
8 ge36-51 G12 medium
9 god4-52 G17 high On-Off direction selective ganglion cell
10 gc30-63 G4,5,9, and/or 14 low
11 ged7-57 G14 medium
12 gc76-86 G1,2, and/or 10 low
13 a¢11-68
14 ac13-32 Narrow S1 low

15 ac17-30 Flat bistratified medium



probability of

connection

distance

The model




What Is our prior

® Cells have types
® Types connect with types
® Djstance matters



Stochastic Block Model Review

Simple idea: each cell has a Iassent (ugobservgd) typs&.
and connections only depeFEﬂ onct@se Iate:nt typeg
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Formally

K Number of latent types

c; = k assignment vector
9 global params

'Imn latent params for class m, n




Infinite Extension

We can add a nonparmatric prior on
the number of latent classes

C; celliassigned to type k M
o P(c; = k|c_;) =
¢ assignment of all other cells N _|_ 8)
TT . # of cells in type k P(C o k,‘c ) - @7
T — —1) —
(X' concentration parameter N + «

Kemp, C., Tenenbaum, J. & Griths, T. Learning systems of concepts with an infinite relational
model in Twenty-first National Conference on Artificial Intelligence (AAAI-06) (2006)

Xu, Z., Tresp, V., Yu, K. & Kriegel, H.-p. Infinite Hidden Relational Models in Proceedings
of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (2006)



Adding distance

Link between
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Distance-dependent
lINK functions

probability of
connectio

distance @ @ |l === == rate,,,

poisson rate

distance



Recovered Latent Structure
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Connectivity visualization ,l,

K

Discovered cell type

These two types have a
50% chance of connection
when separated by 80 um
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INnference

p(¢n, 0| R) o< | | (R (i, )If (A, ) here; ), 0)

1 p(mn ) - p(6)
-p(cla)p(a)

MCMC to the rescue!

Auxiliary Variable-augmented Gibbs for assignment
Slice sampling for per-component params
Gridded hyperparameter inference
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Synthetic Data

— ground truth
e®e |SBM
e®e SRM

1 2 4 8
true type number

16

—4)

frac (class
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frac (class

frac (class=16)
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size of clusters (2D std dev)
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Extensions to model

Soma Depth Synapse Depth Profile
v ::> :) v ;)

Cell Cell Cell

type A type B type C Cell Cell Cell

type A type B type C



Input data

Synapse
depth
profile
e
Soma 4
depth I:

Discovered types
and connectivity

Dlstance matrlx (xyz)
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MAP vs Posterior

Do you believe your model?
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Visualizing Clustering Certainty
Tuh: @O0 00 0O




Visualizing Clustering Certainty
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Visualizing Clustering Certainty
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Visualizing Clustering Certainty

uth: @O0 00 00O
sample ~ p(cluster | data)
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Clustering Metrics

Tuwh: 9 O00 0000
00 00 000606
Merze: @@ 0000 0O

ARI Completeness Homogeneity

Split:

Name
e Distrit
» Merg
e Split

Value

1 19 1 19 1 19
Number of modified types Number of modified types Number of modified types
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ARTICLE

doi:10.1038/naturel2346

Connectomic reconstruction of the inner 950 cells (ish)
plexiform layer in the mouse retina

¢¢ )
Moritz Helmstaedter't, Kevin L. Briggman't, Srinivas C. Turaga®t, Viren Jain?t, H. Sebastian Seung? & Winfried Denk' C O n taCtO I I I e
Comprehensive high-resolution structural maps are central to functional exploration and understanding in biology. For the
nervous system, in which high resolution and large spatial extent are both needed, such maps are scarce as they challenge

Didn’t release soma
data acquisition and analysis capabilities. Here we present for the mouse inner plexiform layer—the main computational

neuropil region in the mammalian retina—the dense reconstruction of 950 neurons and their mutual contacts. This POSitiOnS
was achieved by applying a combination of crowd-sourced manual annotation and machine-learning-based volume

segmentation to serial block-face electron microscopy data. We characterize a new type of retinal bipolar interneuron

and show that we can subdivide a known type based on connectivity. Circuit motifs that emerge from our data indicate a I b
functional mechanism for a known cellular response in a ganglion cell that detects localized motion, and predict that types

another ganglion cell is motion sensitive,
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MAP Estim
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Spatial Extent
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Discovered cell type

Recovered
Connectivity
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Clustering
performance

= O

D . ROC curve for mouse retina synapses E Area under the curve F e e
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Phil. Trans. R. Soc. Lond. B 314, 1-340 (1986) [ 1]

Printed in Great Britain

THE STRUCTURE OF THE NERVOUS SYSTEM OF
THE NEMATODE CAENORHABDITIS ELEGANS

By J.G. WHITE, E. SOUTHGATE, J.N. THOMSON
AND S. BRENNER, F.R.S.

Laboratory of Molecular Biology, Medical Research Council Centre, Hills Road,

Cambnridge CB2 2QH, U.K.
279 non-pharyngeal cells

(Recerved 9 August 1984 — Revised 12 November 1984) 6393 Chem_ SynapseS
890 elec. synapses
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True positive rate

Clustering A

ROC curve for

caenorhabditis elegans synapses - Area under the curve 35

= E|ectrical
e Chemical

Bl Electrical synapses
Bl Chemical synapses

False positive rate AUC

ccuracy

Clustering agreement, fine

e Completeness
e Homogeneity




From discrete to
continuous type

(warning: preliminary, possibly a bad idea)



Latent Space Models

Classic latent space models [2] assume that the proba- ;‘)22 F;ZTFQ;?S;E latent
il . . I I I

bility of a connection between two cells as a function orobability of connection

of their position in a continuous latent space.

Q
d o
p(Rij) = f(lIxi —x;|*) X € R . ° o
Lo ®
Great for modeling “communities” o © ® ¢

where you have groups with a ®
large number of intra-group con-
nections but fewer inter-group con-
nections.

Hoff, P D, Raftery, A. E., & Handcock, M. S. (2002). Latent Space Approaches to Social Network Analysis.
Journal of the American Statistical Association, 97(460), 1090—1098. doi:10.1198/0162145023886 18906



Adding Kernels

We can replace the Euclidean distance in a latent
space model with an arbitrary kernel function.

d
Rij X li(XZ‘,Xj) x; € R
Kernel functions can be asymmetric,
non-monotonic, non-isotropic




Asymmetric Kernels

symmetric kernel asymmetric kernel
» O ®
O
® O
L2 g T ® o
¢ O
[ _

Resulting

connectivity: Resulting O\
connectivity:
®_.@ O—0O



Two-space kernels

Instead of single unified latent space,
split space into pre and post-synaptic spaces




Ranking Loss
K(Xi, X)) 7 7k

k(Xi,X;) + k(X Xk)

Q e (OO0

/ \ Rq;j > R

O—O possible triplets\ {OOOJ

for this graph

Dijk X




Symmetric Ring

Observed Connectivity Recovered Conn (sorted)
N RGN m

postsynaptic cell

presynaptic cell presynaptic cell

O
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True Latent Recovered Latent
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Ben-Yishai, R., Bar-Or; R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings
of the National Academy of Sciences of the United States of America, 92(9), 3844-3848. doi:10.1073/pnas.92.9.3844



Recovered Conn (sorted

- Block Model

Recovered Latent Space X  Recovered Latent SpaceY XY Connection
4 ﬁ._ 4
2 i?- %" 2
... %

X dimension 1
e
™
-
Y dimension 1
[
L]

-15 -10 -5 0 5 4 2 0 < 4

¥ dimension 0 Y dimension 0



Mouse Retina

1.5 o

1.0

_ 05

2 oo o
g cell position in
g . physical space

-1.0

position (y)

-1.5

position (x)

-1.5

latent dimension 0

We fit a D =8 latent kernel single-space model to the mouse retina connectome
with a symmetric rational quadratic kernel. The first two dimensions
recover the intralaminar spatial organization of cells in the retina.
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We can hold out connections from the
training set and predict the missing
connections and compute the area
under the resulting precision-recall
curve to assess model fit.



Conclusion
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® Other aspects that define a cell type
[morphology]

® Different likelihood functions

® Faster inference (spectral methods?)

® Probabilistic framework natural extension



Next questions

® \What model most-accurately
predicts connectivity in various
types of systems?

® Hierarchical extensions?
® Scale?

® Model comparison ?
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