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Figure 6: Learned connectivity vs distance between each of the discovered cell types in the mouse retina.
The rows are the source type, and the columns are the destination type. Blue is the empirical plot of the
probability of connection vs distance for those two types; red is the learned function
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First we need a 
schematic

Someday this will be Big Data



The Motivation



Microcircuitry for Computation

Santiago Ramon y Cajal, taken from the book "Comparative study of the 
sensory areas of the human cortex", pages 314, 361, and 363

visual cortex 
adult

motor cortex 
adult

“cortex” 
infant
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INTRODUCTION 
THE PRESENT PAPER describes some observations upon the modality and 
topographical attributes of single neurons of the first somatic sensory area 
of the cat’s cerebral cortex, the analogue of the cortex of the postcentral gy- 
rus in the primate brain. These data, together with others upon the response 
latencies of the cells of different layers of the cortex to peripheral stimuli, 
support an hypothesis of the functional organization of this cortical area. 
This is that the neurons which lie in narrow vertical columns, or cylinders, 
extending from layer II through layer VI make up an elementary unit of 
organization, for they are activated by stimulation of the same single class of 
peripheral receptors, from almost identical peripheral receptive fields, at 
latencies 
ers. It is 
early 
These 

which are not significantly different for the cells of the various lay- 
emphasized that this pattern of organization obtains only for the 
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to brief peripheral stimuli. 
organization patterns when 

analyzed in terms of later discharges. A report of these experiments was 
made to the American Physiological Society in September, 1955 (10, 17). 

METHODS 

Data presented here were obtained from the 59 experiments on cats described in the 
preceding paper (19); for details, reference is made to its section on methods. Once the 
importance of the vertical module of cells was recognized, every effort was made to attach 
the recording chamber over the skull opening so that the microelectrode approached per- 
pendicularly to the cortical surface. In two experiments the chamber was attached so that 
the microelectrode approached at a 45 degree angle of incidence to the cortical surface. 

The frequency graphs which appear were made by counting the number of impulses 
in each short period of time, which is indicated in the legends, and plotting the averages 
for these periods. Our methods of indicating onset and release of steady pressure upon the 
skin, or the onset and cessation of joint movements, were so crude that we can make no 
statements about the latencies of the changes in discharge rates observed. However, that 
those changes were associated with the application of the stimuli was obvious. 

RESULTS 
I. MODALITYPROPERTIESOFNEURONSOFSOMATICSENSORY CORTEX 

.A. Classification, and distribution of neurons between classes 
All the neurons of the somatic cortex which could be driven by physio- 

logical stimuli delivered to the periphery of the body were activated by me- 
1 Aided by a grant (B-357) from the National Institutes of Health, United States 

Public Health Service, Department of Health, Education and Welfare. 
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Why? 
•What is a type?  

•Doesn’t genetics make this all 
obsolete ?  

•Computational Neuroanatomy  



The model
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What is our prior
•Cells have types 

•Types connect with types 

•Distance matters



Stochastic Block Model Review
Simple idea: each cell has a latent (unobserved) type,
and connections only depend on those latent types
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Formally
ci = k

ci = m

cj = n

R(i, j) = P (⌘cicj |✓)

⌘mn

⌘

K Number of latent types

✓
assignment vector
global params
latent params for class m, n⌘mn



Infinite Extension
We can add a nonparmatric prior on 
the number of latent classes 

Kemp, C., Tenenbaum, J. & Griths, T. Learning systems of concepts with an infinite relational 
model in Twenty-first National Conference on Artificial Intelligence (AAAI-06) (2006) 

P (ci = k|c�i) =
mk

N + ↵
P (ci = k0|c�i) =

↵

N + ↵

ci
c�i

mk

↵

cell i assigned to type k

assignment of all other cells

# of cells in type k 

concentration parameter

Xu, Z., Tresp, V., Yu, K. & Kriegel, H.-p. Infinite Hidden Relational Models in Proceedings 
of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (2006)



Adding distance
cell j
 at (xj, yj, zj)

cell i
 at (xi, yi, zi)

Link between
cell i and cell j



Distance-dependent 
link functions
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Recovered Latent Structure

cell i

cell j

cells grouped
by discovered type
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Synthetic  
Example



Inference
p(~c, ⌘, ✓|R) /

Y

i,j

p(R(i, j)|f(d(i, j)|⌘cicj ), ✓)

·
Y

m,n

p(⌘mn|✓) · p(✓)

· p(~c|↵)p(↵)
MCMC to the rescue! 

Auxiliary Variable-augmented Gibbs for assignment
Slice sampling for per-component params
Gridded hyperparameter inference



Synthetic Data



Extensions to model
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MAP vs Posterior
Do you believe your model? 



Visualizing Clustering Certainty 
Truth:



Visualizing Clustering Certainty 
Truth:



Visualizing Clustering Certainty 
Truth:

sample ~ p(cluster | data)

noise = 0.4



Visualizing Clustering Certainty 
Truth:

sample ~ p(cluster | data)

noise = 0.7



Clustering Metrics
Truth:

Split:

Merge:



The Data
Figure 6: Learned connectivity vs distance between each of the discovered cell types in the mouse retina.
The rows are the source type, and the columns are the destination type. Blue is the empirical plot of the
probability of connection vs distance for those two types; red is the learned function

.
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950 cells (ish)
“contactome”
Didn’t release soma
positions
types (5/”80”)



Figure 6: Learned connectivity vs distance between each of the discovered cell types in the mouse retina.
The rows are the source type, and the columns are the destination type. Blue is the empirical plot of the
probability of connection vs distance for those two types; red is the learned function

.
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MAP Estimate



Spatial Extent



Recovered 
Connectivity





Clustering 
performance



4.6 Model Comparison for Mouse Retina

We compare the classs found by our model, the traditional infinite stochastic block model, and a finite
stochastic block model with the number of classes set to the best-found number from our iSRM model
(k = 12).

We see from fig 7 that the spatial variance of our classes closely matches the ground truth, while the
other two models find spatially-localized classs. Figure 8 shows the ARI of our clustering, the clustering
found by the iSBM, as well as the result of parametrically varying the traditional stochastic block model for
various values of k.

The actual clusterings for iSRM, the iSBM, and SBM
k=12 are shown in figures 9, 10, and 11 respectively.

Each block is a cluster, with the true cell type indicated along the x-axis, and the cell ID written to the left
or right.

Figure 7: The distribution of the spatial extent of cell types found by each of the above methods, and ground
truth clusters
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279 non-pharyngeal cells 
6393 chem. synapses 
890 elec. synapses 







Clustering Accuracy



From discrete to 
continuous type

(warning: preliminary, possibly a bad idea)



Latent Space Models

Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent Space Approaches to Social Network Analysis. 
Journal of the American Statistical Association, 97(460), 1090–1098. doi:10.1198/016214502388618906

Classic latent space models [2] assume that the proba-
bility of a connection between two cells as a function 
of their position in a continuous latent space. 

Great for modeling “communities” 
where  you have groups with a 
large number of intra-group con-
nections but fewer inter-group con-
nections. 

Close  proximity in latent
space implies high
probability of connection



Adding Kernels

Kernel functions can be asymmetric, 
non-monotonic, non-isotropic

We can replace the Euclidean distance in a latent 
space model with an arbitrary kernel function. 



Asymmetric Kernels
symmetric kernel asymmetric kernel

Resulting 
connectivity:
Resulting 
connectivity:

Resulting 
connectivity:



Two-space kernels
Instead of single unified latent space, 

split space into pre and post-synaptic  spaces



Ranking Loss

Triplet is observed
when:

possible triplets
for this graph



Symmetric Ring

Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings 
of the National Academy of Sciences of the United States of America, 92(9), 3844–3848. doi:10.1073/pnas.92.9.3844

True Latent

Observed Connectivity

Recovered Latent

Recovered Conn (sorted)



Asymmetric 
Block Model

XY ConnectionRecovered Latent Space X Recovered Latent Space Y

Recovered Conn (sorted)



Mouse Retina

We fit a D =8 latent kernel single-space model to the mouse  retina connectome 
with a symmetric rational quadratic kernel. The first two dimensions
recover the intralaminar spatial organization of cells in the retina. 

cell position in 
physical space



Model Fit

We can hold out connections from the 
training set and predict the missing 
connections and compute the area 
under the resulting precision-recall 
curve to assess model fit. 



Conclusion
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Figure 6: Learned connectivity vs distance between each of the discovered cell types in the mouse retina.
The rows are the source type, and the columns are the destination type. Blue is the empirical plot of the
probability of connection vs distance for those two types; red is the learned function
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•Other aspects that define a cell type 
[morphology] 

•Different likelihood functions 

•Faster inference (spectral methods?) 

•Probabilistic framework natural extension



Next questions

•What model most-accurately 
predicts connectivity in various 
types of systems?  

•Hierarchical extensions?  

•Scale?  

•Model comparison ?
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