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What are we trying to do here?

What more do we want?	

How does the computation proceed? i.e., how 
do inputs get transformed into outputs?

“Classic” systems neuroscience	

How does activity in neurons relate to 
behavior? (what areas, what signals)
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What are we trying to do here?

How does the computation proceed? i.e., how 
do inputs get transformed into outputs?



Motor cortex is likely an 
engine, not a representation



How does the brain 
control movement?

• How is activity in motor cortex translated 
into activity in the muscles?	

• How does the activity get to be that way?	

• Why is the activity what it is?

➡ Dimensionality reduction and state space analysis
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Dimensionality reduction
Components are also readouts 

of the neural responses

How to choose readouts?
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor 1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 
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Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).
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The dynamical systems model 
of (monkey) motor cortex

• Motor cortex activity translates into 
muscle activity in a functionally simple way.	

• Motor cortex is a pattern generator.	

• A large, condition-independent input is 
probably what starts the pattern going.
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How is activity during 
movement related to muscle 
activity?	

How do we keep still during the 
delay period?
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There is a strong but hidden relationship between these epochs.	

That relationship is consistent with a dynamical interpretation.
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Preparation and movement

How do we keep still 
during the delay period?

Nonlinear threshold?
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window over the duration of the trial. The 
Fano factor has been used extensively to 
characterize neural variability (for example, 
see refs. 17–19). The Fano factor is influenced 
both by variability arising from spiking noise 
and by across-trial variability in the under-
lying firing rate20. Most prior work assumes 
that the underlying firing rate is similar 
across trials and uses the Fano factor to 
assess the statistics of spiking noise, which 
are roughly Poisson (Fano factor 1) for 
most of cortex. We began with the assump-
tion that spiking noise is roughly Poisson and 
we used the Fano factor to assess across-trial 
 variability in the underlying rate. We inter-
preted a Fano factor greater than 1 as being 
an indication of across-trial firing-rate vari-
ability. We interpreted changes in the Fano 
factor as reflecting changes in across-trial 
firing-rate variability9,20,21. Although this 
approach assumes Poisson spiking noise, 
it is reasonably robust to violations of that 
assumption (it is sufficient that spiking-noise 
variance scale linearly with the mean; the 
slope needn’t be unity). To begin, we exam-
ined how the Fano factor behaves across a 
variety of cortical areas.

We computed the mean firing rate and the 
Fano factor for ten datasets from seven cortical  
areas of the macaque monkey (Fig. 3): V1, V4, 
MT, the lateral intra-parietal area (LIP), the 
parietal reach region (PRR), dorsal premotor 
cortex (PMd) and orbitofrontal cortex (OFC). Responses were to 
 various visual stimuli or, for OFC, to juice reward. For each area, the 
Fano factor was averaged across neurons and conditions. This is similar 
to what was done for the membrane potential analysis and reflects both 
a desire for statistical power and the expectation that variability may 
change for both preferred and nonpreferred stimuli (as in Fig. 2a,b).

In every case, stimulus onset drove a decline in firing-rate vari-
ability as assessed by the Fano factor (all P < 0.02). This is notable, 
given the diversity of areas, stimuli and behavioral states. Variability 
declined during responses to simple visual stimuli, during operantly 

conditioned responses (PRR and PMd) and during reward-driven 
responses (OFC). The variability decline was present regardless of 
whether the monkey was anaesthetized (V1 and two of the four the 
MT datasets; Fig. 3, bottom), passively viewing (V4) or performing 
a task (the other six datasets). For two of the MT datasets (Fig. 3,  
bottom), stimulus onset occurred in two stages: pattern onset and 
motion onset. Both events drove a decline in variability, although only 
the more effective moving stimulus drove a sustained decline.

We previously proposed that declining variability in premotor  
cortex is related to the progress of motor preparation9. The changes 

11

1
1.5

1

23

10
1.4

1

26

8

1.4

1

13

4

1.15

0.95

31

5

1.9 MT MT

200 ms 200 ms

1.3

21

6
1.7

1.2

1.2

1.4

14

1

1.2
12

17

1

1.4
7

28

12

2

1

39

7
V1 V4

MT MT

PRR

OFCPMd

LIP

Mean matched

Mean rate

S
pi

ke
s 

pe
r 

s
Fa

no
 fa

ct
or

Fano factor

Figure 3 Changes in firing-rate variability for 
ten datasets (one per panel). Insets indicate 
stimulus type. Data are aligned on stimulus 
onset (arrow). For the two bottom panels  
(MT area/direction and MT speed), the dot 
pattern appeared at time zero (first arrow)  
and began moving at the second arrow. The 
mean rate (gray) and the Fano factor (black  
with flanking s.e.) were computed using a  
50-ms sliding window. For OFC, where response 
amplitudes were small, a 100-ms window was 
used to gain statistical power. Analysis included 
all conditions, including nonpreferred. The 
Fano factor was computed after mean matching 
(Fig. 4). The resulting stabilized means are 
shown in black. The mean number of trials  
per condition was 100 (V1), 24 (V4),  
15 (MT plaids), 88 (MT dots), 35 (LIP),  
10 (PRR), 31 (PMd), 106 (OFC), 125 (MT direction 
and area) and 14 (MT speed).
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Movement is not triggered by firing	
rates crossing a threshold

Churchland et al., J. Neurophys., 2007	
Churchland, Cunningham, Kaufman et al., Neuron, 2010	
Kaufman et al, J Neurophys 2010	
Churchland, Cunningham, Kaufman et al., Nature, 2012  	
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Output-null hypothesis

M = WN

muscle	

If there are more neurons than 
muscles, W has a null space
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The dynamical systems model 
of (monkey) motor cortex

• Motor cortex activity translates into 
muscle activity in a functionally simple way.	

• Motor cortex is a pattern generator.	

• A large, condition-independent input is 
probably what starts the pattern going.
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There is a strong but hidden relationship between these epochs.	

That relationship is consistent with a dynamical interpretation.
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Dynamical systems

Dynamics are rules for how a 
system behaves over time.

x(t+1) = f( x(t) )
state a moment 

from now
is a function of 

the current state



Dynamical systems

dx/dt = f(x)
where the 

state is going
is a function of 

the current state

Dynamics are rules for how a 
system behaves over time.



Dynamical systems

dx/dt = f(x)

in any small neighborhood, 
approximately:

dx/dt = Mx
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Rotational patterns are seen for all available datasets
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Rotational patterns are seen for all available datasets
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The dynamical systems model 
of (monkey) motor cortex

• Motor cortex activity translates into 
muscle activity in a functionally simple way.	

• Motor cortex is a pattern generator.	

• A large, condition-independent input is 
probably what starts the pattern going.
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How are dynamics activated?

Models showing this is a natural way for a network to 
generate brief patterns:	
!
Sussillo, Churchland, Kaufman & Shenoy, in review	
Hennequin, Vogels & Gerstner 2014

Idea suggested in:	
!
Churchland, Cunningham, Kaufman et al., 
Nature, 2012



Predictions

• The trigger signal should be large and unified 
across movements.	
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(but is otherwise untuned)
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representation of speed

Kaufman et al., submitted	



Predictions

• The trigger signal should be large and unified 
across movements.	

• The trigger signal should be orthogonal to the 
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Predictions

• The trigger signal should be large and unified 
across movements.	

• The trigger signal should be orthogonal to the 
other patterns. 	

• The trigger signal should predict movement 
onset on a trial-by-trial basis.
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 reaction time very well
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How do we keep still during the delay period?

By avoiding output-potent dimensions
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How do we keep still during the delay period?

By avoiding output-potent dimensions

200 msmove
onset

muscle activity

Perhaps the condition-independent change 
helps ‘turn on’ dynamics

How do we trigger activity that drives movement?

Simple rotations
What are the movement dynamics?

Summary
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The dynamical systems model 
of (monkey) motor cortex

• Motor cortex activity translates into 
muscle activity in a functionally simple way.	

• Motor cortex is a pattern generator.	

• A large, condition-independent input is 
probably what starts the pattern going.
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