CS448f: Image Processing For Photography and Vision

Lecture 2
Today:

• More about ImageStack
• Sampling and Reconstruction
• Assignment 1
ImageStack

• A collection of image processing routines

• Each routine bundled into an Operation class
 – void help()
 – void parse(vector<string> args)
 – Image apply(Window im, ... some parameters ...)

ImageStack Types

• Window:
 – A 4D volume of floats, with each scanline contiguous in memory.

```cpp
class Window {
    int frames, width, height, channels;
    float *operator()(int t, int x, int y);
    void sample(float t, float x, float y, float *result);
};
```
ImageStack Types

• Image:
 – A subclass of Window that is completely contiguous in memory
 – Manages its own memory via reference counting (so you can make cheap copies)

class Image : public Window {
 Image copy();
};
Image and Windows

Window(Window) new reference to the same data
Window(Window, int, int ...) Selecting a subregion

Window

Image(Window) copies data into new Image

Image

Regular Upcasting

Image(Image) new reference to same data
Image.copy() copies the data
4 Way to Use ImageStack

- Command line
- As a library
- By extending it
- By modifying it
Fun things you can do with ImageStack

- ImageStack –help
- ImageStack –load input.jpg –save output.png
- ImageStack –load input.jpg –display
- ImageStack –load a.jpg –loop 10 – –scale 1.5 –display
- ImageStack –load a.jpg –eval “(val > 0.5) ? val : 0”
- ImageStack –load a.jpg –resample width/2 height/2
- ... all sorts of other stuff
Where to get it:

• The course website
• http://cs448f.stanford.edu/imagestack.html
float *operator()(int t, int x, int y)

Sampling and Reconstruction

void sample(float t, float x, float y, float *result);
Why resample?

- Making an image larger:
Why resample?

• Making an image smaller:
Why resample?

• Rotating an image:
Why resample?

• Warping an image (useful for 3D graphics):
Enlarging images

• We need an interpolation scheme to make up the new pixel values
• (applet)
• Interpolation = Convolution
What makes an interpolation good?

- Well... let’s look at the difference between the one that looks nice and the one that looks bad...
Fourier Space

• An image is a vector
• The Fourier transform is a change of basis
 – i.e. an orthogonal transform
• Each Fourier basis vector is something like this:
Fourier Space

• The Fourier transform expresses an image as a sum of waves of different frequencies
• This is useful, because our artifacts are confined to high frequencies
• In fact, we probably don’t want ANY frequencies that high in our output – isn’t that what it means to be smooth?
Deconstructing Sampling

• We get our output by making a grid of spikes that take on the input values s:

Deconstructing Sampling

- Then evaluating some filter f at each output location x:

\[
\text{for (i = 1; i < 7; i++) output}[x] += f(x-i) \times s[i];
\]
Alternatively

• Start with the spikes
Alternatively

• Convolve with the filter f
Alternatively

- And evaluate the result at x

```plaintext
for (i = 1; i < 7; i++) output[x] += s[i] * f(i - x);
```
They’re the same

• Method 1:
 for (i = 1; i < 7; i++) output[x] += s[i]*f(i-x);

• Method 2:
 for (i = 1; i < 7; i++) output[x] += f(x-i)*s[i];

• f is symmetric, so f(x-i) = f(i-x)
Start with the (unknown) nice smooth desired result R
Multiply by an impulse train T
Now you have the known sampled signal $R.T$
Convolve with your filter f
Now you have $(R.T)^*f$
And get your desired result R

$$R = (R^T) * f$$
Therefore

- Let’s pick f to make $(R.T)*f = R$
- In other words, convolution by f should undo multiplication by T
- Also, we know R is smooth
 - has no high frequencies
Meanwhile, in Fourier space...

- Let’s pick f' to make $(R'*T').f = R'$
- In other words, multiplication by f' should undo convolution by T'
- Also, we know R' is zero above some point — has no high frequencies
T vs T’

- Turns out, the Fourier transform of an impulse train is another impulse train (with the inverse spacing)
- $R’ \ast T’$:
T vs T’

- All we need to do is pick an f' that gets rid of the extra copies:

- $(R'*T').f'$:
A good f'

- Preserves all the frequencies we care about
- Discards the rest
- Allows us to resample as many times as we like without losing information
- $((((((R'*T').f')*T'.f')*T'.f')*T'.f') = R'$
How do our contenders match up?

![Linear graph](image)
How do our contenders match up?

Cubic
How do our contenders match up?

\[
\text{Lanczos 3} = \text{sinc}(x) \times \text{sinc}(x/3)
\]
How do our contenders match up?

Linear
How do our contenders match up?

Cubic
How do our contenders match up?

Lanczos 3
Sinc - The perfect result?
A good \(f' \)

- Should throw out high-frequency junk
- Should maintain the low frequencies
- Should not introduce ringing
- Should be fast to evaluate
- Lanczos is a pretty good compromise
- Window::sample(...);
- Window::sampleLinear(...);
Inverse Warping

• If I want to transform an image by some rotation R, then at each output pixel x, place a filter at $R^{-1}(x)$ over the input.

• In general warping is done by
 – Computing the inverse of the desired warp
 – For every pixel in the output
 • Sample the input at the inverse warped location
Forward Warping (splatting)

• Some warps are hard to invert, so...
• Add an extra weight channel to the output
• For every pixel x in the input
 – Compute the location y in the output
 – For each pixel under the footprint of the filter
 • Compute the filter value w
 • Add (w.r w.g w.b w) to the value stored at y
• Do a pass through the output, dividing the first n channels by the last channel
Be careful sizing the filter

• If you want to enlarge an image, the filter should be sized according to the *input* grid
• If you want to shrink an image, the filter should be sized according to the *output* grid of pixels
 – Think of it as enlarging an image in reverse
 – You don’t want to keep ALL the frequencies when shrinking an image, in fact, you’re trying to throw most of them out
Rotation

- Ok, let’s use the lanczos filter I love so much to rotate an image:
Rotated by 30 degrees 12 times
Rotated by 10 degrees 36 times
Rotated by 5 degrees 72 times
Rotated by 1 degree 360 times
What went wrong?
Your mission: Make rotate better

• Make it **accurate** and **fast**
• First we’ll check it’s plausible:
 ImageStack -load a.jpg -rotate <something> -display
• Then we’ll time it:
 ImageStack -load a.jpg -time --loop 360 ---rotate 1
• Then we’ll see how accurate it is:
 for ((i=0;i<360;i++)); do
 ImageStack -load im.png -rotate 1 -save im.png
 done
 ImageStack -load orig.png -crop width/4 height/4 width/2 height/2 -load im.png -crop width/4 height/4 width/2 height/2 -subtract -rms
Targets:

• RMS must be < 0.07
• Speed must be at least as fast as -rotate

• My solution has RMS ~ 0.05
• Speed ~ 50% faster than -rotate (No SSE)

• Prizes for the fastest algorithm that meets the RMS requirement, most accurate algorithm that meets the speed requirement
Grade:

- 20% for having a clean readable algorithm
- 20% for correctness
- 20% for being faster than -rotate
- 40% for being more accurate than -rotate
Due:

• Email your modified Geometry.cpp (and whatever other files you modified) in a zip file to us by midnight on Thu Oct 1
 – cs448f-aut0910-staff@lists.stanford.edu
Finally, Check out this paper:

- Image Upsampling via Imposed Edge Statistics