
CS448f: Image Processing For
Photography and Vision

Fast Filtering Continued

Filtering by Resampling

ÅThis looks like we just zoomed a small image

ÅCan we filter by downsamplingthen upsampling?

Filtering by Resampling

Filtering by Resampling

ÅDownsampled with rect (averaging down)

ÅUpsampled with linear interpolation

Use better upsampling?

ÅDownsampled with rect (averaging down)

ÅUpsampled with bicubic interpolation

Use better downsampling?

ÅDownsampled with tent filter

ÅUpsampled with linear interpolation

Use better downsampling?

ÅDownsampled with bicubic filter

ÅUpsampled with linear interpolation

Resampling Simulation

Best Resampling

ÅDownsampled, blurred, then upsampled with
bicubic filter

Best Resampling

ÅEquivalent to downsampled, then upsampled
with a blurred bicubic filter

What's the point?

ÅQ: If we can blur quickly without resampling,
why bother resampling?

ÅA: Memory use

ÅStore the blurred image at low res, sample it
at higher res as needed.

Recap: Fast Linear Filters

1) Separate into a sequence of simpler filters

- e.g. Gaussian is separable across dimension

- and can be decomposed into rect filters

2) Separate into a sum of simpler filters

Recap: Fast Linear Filters

3) Separate into a sum of easy-to-precompute
components (integral images)

- great if you need to compute lots of different filters

4) Resample

- great if you need to save memory

5) Use feedback loops (IIR filters)

- great, but hard to change the std.dev of your filter

Histogram Filtering

ÅThe fast rect filter

ïmaintained a sum

ïupdated it for each new pixel

ïdidn't recompute from scratch

ÅWhat other data structures might we maintain
and update for more complex filters?

Histogram Filtering

ÅThe min filter, max filter, and median filter

ïOnly care about what pixel values fall into
neighbourhood, not their location

ïMaintain a histogram of the pixels under the filter
window, update it as pixels enter and leave

Histogram Updating

Histogram Updating

+

+

+

+

+

+

+

Histogram Updating

Histogram Updating

-

-

-

-

-

-

-

Histogram Updating

Histogram-Based Fast Median

ÅMaintain:

ïhist = Local histogram

ïmed = Current Median

ïlt = Number of pixels less than current median

ïgt = Number of pixels greater than current median

Histogram-Based Fast Median

Åwhile (lt < gt):

ïmed--

ïUpdate lt and gt using hist

Åwhile (gt < lt):

ïmed++

ïUpdated lt and gt using hist

Histogram-Based Fast Median

ÅComplexity?

ÅExtend this to percentile filters?

ÅMax filters? Min filters?

Use of a min filter: dehazing

Large min filter

Difference (brightened)

Weighted Blurs

ÅPerform a Gaussian Blur weighted by some
mask

ÅPixels with low weight do not contribute to
their neighbors

ÅPixels with high weight do contribute to their
neighbors

Weighted Blurs

ÅCan be expressed as:

ÅWhere w is some weight term

ÅHow can we implement this quickly?

ä

ä
+

-=

--

+

-=

--

=
fx

fxx

xIxI

fx

fxx

xIxI

xwe

xwexI

xO

'

)))'()(((

'

)))'()(((

)'(.

)'(.).'(

)(
2

1

2
1

s

s

Weighted Blurs

ÅUse homogeneous coordinates for color!

ÅHomogeneous coordinates uses (d+1) values
to represent d-dimensional space

ÅAll values of the form [a.r, a.g, a.b, a] are
equivalent, regardless of a.

ÅTo convert back to regular coordinates, divide
through by the last coordinate

Weighted Blurs

ÅThis is red: [1, 0, 0, 1]

ÅThis is the same red: [37.3, 0, 0, 37.3]

ÅThis is dark cyan: [0, 3, 3, 6]

ÅThis is undefined: [0, 0, 0, 0]

ÅThis is infinite: [1, 5, 2, 0]

Weighted Blurs

ÅAddition of homogeneous coordinates is
weighted averaging

Å[x.r0 x.g0 x.b0 x] + [y.r1 y.g1 y.b1 y]

= [x.r0+y.r1 x.g0+y.g1 x.b0+y.b1 x+y]

= [(x.r0+y.r1)/(x+y)

(x.g0+y.g1)/(x+y)

(x.b0+y.b1)/(x+y)]

Weighted Blurs

ÅOften the weight is called alpha and used to
encode transparency, in which case this is
ƪƴƻǿƴ ŀǎ άǇǊŜƳǳƭǘƛǇƭƛŜŘ ŀƭǇƘŀέΦ

Å²ŜΩƭƭ ǳǎŜ ƛǘ ǘƻ ǇŜǊŦƻǊƳ ǿŜƛƎƘǘŜŘ ōƭǳǊǎΦ

Image:

Weight:

Result:

Result:

ÅWhy bother with uniform weights?

ÅWell... at least it gets rid of the sum of the
weights term in the denominator of all of
these equations:

ä
+

-=

--
=

fx

fxx

xIxI
exIxO

'

)))'()(((2
1).'()(
s

Weight:

Result: Like a max filter but faster

Weight:

Result: Like a min filter but faster

Weight:

Result: A blur that ignores the dog

In ImageStack:

ÅConvert to homogeneous coordinates:
ïImageStack - load dog1.jpg - load mask.png

- multiply - load mask.png - adjoin c ...

ÅPerform the blur
ï ... - gaussianblur 4 ...

ÅConvert back to regular coordinates
ï ... -evalchannels ñ[0]/[3]ò ñ[1]/[3]ò ñ[2]/[3]ò

- save output.png

The Bilateral Filter

ÅPixels are mixed with nearby pixels that have a
similar value

ÅIs this a weighted blur?

ä
+

-=

=

fx

fxx

xxxIxI
eexIxO

'

))'(()))'()(((2
2

2
1 .).'()(

ss

)))'()(((2
1)(

xIxI
exw

--
=

s

The Bilateral Filter

ÅbƻΣ ǘƘŜǊŜΩǎ ƴƻ ǎƛƴƎƭŜ ǿŜƛƎƘǘ ǇŜǊ ǇƛȄŜƭ L

ÅWhat if we picked a fixed intensity level a, and
computed:

ä
+

-=

=

fx

fxx

xxxIxI
eexIxO

'

))'(()))'()(((2
2

2
1 .).'()(

ss

ä
+

-=

=

fx

fxx

xxxIa
eexIxO

'

))'(()))'(((2
2

2
1 .).'()(

ss

The Bilateral Filter

ÅThis formula is correct when I(x) = a

ÅAnd is just a weighted blur, where the weight
is:

ä
+

-=

=

fx

fxx

xxxIa
eexIxO

'

))'(()))'(((2
2

2
1 .).'()(

ss

)))'(((2
1)'(

xIa
exw

--
=

s

The Bilateral Filter

ÅSo we have a formula that only works for pixel
values close to a

ÅHow can we extend it to work for all pixel
values?

The Bilateral Filter

Å1) Pick lots of values of a

Å2) Do a weighted blur at each value

Å3) Each output pixel takes its value from the
blur with the closest a
ïor interpolate between the nearest 2 aΩǎ

ÅFast Bilateral Filtering for the Display of High-
Dynamic-Range Images
ïDurand and Dorsey 2002

ïUsed an FFT to do the blur for each value of a

The Bilateral Filter

ÅIŜǊŜΩǎ ŀ ōŜǘǘŜǊ ǿŀȅ ǘƻ ǘƘƛƴƪ ƻŦ ƛǘΥ

ÅWe can combine the exponential terms...

ä
+

-=

-+--
=

fx

fxx

xxxIxI
exIxO

'

))'())'()(((2
2

2
1).'()(

ss

ä
+

-=

=

fx

fxx

xxxIa
eexIxO

'

))'(()))'(((2
2

2
1 .).'()(

ss

Linearizing the Bilateral Filter

ÅThe product of an 1D gaussianand an 2D
gaussianacross different dimensions is a
single 3D gaussian.

ÅSo we're just doing a weighted 3D blur

ÅAxes are:

ïimage x coordinate

ïimage y coordinate

ïpixel value

The Bilateral Grid ςStep 1
Chen et al SIGGRAPH 07

ÅTake the 2D image Im(x, y)

ÅCreate a 3D volume V(x, y, z), such that:

ïWhere Im(x, y) = z, V(x, y, z) = (z, 1)

ïElsewhere, V(x, y, z) = (0, 0)

The Bilateral Grid ςStep 2
ÅBlur the 3D volume (using a fast blur)

The Bilateral Grid ςStep 3

ÅSlice the volume at z values corresponding to
the original pixel values

Comparison

Input

Regular blur

Bilateral Grid Slice

Pixel Influence

ÅEach pixel blurred together with

ïthose nearby in space (x coordon this graph)

ïand value (y coordon this graph)

Bilateral Grid = Local Histogram Transform

ÅTake the weight channel:

ÅBlur in space (but not value)

Bilateral Grid = Local Histogram Transform

ÅOne column is now the histogram of a region
around a pixel!

ÅLŦ ǿŜ ōƭǳǊ ƛƴ ǾŀƭǳŜ ǘƻƻΣ ƛǘΩǎ Ƨǳǎǘ ŀ ƘƛǎǘƻƎǊŀƳ ǿƛǘƘ
fewer buckets
ÅUseful for median, min, max filters as well.

The Elephant in the Room

Å²Ƙȅ ƘŀǎƴΩǘ ŀƴȅƻƴŜ ŘƻƴŜ ǘƘƛǎ ōŜŦƻǊŜΚ

ÅFor a 5 megapixel image at 3 bytes per pixel,
the bilateral grid with 256 value buckets
would take up:
ï5*1024*1024*(3+1)*256 = 5120 Megabytes

ÅBut wait, we never need the original grid, just
the original grid blurred...

Use Filtering by Resampling!

ÅConstruct the bilateral grid at low resolution
ïUse a good downsamplingfilter to put values in the

grid

ïBlur the grid with a small kernel (eg5x5)

ïUse a good upsamplingfilter to slice the grid

ÅComplexity?
ïRegular bilateral filter: O(w*h*f*f)

ïBilateral grid implementation:
Åtime: O(w*h)

Åmemory: O(w/f * h/f * 256/g)

Use Filtering by Resampling!

ÅA Fast Approximation of the Bilateral Filter
using a Signal Processing Approach

ïParis and Durand 2006

Dealing with Color

ÅLΩǾŜ ǘǊŜŀǘŜŘ ǾŀƭǳŜ ŀǎ м5Σ ƛǘΩǎ ǊŜŀƭƭȅ о5

ÅThe bilateral grid should hence really be 5D

ÅMemory usage starts to go up...

ÅCost of splatting and slicing = 2d

ÅMost people just use distance in luminance
instead of full 3D distance
ïvaluesin grid are 3D colors (4 bytes per entry)

ïpositionsof values is just the 1D luminance

= (R+G+B)/3

Bilateral Grid Demo and Video

Using distance in 3D
vs

Just using distance in luminance

Same luminance

Input Full Bilateral Luminance Only Bilateral

There is a disconnect between
positions and values

ÅValuesin the bilateral grid are the things we
want to blur

ÅPositions(and hence distances) in the bilateral
grid determine which values we mix

ÅSo we could, for example, get the positions
from one image, and the values from another

Joint Bilateral Filter

Reference Image

Input Image

Result

