CS448f: Image Processing For Photography and Vision

Wavelets and Compression
ImageStack Gotchas

• Image and Windows are pointer classes
• What’s wrong with this code?

```cpp
Image sharp = Load::apply("foo.jpg");
Image blurry = foo;
FastBlur::apply(blurry, 0, 5, 5);
Subtract::apply(sharp, blurry);
```
ImageStack Gotchas

• Image and Windows are pointer classes
• What’s wrong with this code?

 Image sharp = Load::apply("foo.jpg");
 Image blurry = foo.copy();
 FastBlur::apply(blurry, 0, 5, 5);
 Subtract::apply(sharp, blurry);
ImageStack Gotchas

- Images own memory (via reference counting), Windows do not.
- What’s wrong with this code?

```cpp
class Foo {
public:
    Foo(Window im) {
        Image temp(im);
        ... do some processing on temp ...
        patch = temp;
    }
    Window patch;
};
```
Images own memory (via reference counting), Windows do not.

What’s wrong with this code?

class Foo {
 public:
 Foo(Window im) {
 Image temp(im);
 ... do some processing on temp ...
 patch = temp;
 }
 Image patch;
};
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);

// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {
 Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
 FastBlur::apply(level, 0, sig, sig);
 sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid

for(int i = 0; i < 9; i++) {
 Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
 Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
 Subtract::apply(thisLevel, nextLevel);
}
// ‘pyramid’ now contains a Laplacian pyramid
// (except for the downsampling)
The only time memory gets allocated

```cpp
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);

// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {
    Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
    FastBlur::apply(level, 0, sig, sig);
    sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid

for(int i = 0; i < 9; i++) {
    Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
    Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
    Subtract::apply(thisLevel, nextLevel);
}
// ‘pyramid’ now contains a Laplacian pyramid
// (except for the downsampling)
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);

// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {
    Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
    FastBlur::apply(level, 0, sig, sig);
    sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid

for(int i = 0; i < 9; i++) {
    Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
    Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
    Subtract::apply(thisLevel, nextLevel);
}
// 'pyramid' now contains a Laplacian pyramid
// (except for the downsampling)
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);

// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {
   Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
   FastBlur::apply(level, 0, sig, sig);
   sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid

for(int i = 0; i < 9; i++) {
   Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
   Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
   Subtract::apply(thisLevel, nextLevel);
}
// ‘pyramid’ now contains a Laplacian pyramid
// (except for the downsampling)
Review: Laplacian Pyramids

- Make the coarse layer by downsampling
Review: Laplacian Pyramids

- Make the fine layer by upsampling the coarse layer, and taking the difference with the original.
Review: Laplacian Pyramids

- Only store these

Downsample → Coarse → Upsample

Fine
Review: Laplacian Pyramids

• Reconstruct like so:
Laplacian Pyramids and Redundancy

• The coarse layer has redundancy - it’s blurry. We can store it at low resolution
• In linear algebra terms:
  – coarse = Upsample(small)
  – c = Us
  – c is a linear combination of the columns of U
  – How many linearly independent dimensions does c have?
Laplacian Pyramids and Redundancy

- The fine layer should be redundant too
- What constraint does the fine layer obey?
- How much of the fine layer should we actually need to store?
Laplacian Pyramids and Redundancy

• The fine layer should be redundant too
• What constraint does the fine layer obey?
• How much of the fine layer should we actually need to store?
  – Intuitively, should be $\frac{3}{4}n$ for $n$ pixels
Laplacian Pyramids and Redundancy

• What constraint does the fine layer obey?
  
  \[ f = m - c \]
  
  \[ f = m - UDm \]
  
  \[ Kf = Km - KUDm \]
  
  if \( KUD = K \)
  then \( Kf = 0 \)
  
  \[ K(UD-I) = 0 \]
  
  \( K \) is the null-space (on the left) of \( UD-I \)
  
  May be empty (no constraints)
  
  May have lots of constraints. Hard to tell.

\[ m = \text{input image} \]
\[ c = \text{coarse} \]
\[ f = \text{fine} \]
\[ U = \text{upsampling} \]
\[ D = \text{downsampling} \]
\[ K = \text{some matrix} \]
Laplacian Pyramids and Redundancy

• What if we say $DU = I$
  – i.e. upsampling then downsampling does nothing
• Then $(UD)^2 = (UD)(UD) = U(DU)D$
• $f = m - UDm$
• $UDf = UDm - UDUDm = UDm - UDm = 0$
• $f$ is in the null-space of $UD$
• Downsampling then upsampling the fine layer gives you a black image.
DU = 1

- How about nearest neighbor upsampling followed by rect downsampling?

- How about lanczos3 upsampling followed by lanczos3 downsampling?
DU = I

• How about nearest neighbor upsampling followed by nearest neighbor downsampling?
  – Yes, but this is a crappy downsampling filter 😞

• How about lanczos3 upsampling followed by lanczos3 downsampling?
  – No 😞

• This is hard, if we continue down this rabbit hole we arrive at...
Wavelets

• Yet another tool for:
  – Image = coarse + fine

• So why should we care?
  – They don’t increase the amount of data like pyramids (memory efficient)
  – They’re simple to compute (time efficient)
  – Like the Fourier transform, they’re orthogonal
  – They have no redundancy
The Haar Wavelet

- Equivalent to nearest neighbor downsampling / upsampling.
- Take each pair of values and replace it with:
  - The sum / 2
  - The difference / 2
- The sums form the coarse layer
- The differences form the fine layer
The 1D Haar Transform

| 10 | 12 | 10 | 8 | 8 | 2 | 4 | 2 | 2 | 2 |

- **Sums / 2**
  - 11  9  5  3  2

- **Differences / 2**
  - 1  -1  -3  -1  0

Coarse

Fine
Equivalently...

• The coarse layer is produced by convolving with \([\frac{1}{2} \frac{1}{2}]\) (then subsampling)

\[
\begin{array}{c}
\text{The “scaling” function}
\end{array}
\]

• The fine layer is produced by convolving with \([-\frac{1}{2} \frac{1}{2}]\) (then subsampling)

\[
\begin{array}{c}
\text{The “wavelet”}
\end{array}
\]
• In this case, $D =$
DU = 1

• Note each row is orthogonal
DU = I

• So Let U = D^T. Now DU = DD^T = I
• What kind of upsampling is U?
Equivalently...

- The scaling function is the downsampling filter. It must be orthogonal to itself when shifted by 2n.

- The wavelet function parameterizes what the downsampling throws away
  - i.e. the null-space of UD (orthogonal to every row of UD)
The 1D Inverse Haar Transform

1. Upsample the Averages

2. Correct Using the Differences

Result: 10 12 10 8 8 2 4 2 2 2
Recursive Haar Wavelet

• If you want a pyramid instead of a 2-level decomposition, just recurse and decompose the coarse layer again
  – $O(n \log(n))$
2D Haar Wavelet Transform

• 1D Haar transform each row
• 1D Haar transform each column
• If we’re doing a full recursive transform, we can:
  – Do the full recursive transform in X, then the full recursive transform in Y (standard order)
  – Do a single 2D Haar transform, then recurse on the coarse layer (non-standard order)
2D Haar Wavelet Transform

• (demo)
Problem with the Haar Wavelet

- Edges at a certain scale may exist in one of several levels, depending on their position.

<table>
<thead>
<tr>
<th>Averages (Coarse)</th>
<th>Differences (Fine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 10 10 10 10 10</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>10 10 5 0 0 0</td>
<td>0 0 -5 0 0 0</td>
</tr>
<tr>
<td>10 10 10 10 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>10 10 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Better Wavelets

• Let’s try to pick a better downsampling filter (scaling function) so that we don’t miss edges like this
  – Needs a wider support
  – Still has to be orthogonal

• Tent: $[\frac{1}{4} \frac{1}{2} \frac{1}{4}]$?
Better Wavelets

- Lanczos3 downsampling filter:
  \[ [0.02 \ 0.00 \ -0.14 \ 0.00 \ 0.61 \ 1.00 \ 0.61 \ 0.00 \ -0.14 \ 0.00 \ 0.02] \]
- Dot product = 0.1987
  - not orthogonal to itself shifted
Let’s design one that works

• Scaling function = [a b c d]

• Orthogonal to shifted copy of itself
  – [0 0 a b c d].[a b c d 0 0] = ac + bd = 0

• If we want $DD^T = I$, then should be unit length...
  – $[a b c d].[a b c d] = a^2 + b^2 + c^2 + d^2 = 1$

• That’s two constraints...
more constraints

- Let’s make the wavelet function use the same constants but wiggle: \([a \ -b \ c \ -d]\)
  - Just like the Haar, but 4 wide
- Wavelet function should parameterize what the scaling function loses, so should be orthogonal (even when shifted)
- \([a \ b \ c \ d].[a \ -b \ c \ -d] = a^2 - b^2 + c^2 - d^2 = 0\)
- \([0 \ 0 \ a \ b \ c \ d].[a \ -b \ c \ -d \ 0 \ 0] = ac - bd = 0\)
Wavelet function should also be orthogonal...

- \[ [0 \ 0 \ a \ -b \ c \ -d].[a \ -b \ c \ -d \ 0 \ 0] = ac + bd = 0 \]
- Good, we already had this constraint, so we’re not overconstrained
The constraints

- \( ac + bd = 0 \)
- \( a^2 + b^2 + c^2 + d^2 = 1 \)
- \( a^2 - b^2 + c^2 - d^2 = 0 \)
- \( ac - bd = 0 \)
- Adding eqs 1 and 4 gives us \( a = 0 \) or \( c = 0 \), which we don’t want...
- In fact, this ends up with Haar as the only solution
Let’s reverse the wavelet function
  – Wavelet function = \([d -c b -a]\)

\(ac + bd = 0\)

\(a^2 + b^2 + c^2 + d^2 = 1\)

\([a b c d].[d -c b -a] = ad - bc + bd - ad = 0\)
  – trivially true

\([0 0 a b c d].[d -c b -a 0 0] = ab - ba = 0\)
  – also trivially true

\([a b c d 0 0].[0 0 d -c b -a] = cd - cd = 0\)
  – Also trivially true
Now we can add 2 more constraints

- Considerably more freedom to design
- Let’s say the coarse image has to be the same brightness as the big image:
  \[ a + b + c + d = 1 \]
- And the fine layer has to not be affected by local brightness (details only):
  \[ d - c + b - a = 0 \]
Solve:

- \( ac + bd = 0 \)
- \( a^2 + b^2 + c^2 + d^2 = 1 \)
- \( a + b + c + d = 1 \)
- \( d - c + b - a = 0 \)
- Let’s ask the oracle...
No Solutions

- Ok, let’s relax $U = D^T$
- It’s ok for the coarse layer to get brighter or darker, as long as $DU = I$ still holds
- $a^2 + b^2 + c^2 + d^2 = 1$
- $a + b + c + d = 1$
- $a + b + c + d > 0$
Solve:

- $ac + bd = 0$
- $a^2 + b^2 + c^2 + d^2 = 1$
- $a + b + c + d > 0$
- $d - c + b - a = 0$
- We’re one constraint short...
Solve:

- $ac + bd = 0$
- $a^2 + b^2 + c^2 + d^2 = 1$
- $a + b + c + d > 0$
- $d - c + b - a = 0$
- We’re one constraint short...
- Let’s make the scaling function really smooth
  - minimize: $a^2 + (b-a)^2 + (c-b)^2 + (d-c)^2 + d^2$
  - or maximize: $ab + bc + cd$
Solution!

- $a = 0.482963$
- $b = 0.836516$
- $c = 0.224144$
- $d = -0.12941$
Ingrid Daubechies Solved this Exactly

- \(a = \frac{1 + \sqrt{3}}{4 \sqrt{2}}\)
- \(b = \frac{3 + \sqrt{3}}{4 \sqrt{2}}\)
- \(c = \frac{3 - \sqrt{3}}{4 \sqrt{2}}\)
- \(d = \frac{1 - \sqrt{3}}{4 \sqrt{2}}\)

- Scaling function = \([a\ b\ c\ d]\)
- Wavelet function = \([d\ -c\ b\ -a]\)
- The resulting wavelet is better than Haar, because the downsampling filter is smoother.
</MATH>
Applications

- Compression
- Denoising
Compression

• Idea: throw away small wavelet terms

• Algorithm:
  – Take the wavelet transform
  – Store only values with absolute value greater than some threshold
  – To reconstruct image, do inverse wavelet transform assuming the missing values are zero
Compression

- ImageStack -load pic.jpg -daubechies
- eval "abs(val) < 0.1 ? 0 : val"
- inversedaubechies -display
Input:
Daubechies Transform:
Dropping coefficients below 0.01

30% less data
Dropping coefficients below 0.05

65% less data
Dropping coefficients below 0.1

82% less data
Dropping coefficients below 0.2

94% less data
Daubechies vs Haar at 65% less data
Daubechies vs Reducing Resolution
Denoising

• Similar Idea: Wavelet Shrinkage
  – Take wavelet coefficients and move them towards zero

• E.g.
  – 0.3 -> 0.25
  – -0.2 -> -0.15
  – 0.05 -> 0
  – 0.02 -> 0
Wavelet Shrinkage vs Bilateral
- Wavelet shrinkage much faster
- Denoised at multiple scales at once
Lifting Schemes

• Turns out there’s a better way to derive orthogonal wavelet bases
• We’ve done enough math for today
• Next Time
Edge-Avoiding Wavelets

- Laplacian Pyramid : Wavelets
- as Bilateral Pyramid : Edge-Avoiding Wavelets
Projects

• Rest of Quarter:
  – Project proposal, due 1 week after due date of assn3
  – 1 Paper presentation on your chosen paper (20 minutes of slides, 15 minutes of class discussion)
  – Final project demo (after thanksgiving break)
  – Final project code due at end of quarter.
  – Intent: rest of quarter is 50-75% of the workload of start of quarter.
Project Ideas:

- http://cs448f.stanford.edu/