
CS448f: Image Processing For 
Photography and Vision

Graph Cuts



Seam Carving

• Video

• Make images smaller by removing “seams”

• Seam = connected path of pixels 

– from top to bottom

– or left edge to right edge

• Don’t want to remove important stuff

– importance = gradient magnitude



Finding a Good Seam

• How do we find a path from the top of an 
image to the bottom of an image that crosses 
the fewest gradients?



Finding a Good Seam

• Recursive Formulation:

• Cost to bottom at pixel x = 

gradient magnitude at pixel x +

min(cost to bottom at pixel below x,

cost to bottom at pixel below and right of x,

cost to bottom at pixel below and left of x)



Dynamic Programming

• Start at the bottom scanline and work up, 
computing cheapest cost to bottom

– Then, just walk greedily down the image

for (int y = im.height-2; y >= 0; y--) {

for (int x = 0; x < im.width; x++) {

im(x, y)[0] += min3(im(x, y+1)[0],

im(x+1,y+1)[0],

im(x-1, y+1)[0]);

}

}



Instead of Finding Shortest Path Here:



We greedily walk down this:



We greedily walk down this:



Protecting a region:



Protecting a region:



Protecting a region:



Demo



How Does Quick Selection Work?

• All of these use the same technique:

– picking good seams for poisson matting 

• (gradient domain cut and paste)

• pick a loop with low contrast

– picking good seams for panorama stitching

• pick a seam with low contrast

– picking boundaries of objects (Quick Selection)

• pick a loop with high contrast



Max 
Flow

Min Cut

Lazy Snapping

Grab CutPaint 
Select



Max Flow

• Given a network of links of varying capacity, a 
source, and a sink, how much flows along 
each link?

+ -

10

11 8

1

4 7

15



Aside: It’s Linear Programming

• One variable per edge (how much flow)

• One linear constraint per vertex 

– flow in = flow out

• Two inequalities per edge

– -capacity < flow < capacity

• One linear combination to maximize

– Total flow leaving source

– Equivalently, total flow entering sink



Aside: It’s Linear Programming

• The optimimum occurs at the boundary of 
some high-D simplex
– Some variables are maxed out, the others are then 

determined by the linear constraints

• The Simplex method:
– Start from some valid state

– Find a way to max out one of the variables in an 
attempt to make the solution better

– Repeat until convergence



Start with no flow

+ -

0/10

0/11 0/8

0/1

0/4 0/7

0/15



Find path from source to sink with capacity

+ -

0/10

0/11 0/8

0/1

0/4 0/7

0/15



Max out that path
Keep track of direction

+ -

4/10

0/11 4/8

0/1

4/4 0/7

0/15



Repeat

+ -

4/10

0/11 4/8

0/1

4/4 0/7

0/15



A maxed out edge can only be used in the 
other direction

+ -

4/10

1/11 4/8

1/1

3/4 0/7

1/15



Continue...

+ -

4/10

1/11 4/8

1/1

3/4 0/7

1/15



Continue...

+ -

4/10

8/11 4/8

1/1

3/4 7/7

8/15



Continue...

+ -

4/10

8/11 4/8

1/1

3/4 7/7

8/15



Continue...

+ -

4/10

11/11 7/8

1/1

3/4 7/7

8/15



Only one path left...

+ -

4/10

11/11 7/8

1/1

3/4 7/7

8/15



No paths left. Done.

+ -

5/10

11/11 8/8

1/1

4/4 7/7

8/15



The congested edges represent the 
bottleneck

+ -

5/10

11/11 8/8

1/1

4/4 7/7

8/15



Cutting across them cuts the graph while 
removing the minimum amount of capacity

+ -

5/10

11/11 8/8

1/1

4/4 7/7

8/15



Max Flow = Min Cut

+ -

5/10

11/11 8/8

1/1

4/4 7/7

8/15

Cut Cost = 1 + 4 + 11 = 16



Everything Reachable from Source
vs

Everything Else

+ -

5/10

11/11 8/8

1/1

4/4 7/7

8/15

Cut Cost = 1 + 4 + 11 = 16



Everything Reachable from Sink
vs

Everything Else

+ -

5/10

11/11 8/8

1/1

4/4 7/7

8/15

Cut Cost = 1 + 7 + 8 = 16



Aside: Linear Programming

• It turns out min-cut is the dual linear program 
to max-flow

• So optimizing max flow also optimizes min-cut



How does this relate to pixels?

• Make a graph of pixels. 4 or 8-way connected



Foreground vs Background

• Edge Capacity = Similarity

– So we want to cut between dissimilar pixels



Source and Sink?

• Option A: Pick two pixels

+

-



Source and Sink?

• Option B (better): Add extra nodes 
representing the foreground and background

FG

BG



Source and Sink?

• Connect them with strengths corresponding 
to likelihood that pixels below to FG or BG

FG

BG



Switch to 1D

• Edges between pixels 

= similarity

• Edges from FG to pixels

= likelihood that they 
belong to FG

• Edges from BG to pixels

= likelihood that they 
belong to BG

FG

BG



Switch to 1D

• The min cut leaves each 
pixel either connected 
to the FG node or the 
BG node

FG

BG



Edge strengths between pixels

• Strength = likelihood that two pixels should be 
in the same category

• likelihood = -log(1-probability)

• probability = ?

– Gaussian about color distance will do

– Pxy = exp(-(I(x) - I(y))2)

– When colors match, likelihood is infinity

– When colors are very different, likelihood is small



Edge strengths to FG/BG

• If a pixel was stroked over using the tool

– Strength to FG = large constant

– Strength to BG = 0

• Otherwise

– Strength to FG/BG = likelihood that this pixel 
belongs to the foreground/background

– likelihood = -log(1-probability)

– probability = ?



Probability of belonging to FG/BG

• Here’s one method:

• Take all the pixels stroked over
– Compute a histogram

– FG Probability = height in this histogram

• Do the same for all pixels not stroked over
– Or stroked over while holding alt

– BG Probability = height in this histogram

• So if you stroked over red pixels, and a given 
new pixel is also red, FG probability is high.



In terms of minimization:

• Graph cuts minimizes the sum of edge 
strengths cut

– sum of cuts from FG/BG + sum of cuts between 
pixels

– penalty considering each pixel in isolation + 
penalty for pixels not behaving like similar 
neighbours

– data term + smoothness term

• Much like deconvolution



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2

Pixel exists 
in image 1



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2

Pixel does 
not exist in 

image 1



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2

Low Gradient in 
both images 
(CUT HERE!)



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2

Low Gradient in 
one image

(meh...)



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2

High Gradient 
in both images 

(Don’t cut 
here)



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2

Off the edge of 
an image 
boundary

DON’T CUT HERE



Picking seams for blending

Use 
Image 1

Use 
Image 2

Image 1
Image 2



Speeding up Graph Cuts

• Use a fancy max-flow algorithm

– e.g. tree reuse

• Use a smaller graph



Speeding up Graph Cuts

Use 
Image 1

Use 
Image 2

Image 1
Image 2

There’s no 
decision to make 

at this pixel



Only include the relevant pixels

Use 
Image 1

Use 
Image 2

Image 1
Image 2



Consider selection again

FG

BG



Clump pixels of near-constant color

FG

BG



Clump pixels of near-constant color

Lazy Snapping does this 
(Li et al. SIGGRAPH 04)



Coarse to Fine
1) Solve at low res.

FG

BG



Coarse to Fine
1) Solve at low res.

FG

BG



Coarse to Fine
2) Refine the boundary

FG

BG

Paint Selection does this
Liu et al. SIGGRAPH 2009

(and uses joint bilateral upsampling to 
determine the boundary width)



Videos

• GrabCut (SIGGRAPH 04)
– http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/images/Video.avi

• Paint Selection (SIGGRAPH 09)
– http://research.microsoft.com/en-us/um/people/jiansun/videos/PaintSelection.wmv


