CS448f: Image Processing For Photography and Vision

Graph Cuts

Seam Carving

- Video
- Make images smaller by removing "seams"
- Seam = connected path of pixels
 - from top to bottom
 - or left edge to right edge
- Don't want to remove important stuff
 - importance = gradient magnitude

Finding a Good Seam

 How do we find a path from the top of an image to the bottom of an image that crosses the fewest gradients?

Finding a Good Seam

- Recursive Formulation:
- Cost to bottom at pixel x =
 gradient magnitude at pixel x +
 min(cost to bottom at pixel below x,
 cost to bottom at pixel below and right of x,
 cost to bottom at pixel below and left of x)

Dynamic Programming

 Start at the bottom scanline and work up, computing cheapest cost to bottom

 Then, just walk greedily down the image

Instead of Finding Shortest Path Here:

We greedily walk down this:

We greedily walk down this:

Protecting a region:

Protecting a region:

Protecting a region:

Demo

How Does Quick Selection Work?

- All of these use the same technique:
 - picking good seams for poisson matting
 - (gradient domain cut and paste)
 - pick a loop with low contrast
 - picking good seams for panorama stitching
 - pick a seam with low contrast
 - picking boundaries of objects (Quick Selection)
 - pick a loop with high contrast

Max Flow

 Given a network of links of varying capacity, a source, and a sink, how much flows along each link?

Aside: It's Linear Programming

- One variable per edge (how much flow)
- One linear constraint per vertex
 flow in = flow out
- Two inequalities per edge
 - -capacity < flow < capacity</p>
- One linear combination to maximize
 - Total flow leaving source
 - Equivalently, total flow entering sink

Aside: It's Linear Programming

- The optimimum occurs at the boundary of some high-D simplex
 - Some variables are maxed out, the others are then determined by the linear constraints
- The Simplex method:
 - Start from some valid state
 - Find a way to max out one of the variables in an attempt to make the solution better
 - Repeat until convergence

Start with no flow

Find path from source to sink with capacity

Max out that path Keep track of direction

A maxed out edge can only be used in the other direction

Only one path left...

No paths left. Done.

The congested edges represent the bottleneck

Cutting across them cuts the graph while removing the minimum amount of capacity

Max Flow = Min Cut

Cut Cost = 1 + 4 + 11 = 16

Cut Cost = 1 + 4 + 11 = <u>**16**</u>

Cut Cost = 1 + 7 + 8 = **<u>16</u>**

Aside: Linear Programming

- It turns out min-cut is the dual linear program to max-flow
- So optimizing max flow also optimizes min-cut

How does this relate to pixels?

• Make a graph of pixels. 4 or 8-way connected

Foreground vs Background

- Edge Capacity = Similarity
 - So we want to cut between dissimilar pixels

Source and Sink?

• Option A: Pick two pixels

Source and Sink?

 Option B (better): Add extra nodes representing the foreground and background

Source and Sink?

 Connect them with strengths corresponding to likelihood that pixels below to FG or BG

Switch to 1D

- Edges between pixels
- = similarity
- Edges from FG to pixels
- = likelihood that they belong to FG
- Edges from BG to pixels
- = likelihood that they belong to BG

Switch to 1D

 The min cut leaves each pixel either connected to the FG node or the BG node

Edge strengths between pixels

- Strength = likelihood that two pixels should be in the same category
- likelihood = -log(1-probability)
- probability = ?
 - Gaussian about color distance will do
 - $P_{xy} = \exp(-(I(x) I(y))^2)$
 - When colors match, likelihood is infinity
 - When colors are very different, likelihood is small

Edge strengths to FG/BG

- If a pixel was stroked over using the tool
 - Strength to FG = large constant
 - Strength to BG = 0
- Otherwise
 - Strength to FG/BG = likelihood that this pixel belongs to the foreground/background
 - likelihood = -log(1-probability)
 - probability = ?

Probability of belonging to FG/BG

- Here's one method:
- Take all the pixels stroked over

 Compute a histogram
 FG Probability = height in this histogram
- Do the same for all pixels not stroked over

 Or stroked over while holding alt
 BG Probability = height in this histogram
- So if you stroked over red pixels, and a given new pixel is also red, FG probability is high.

In terms of minimization:

- Graph cuts minimizes the sum of edge strengths cut
 - sum of cuts from FG/BG + sum of cuts between pixels
 - penalty considering each pixel in isolation + penalty for pixels not behaving like similar neighbours
 - data term + smoothness term
- Much like deconvolution

Speeding up Graph Cuts

- Use a fancy max-flow algorithm
 - e.g. tree reuse
- Use a smaller graph

Speeding up Graph Cuts

Only include the relevant pixels

Consider selection again

Clump pixels of near-constant color

Clump pixels of near-constant color

Lazy Snapping does this (Li et al. SIGGRAPH 04)

Coarse to Fine 1) Solve at low res.

Coarse to Fine 1) Solve at low res.

Coarse to Fine 2) Refine the boundary

Paint Selection does this

Liu et al. SIGGRAPH 2009

(and uses joint bilateral upsampling to determine the boundary width)

Videos

• GrabCut (SIGGRAPH 04)

– http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/images/Video.avi

• Paint Selection (SIGGRAPH 09)

http://research.microsoft.com/en-us/um/people/jiansun/videos/PaintSelection.wmv