Hand out anonymous survey about background with statistics, programming, spreadsheets, databases, anything else relevant + laptop info

Staff introductions

Student introductions
- Name, where from, which dorm
- One unusual thing that we will all remember

“Learning Goals”
- New course evaluation system emphasizes establishing learning goals, and it’s the “year of learning”
- We have some in mind but would like to hear yours
- Four groups of four come up with 2-3 goals each

Components of Seminar
- In-class discussions of discoveries/fallacies/privacy, staff-led and student-led
- Apology that there will be some “lecture-style” sessions in first 3 weeks
 - Data analysis techniques - basic, no experience needed
 - Data visualization tools - basic, no experience needed
 - Data analysis tools - basic, no experience needed
- Recommended readings
- Outside guests, with and without case studies
- Student visualizations, individual
- Project #1: movie-rating predictions competition, individual or pair
- Project #2: individually-designed data analysis, individual or pair
- Field trip to Facebook or Google

Expectations
- Come to class and participate in discussions
- At least skim the recommended readings
- Prepare and present interesting data visualization
- Prepare and lead interesting in-class discussion
- Complete both projects by due-date, no lates
- (No exams)

Interlude: Facebook data-driven advertising video
What do you think?

Discovery #1: Beer and diapers
- One of the earliests much-discussed uses of Big Data was in retail: WalMart, Victoria’s Secret
- “Market-basket” data
 - B1: {milk,bread,eggs,beer,diapers}
 - B2: {bread,beer}
 - B3: {milk,beer,diapers}
 - B4: {eggs,diapers}
 - B5: {milk,bread,diapers}
B6: \{milk, bread, eggs\}

- **Frequent itemsets**

 A set of items is “frequent” if the items appear together in at least \(X \%) of baskets

 In real data \(X \) might be 1%. For \(X = 50\% \): \{milk, bread\}, \{milk, diapers\}, \{beer, diapers\}

- **Association rules**

 Set of items \(\rightarrow \) item: If \(Set \) is bought together then \(item \) is likely included too

 \(Set \) should be frequent (more than \(X \%) of baskets), and \(item \) should be in at least \(Y \%) of those baskets

 For \(X = Y = 50\% \): \{milk, eggs\} \(\rightarrow \) \{bread\}, \{diapers\} \(\rightarrow \) \{beer\} (and others)

- **First rule:** French toast. *Why beer and diapers?*

 - Women send guys out for diapers and they pick up beer too
 - People with babies tend to drink at home
 - Underage buyers add diapers to make themselves seem older

Fallacy #1: False correlations

- Correlation does not imply causation
- Show a few of the spurious correlations
- Seat-belt cartoon: reverse causation
- Can also have “confounding variable” \(A \) where \(A \) causes both \(B \) and \(C \) therefore \(B \) and \(C \) appear to be correlated.
- Example: \(B = \) parental smoking causes \(C = \) delinquent children. Could be that \(C \) causes \(B \), or that \(A = \) poverty causes both.

Fallacy #2: Football game result prediction scam

- You receive an email from “Prescient Polly” on Saturday predicting the winners of four of Sunday’s football games. She’s right.
- Same thing happens the following weekend, and then two more weekends. Four weekends of perfect predictions!
- On the fifth weekend, Polly offers to place bets for you on the next day’s games, for a modest fee.
- *Should you do it?* (breakout groups)
- **How many initial emails to have 100 possible takers on weekend five?**

 - 16 games = \(2^{16} = 65,536 \) possible outcomes. \(\times 100 = 6,553,600 \). Not that many!

Privacy: Google Maps traffic

- End of class food for thought
- Traffic in “old” days: sensors in roads
- Now: phones transmit location and speed
- Ethical? Pitfalls?