
Eric Roberts Handout #8
CS 54N October 13, 2016

Assignment #2

Due: Wednesday, October 19

Write out answers to each of these problems. You can write up your answers either on
paper or using a word processor.

Problem 1—Binary representation
Answer all six exercises in the puzzle box on page 75.

Problem 2—Binary representation of perfect numbers
Greek mathematicians took a special interest in numbers that are equal to the sum of their
proper divisors, which are simply those divisors less than the number itself. They called
such numbers perfect numbers. For example, 6 is a perfect number because it is the sum
of 1, 2, and 3, which are the integers less than 6 that divide evenly into 6. The next three
perfect numbers—all of which were known to the Greeks—are 28, 496, and 8128.

Write out the binary representation of the first four perfect numbers. How would you
describe the binary form of these perfect numbers? Although the proof is well beyond
the scope of this class, it turns out that all even perfect numbers have this form; the
question of whether any odd perfect numbers exist remains open in mathematics.

Problem 3—Binary arithmetic
Complete the three calculations in the puzzle box on page 76.

Problem 4—Hexadecimal notation
Answer parts (a) and (b) of the puzzle box on page 80. We’ll do part (c) in class.

Problem 5—Logic gates
Although the puzzle box on page 105 asks you for a complete analysis, tracing all
possible signals through the majority circuit is tedious. Using thicker lines to indicate
signals that have the value 1, trace the signals that flow through the majority circuit only
for the following arrangement, when A and C are on and B is off:

Problem 6—The Toddler machine
Answer all three parts of the exercises in the puzzle box on page 130.

 – 2 –

Problem 7—Assembly language
Translate the following assembly language program into Toddler machine instructions,
showing the contents of all memory addresses loaded by the program:

start: INPUT n
 LOAD #0
 STORE total
 LOAD #1
loop: STORE i
 LOAD n
 SUB i
 JUMPN done
 LOAD total
 ADD i
 ADD i
 SUB #1
 STORE total
 LOAD i
 ADD #1
 JUMP loop
done: OUTPUT total
 HALT

i: 0
n: 0
total: 0

You can, of course, simply type this program into the simulator and copy down the
machine instructions, but you will understand things better if you do the translation by
hand and then use the simulator to check your answer.

What output does this program produce if you run it and enter 5 as the input value in
response to the first instruction? What value does this program compute in general?

