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Game plan for Thursdays

● Introduce 3 problems (~5 minutes)

● ~35 minutes of working time
○ There is no implicit expectation that you should be 

able to fully solve all three, or even one, let alone 
write full code. Just get as far as you can.

● Go over solution to second problem together
○ First problem - video walkthrough posted on Canvas
○ Third problem - written solution at end of deck



Star system for difficulty

⭐: not "easy" per se but has a straightforward 
solution

⭐⭐: potentially tricky, requires a significant insight

⭐⭐⭐: quite intricate/challenging, would be a 
difficult interview (but these do still show up)

kind of like Leetcode Easy / Medium / Hard…



A quick plug (since this was once Ian's job…)

● Google Code Jam starts this Friday! It's good practice and 
can get you an interview! (You have to advance in the Qual 
Round this weekend to participate in future rounds)



General problem-solving advice

● Make sure you understand the problem. (Ask the 
interviewer questions if needed!) Consider working 
through a small test case.

● What would a brute force solution look like?
○ Don't code it up unless you don't get farther than 

that and need to get some code down

● What makes that solution inefficient? Can you see how 
to remove those inefficiencies?



⭐ Problem 1-1: Legs
● I'm at the insect store looking for new pets. There are N (up to 

1000000) individual insects for sale in the store, and I want to buy 
exactly two different ones. Moreover, I want my two insects to have a 
combined total of exactly L legs, where L is between 0 and 2 * 109.

● I have an array: the i-th element is the number of legs the i-th insect 
has, from 0 to 109.

● Determine whether I can get what I want. If so, give a pair of distinct 
indices of insects (counting starting from 0) that satisfy my needs.

● Example 1: [0, 3, 14, 6, 4, 4], L = 10: one acceptable answer is 3, 5.
● Example 2: [0, 3, 14, 6, 4, 4], L = 12: return IMPOSSIBLE



⭐⭐ Problem 1-2: Spider Count
● I have an N by N grid of cells, each of which is either black (B) 

or white (W). N can be as large as 1000.

● A k-spider is defined as a black cell from which there are at 
least k-1 more consecutive black cells immediately to the 
right, at least k-1 more consecutive black cells immediately to 
the upper right, and so on for all eight directions.

● In the example to the right, the central (red) cell is a 3-spider. 
The yellow cell is a 2-spider. (Spiders can overlap!)

● A cell is given the highest number possible, so e.g. a 3-spider 
is not also considered a 2-spider. Any black cell that is not a 
2-spider (or higher) is a 1-spider.

● Your goal: count the number of spiders of each size in the 
grid. (Here we have 1 3-spider, 2 2-spiders, and 17 1-spiders.)
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⭐⭐ Problem 1-3: Caterpillars
● There are C caterpillars dangling from the oak trees on campus. The i-th caterpillar is 

Ci inches off the ground. (C and the Cis can be as large as 100000.)

● You have M caterpillar-collecting machines. The i-th machine can reach caterpillars 
that are up to Mi inches off the ground. Each caterpillar is reachable by at least one 
machine. (M and the Mis can be as large as 100000.)

● You want to assign each caterpillar to a machine, but you do not want there to be one 
machine that doesn't do much work. Let N1, …, NM be the total numbers of caterpillars 
collected by the different machines. Your goal is to maximize min(N1, …, NM).

● Example 1 : C = 5; Ci = [60, 47, 33, 70, 50]; M = 2; Mi = [70, 65]. Answer: 2.
One optimal solution is to assign the first two caterpillars to machine 2 and the last 
three to machine 1.

● Example 2 : C = 3; Ci = [50, 60, 55]; M = 2; Mi = [40, 60]. Answer: 0.
The first machine can't reach any caterpillars, so we are out of luck.

●
●



Spider Count: 💪 Brute Force 💪
● For each cell in the grid:

○ For each of the eight directions:
■ Count the number of B cells in 

that direction (including the 
center) until we either see a W or 
reach the edge of the grid.

○ Take the minimum k of these counts. 
Increment the number of k-spiders by 
1.
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● For each cell in the grid: O(N2)
○ For each of the eight directions: O(1)

■ Count the number of B cells in 
that direction (including the 
center) until we either see a W or 
reach the edge of the grid. O(N)

○ Take the minimum k of these counts. 
Increment the number of k-spiders by 
1. O(1)

● Overall running time: O(N3)
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Spider Count: 💪 Brute Force 💪



What's inefficient?

● Explores/learns the same stuff over and over! 
e.g. the first row here…
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Preprocessing idea

● For each cell in the grid, for each direction, learn the 
number of consecutive black cells in that direction.
○ maybe make 8 separate grids, one for each direction…

● If we can manage to do this only once for each direction, 
we avoid redundant work!

● Once we have these 8 grids, counting spiders is easy! For 
each grid cell, we just take the minimum of those 8 
numbers.



Creating a grid for one direction
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Notice that this 
actually finds the 
number of consecutive 
black cells going in the 
direction opposite to 
the one we just used. 
But that's fine as long 
as we check each 
direction and its 
opposite!



Diagonals are more annoying
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A useful tip (not for this problem)
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● Down-left (up-right) 
diagonals are defined 
by the sums of 
row/column indices.

● Down-right (up-left) 
diagonals are defined 
by the difference in 
row/column indices.

0 1 2 3 4
5
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Spider Count: Improved Solution

● For each of the eight directions:
○ Make an empty grid that is the size of the original grid.
○ Traverse each line in that direction. Keep a cumulative 

count of consecutive black cells seen, and record these in 
the new grid. Reset the count to 0 when a white cell is 
encountered.

● For each cell in the grid:
○ Take the minimum k of the values in that position across 

all 8 grids. Increment the number of k-spiders by 1.



Spider Count: Improved Solution

● For each of the eight directions: O(1)
○ Make an empty grid that is the size of the original grid. 

"O(N2)"
○ Traverse each line in that direction. Keep a cumulative 

count of consecutive black cells seen, and record these in 
the new grid. Reset the count to 0 when a white cell is 
encountered. O(N2)

● For each cell in the grid: O(N2)
○ Take the minimum k of the values in that position across 

all 8 grids. Increment the number of k-spiders by 1. O(1)
● Overall running time: O(N2)



Slightly Nicer Improved Solution

● Make an empty grid that is the size of the original grid. Fill 
each cell with some huge placeholder value like N+1.

● For each of the eight directions:
○ Traverse each line in that direction. Keep a cumulative 

count of consecutive black cells seen, and "record" these 
in the new grid by taking the minimum of this value and 
the grid's current value. Reset the count to 0 when a white 
cell is encountered.

● For each cell in the new grid:
○ Read the value k in that cell. Increment the number of 

k-spiders by 1.



One implementation

def check(grid, n, new_grid, row_dir, col_dir, start_points):
    for start_row, start_col in start_points:
        curr_row, curr_col = start_row, start_col
        cumulative = 0
        while 0 <= curr_row < n and 0 <= curr_col < n:
            if grid[curr_row][curr_col] == 'W':
                cumulative = 0
            else:
                cumulative += 1
            new_grid[curr_row][curr_col] = min(
                new_grid[curr_row][curr_col], cumulative)
            curr_row += row_dir
            curr_col += col_dir

def solve(grid):
    n = len(grid)
    new_grid = [[n+1 for _ in range(n)] for __ in range(n)]
    for row_dir, col_dir, start_points in (
        # orthogonal directions
        (1, 0, [(0, c) for c in range(n)]),
        (-1, 0, [(n-1, c) for c in range(n)]),
        (0, 1, [(r, 0) for r in range(n)]),
        (0, -1, [(r, n-1) for r in range(n)]),
        # diagonals
        (-1, -1, [(r, n-1) for r in range(n-1)] + [(n-1, c) for c in 
range(n)]),
        (-1, 1, [(r, 0) for r in range(n)] + [(n-1, c) for c in 
range(n-1)]),        
        (1, -1,[(r, n-1) for r in range(1, n)] + [(0, c) for c in 
range(n)]),
        (1, 1,[(r, 0) for r in range(n)] + [(0, c) for c in range(1, 
n)])):
            check(grid, n, new_grid, row_dir, col_dir, start_points)
    counts = [0]*(n+1)
    for r in range(n):
        for c in range(n):
            counts[new_grid[r][c]] += 1
    return(counts)

this would be hard to code fully in a real interview...



Can we do better?

● We obviously need to at least look at every cell*, and 
there are O(N2) cells, so no! At least not 
asymptotically…

● (However, there might be something with better 
constant factors. Remember that industry does care 
about those! Let us know if you find an alternative…)

*ok, maybe not if we use a quantum computer, but probably don't go 
there in an interview unless you have a good reason



Other stuff to think about

● Can you generalize this to multiple dimensions (e.g. "sea 
urchins" in a 3D grid)? How would the running time 
depend on the dimension D?

● Can this solution be parallelized across multiple 
machines? If so, how?

● How would you test your solution? (What cases would 
have the longest running time? Are there edge / corner 
cases that are easy to mess up?)



Now Andrew will say the 
magic password



Trying all ways of assigning individual caterpillars to individual machines would be exponentially 
complex, so we have to do some thinking.

Conceptually, we can have the shortest machine collect all the caterpillars it can, then have the 
next shortest machine collect all the remaining caterpillars it can, and so on. Then we keep 
finding the machine that currently has the minimum number of caterpillars, and improving it by 
passing one caterpillar up from the next shortest machine. (Here, "passing" means changing the 
assignment of who collected that caterpillar.) This is always safe because anything a shorter 
machine collected could have also been collected by a machine at least as tall. Once the 
current minimum can't be improved (which happens only when the shortest machine has the 
minimum), stop. This can be done directly via simulation, but it might take around as many 
steps as there are caterpillars!

Caterpillars answer



A more efficient way is to see that the solution must be the smallest one of the following:
● the total number of caterpillars that the shortest machine can reach. (No other machine 

can pass anything to it!)
● the total number of caterpillars that the second shortest machine can reach, divided by 2. 

(That is, the second shortest machine can only get surplus from the shortest machine. The 
best strategy is to distribute the caterpillars as evenly as possible. If this is not possible, 
e.g. the shortest can only reach 5 but the second shortest can reach 15, then this situation 
is already covered by the first bullet point.)

● the number of caterpillars the third shortest machine can reach, divided by 3, and so on.

So we can sort the lists of caterpillars and machines, and keep cumulative counts of how many 
total caterpillars can be reached by the first k machines. Then we divide the first value by 1, the 
second by 2, the third by 3, etc., and take the smallest result, rounded down. This takes only 
O(N log N) time -- where N is the maximum of M and C -- because a sorting step dominates.

Caterpillars answer, continued


