
CS 9
Week 1 Problems
"Watch out for bugs!"

Andrew Benson
Ian Tullis

Game plan for Thursdays

● Introduce 3 problems (~5 minutes)

● ~35 minutes of working time
○ There is no implicit expectation that you should be

able to fully solve all three, or even one, let alone
write full code. Just get as far as you can.

● Go over solution to second problem together
○ First problem - video walkthrough posted on Canvas
○ Third problem - written solution at end of deck

Star system for difficulty

⭐: not "easy" per se but has a straightforward
solution

⭐⭐: potentially tricky, requires a significant insight

⭐⭐⭐: quite intricate/challenging, would be a
difficult interview (but these do still show up)

kind of like Leetcode Easy / Medium / Hard…

A quick plug (since this was once Ian's job…)

● Google Code Jam starts this Friday! It's good practice and
can get you an interview! (You have to advance in the Qual
Round this weekend to participate in future rounds)

General problem-solving advice

● Make sure you understand the problem. (Ask the
interviewer questions if needed!) Consider working
through a small test case.

● What would a brute force solution look like?
○ Don't code it up unless you don't get farther than

that and need to get some code down

● What makes that solution inefficient? Can you see how
to remove those inefficiencies?

⭐ Problem 1-1: Legs
● I'm at the insect store looking for new pets. There are N (up to

1000000) individual insects for sale in the store, and I want to buy
exactly two different ones. Moreover, I want my two insects to have a
combined total of exactly L legs, where L is between 0 and 2 * 109.

● I have an array: the i-th element is the number of legs the i-th insect
has, from 0 to 109.

● Determine whether I can get what I want. If so, give a pair of distinct
indices of insects (counting starting from 0) that satisfy my needs.

● Example 1: [0, 3, 14, 6, 4, 4], L = 10: one acceptable answer is 3, 5.
● Example 2: [0, 3, 14, 6, 4, 4], L = 12: return IMPOSSIBLE

⭐⭐ Problem 1-2: Spider Count
● I have an N by N grid of cells, each of which is either black (B)

or white (W). N can be as large as 1000.

● A k-spider is defined as a black cell from which there are at
least k-1 more consecutive black cells immediately to the
right, at least k-1 more consecutive black cells immediately to
the upper right, and so on for all eight directions.

● In the example to the right, the central (red) cell is a 3-spider.
The yellow cell is a 2-spider. (Spiders can overlap!)

● A cell is given the highest number possible, so e.g. a 3-spider
is not also considered a 2-spider. Any black cell that is not a
2-spider (or higher) is a 1-spider.

● Your goal: count the number of spiders of each size in the
grid. (Here we have 1 3-spider, 2 2-spiders, and 17 1-spiders.)

BWBWB
WBBBW
BBBBB
BBBBW
BBBBB

⭐⭐ Problem 1-3: Caterpillars
● There are C caterpillars dangling from the oak trees on campus. The i-th caterpillar is

Ci inches off the ground. (C and the Cis can be as large as 100000.)

● You have M caterpillar-collecting machines. The i-th machine can reach caterpillars
that are up to Mi inches off the ground. Each caterpillar is reachable by at least one
machine. (M and the Mis can be as large as 100000.)

● You want to assign each caterpillar to a machine, but you do not want there to be one
machine that doesn't do much work. Let N1, …, NM be the total numbers of caterpillars
collected by the different machines. Your goal is to maximize min(N1, …, NM).

● Example 1 : C = 5; Ci = [60, 47, 33, 70, 50]; M = 2; Mi = [70, 65]. Answer: 2.
One optimal solution is to assign the first two caterpillars to machine 2 and the last
three to machine 1.

● Example 2 : C = 3; Ci = [50, 60, 55]; M = 2; Mi = [40, 60]. Answer: 0.
The first machine can't reach any caterpillars, so we are out of luck.

●
●

Spider Count: 💪 Brute Force 💪
● For each cell in the grid:

○ For each of the eight directions:
■ Count the number of B cells in

that direction (including the
center) until we either see a W or
reach the edge of the grid.

○ Take the minimum k of these counts.
Increment the number of k-spiders by
1.

BWBWB
WBBBW
BBBBB
BBBBW
BBBBB

234
2 3 min=2
222

● For each cell in the grid: O(N2)
○ For each of the eight directions: O(1)

■ Count the number of B cells in
that direction (including the
center) until we either see a W or
reach the edge of the grid. O(N)

○ Take the minimum k of these counts.
Increment the number of k-spiders by
1. O(1)

● Overall running time: O(N3)

BWBWB
WBBBW
BBBBB
BBBBW
BBBBB

234
2 3 min=2
222

Spider Count: 💪 Brute Force 💪

What's inefficient?

● Explores/learns the same stuff over and over!
e.g. the first row here…

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

Preprocessing idea

● For each cell in the grid, for each direction, learn the
number of consecutive black cells in that direction.
○ maybe make 8 separate grids, one for each direction…

● If we can manage to do this only once for each direction,
we avoid redundant work!

● Once we have these 8 grids, counting spiders is easy! For
each grid cell, we just take the minimum of those 8
numbers.

Creating a grid for one direction

BWBWB
WBBBW
BBBBB
BBBBW
BBBBB

10101
01210
12321
23430
34541

Notice that this
actually finds the
number of consecutive
black cells going in the
direction opposite to
the one we just used.
But that's fine as long
as we check each
direction and its
opposite!

Diagonals are more annoying

BWBWB
WBBBW
BBBBB
BBBBW
BBBBB

10101
02120
32311
34220
53311

A useful tip (not for this problem)

BWBWB
WBBBW
BBBBB
BBBBW
BBBBB

● Down-left (up-right)
diagonals are defined
by the sums of
row/column indices.

● Down-right (up-left)
diagonals are defined
by the difference in
row/column indices.

0 1 2 3 4
5
6
7
8

Spider Count: Improved Solution

● For each of the eight directions:
○ Make an empty grid that is the size of the original grid.
○ Traverse each line in that direction. Keep a cumulative

count of consecutive black cells seen, and record these in
the new grid. Reset the count to 0 when a white cell is
encountered.

● For each cell in the grid:
○ Take the minimum k of the values in that position across

all 8 grids. Increment the number of k-spiders by 1.

Spider Count: Improved Solution

● For each of the eight directions: O(1)
○ Make an empty grid that is the size of the original grid.

"O(N2)"
○ Traverse each line in that direction. Keep a cumulative

count of consecutive black cells seen, and record these in
the new grid. Reset the count to 0 when a white cell is
encountered. O(N2)

● For each cell in the grid: O(N2)
○ Take the minimum k of the values in that position across

all 8 grids. Increment the number of k-spiders by 1. O(1)
● Overall running time: O(N2)

Slightly Nicer Improved Solution

● Make an empty grid that is the size of the original grid. Fill
each cell with some huge placeholder value like N+1.

● For each of the eight directions:
○ Traverse each line in that direction. Keep a cumulative

count of consecutive black cells seen, and "record" these
in the new grid by taking the minimum of this value and
the grid's current value. Reset the count to 0 when a white
cell is encountered.

● For each cell in the new grid:
○ Read the value k in that cell. Increment the number of

k-spiders by 1.

One implementation

def check(grid, n, new_grid, row_dir, col_dir, start_points):
 for start_row, start_col in start_points:
 curr_row, curr_col = start_row, start_col
 cumulative = 0
 while 0 <= curr_row < n and 0 <= curr_col < n:
 if grid[curr_row][curr_col] == 'W':
 cumulative = 0
 else:
 cumulative += 1
 new_grid[curr_row][curr_col] = min(
 new_grid[curr_row][curr_col], cumulative)
 curr_row += row_dir
 curr_col += col_dir

def solve(grid):
 n = len(grid)
 new_grid = [[n+1 for _ in range(n)] for __ in range(n)]
 for row_dir, col_dir, start_points in (
 # orthogonal directions
 (1, 0, [(0, c) for c in range(n)]),
 (-1, 0, [(n-1, c) for c in range(n)]),
 (0, 1, [(r, 0) for r in range(n)]),
 (0, -1, [(r, n-1) for r in range(n)]),
 # diagonals
 (-1, -1, [(r, n-1) for r in range(n-1)] + [(n-1, c) for c in
range(n)]),
 (-1, 1, [(r, 0) for r in range(n)] + [(n-1, c) for c in
range(n-1)]),
 (1, -1,[(r, n-1) for r in range(1, n)] + [(0, c) for c in
range(n)]),
 (1, 1,[(r, 0) for r in range(n)] + [(0, c) for c in range(1,
n)])):
 check(grid, n, new_grid, row_dir, col_dir, start_points)
 counts = [0]*(n+1)
 for r in range(n):
 for c in range(n):
 counts[new_grid[r][c]] += 1
 return(counts)

this would be hard to code fully in a real interview...

Can we do better?

● We obviously need to at least look at every cell*, and
there are O(N2) cells, so no! At least not
asymptotically…

● (However, there might be something with better
constant factors. Remember that industry does care
about those! Let us know if you find an alternative…)

*ok, maybe not if we use a quantum computer, but probably don't go
there in an interview unless you have a good reason

Other stuff to think about

● Can you generalize this to multiple dimensions (e.g. "sea
urchins" in a 3D grid)? How would the running time
depend on the dimension D?

● Can this solution be parallelized across multiple
machines? If so, how?

● How would you test your solution? (What cases would
have the longest running time? Are there edge / corner
cases that are easy to mess up?)

Now Andrew will say the
magic password

Trying all ways of assigning individual caterpillars to individual machines would be exponentially
complex, so we have to do some thinking.

Conceptually, we can have the shortest machine collect all the caterpillars it can, then have the
next shortest machine collect all the remaining caterpillars it can, and so on. Then we keep
finding the machine that currently has the minimum number of caterpillars, and improving it by
passing one caterpillar up from the next shortest machine. (Here, "passing" means changing the
assignment of who collected that caterpillar.) This is always safe because anything a shorter
machine collected could have also been collected by a machine at least as tall. Once the
current minimum can't be improved (which happens only when the shortest machine has the
minimum), stop. This can be done directly via simulation, but it might take around as many
steps as there are caterpillars!

Caterpillars answer

A more efficient way is to see that the solution must be the smallest one of the following:
● the total number of caterpillars that the shortest machine can reach. (No other machine

can pass anything to it!)
● the total number of caterpillars that the second shortest machine can reach, divided by 2.

(That is, the second shortest machine can only get surplus from the shortest machine. The
best strategy is to distribute the caterpillars as evenly as possible. If this is not possible,
e.g. the shortest can only reach 5 but the second shortest can reach 15, then this situation
is already covered by the first bullet point.)

● the number of caterpillars the third shortest machine can reach, divided by 3, and so on.

So we can sort the lists of caterpillars and machines, and keep cumulative counts of how many
total caterpillars can be reached by the first k machines. Then we divide the first value by 1, the
second by 2, the third by 3, etc., and take the smallest result, rounded down. This takes only
O(N log N) time -- where N is the maximum of M and C -- because a sorting step dominates.

Caterpillars answer, continued

