
CS 9
Week 3 Problems

Andrew Benson
Ian Tullis

3 Problems

● Problem 3-1 will have a video walkthrough on Canvas
(coming later tonight)
○ watching these counts as out-of-class extra work for

grading purposes!
● Problem 3-2 (note: hard) will be discussed in-class
● Problem 3-3 (note: really hard) will have a written

explanation at the end of the slides

⭐ Problem 3-1: Dual Parties
● It is early 19th century Europe, so people are always dueling.
● You are in charge of hosting two separate parties, one for the

King and one for the Queen (they are having a spat). There
are N friends of the Crown (2 <= N <= 1000), and each person
must be invited to exactly one of the two parties.

● Some of the people are mortal enemies and will duel if they
are at the same party. Then the evening will be ruined and
His or Her Majesty will be displeased.

● You are given a list of pairs of (mutual) enemies Ai, Bi.
● If it is possible to invite the people in such a way that no two

enemies are at the same party, give the lists of attendees at
the two parties. Otherwise print "IMPOSSIBLE!"

ex. N = 5, pairs 1 3, 4 5, 2 3: one answer is [3, 4], [1, 2, 5]
 N = 5, pairs 1 2, 3 4, 1 5, 2 3, 4 5: IMPOSSIBLE!

● Leetcode #218, if you want to solve it live!
● Given a list of rectangular buildings and where

(horizontally) they start and stop, find the skyline
(top border of buildings)

⭐⭐⭐ Problem 3-2: Skyline

● Leetcode #218, if you want to solve it live!
● Given a list of rectangular buildings and where

(horizontally) they start and stop, find the skyline
(top border of buildings)

⭐⭐⭐ Problem 3-2: Skyline

skyline!

● Input: [3, 9, 6], [5, 11, 5], [15, 17,
3], [0, 13, 3], [14, 19, 5]

● Output: [0, 3], [3, 6], [9, 5], [11, 3],
[13, 0], [14, 5], [19, 0]

⭐⭐⭐ Problem 3-2: Skyline

each building is [start x
coordinate, stop x
coordinate, height]

[x coordinate where
something changes, new
height], sorted by x
coordinate

Quick note: I had this as an interview question (a
million years ago), and then (years later) actually
needed the same algorithm for a work task. (not a
contest problem!)

⭐⭐⭐ Problem 3-2: Skyline

skyline!

⭐⭐⭐ Problem 3-3: Party Foul
● Consider the same setup as in the Dual Parties problem, but now it

is OK to ruin either the King's party or the Queen's party (but not
both). (One angry royal, you can deal with. Two, and your head is not
long for your body.)

● ⭐ Find a brute-force way to determine whether it is possible for
the unruined party to have at least 2 people, or at least 3 people.

● ⭐⭐⭐⭐ Do you have any ideas for doing either of those
more efficiently, or can you argue that there is no such way?

● ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
⭐⭐⭐ What if your goal is to make the size of the unruined
party as large as possible?

Our friend the priority queue
● Got Ian his Google job, probably!
● When you need to be able to find the smallest thing

○ or the k smallest
○ or largest instead of smallest…
while also inserting and deleting.

● Operations:
○ Insert in constant or O(log n) time
○ Find minimum in constant time
○ Delete minimum in O(log n) time

● Various implementations; you should know one (heap?)

Example
● Top Kit Kat varieties
● You want to maintain a

database
● Things that can happen:

○ New bar just dropped!
(and you rate it)

○ Old bar discontinued :(
○ People ask you for the

top 10 bars on the
market

Options
● Maintaining a sorted list by rating:

○ New bar appears: add it to the list in the right place
(O(log n) to find it with binary search)
■ array: lots of extra work to shift stuff around
■ linked list: binary searching is a pain

○ Someone asks for top 10: Go through start of list,
deleting any outdated bars

● Maintaining a PQ:
○ New bar appears: add it to the PQ (O(log n))
○ Someone asks for top 10: Keep popping from PQ,

deleting any outdated bars (O(log n))

The Skyline Problem: one solution
● Scan left to right, keeping track of current height
● We're interested in "events":

○ A new building starts
○ An old building ends

● So turn the original building list into an event list, sort it

● Use a priority queue to keep track of the tallest building
we're currently aware of
○ Keys: (a building's height, where it ends)

● Special "building" for the ground (height 0, ends at infinity)

A new building starts:
● If it's taller than our current height:

○ Add a new skyline segment up to now (and
remember when next segment starts)

○ Update current height
● Also, regardless:

○ Add this building's height and ending location to
our priority queue

An old building stops:
● Keep popping the top of the priority queue and

removing anything that has ended, until we reach a
building that still exists

● Set current height to height of that building
● If our current height changed:

○ Add a new skyline segment up to now

Annoying edge cases
● Multiple starts/stops at the same time

○ One option: merge these in the event list
○ Another: when adding a new skyline segment, if

we already have one starting where we are,
overwrite it

○ Also make sure code handles buildings starting
and stopping in the same place

Time complexity

● Sort the n buildings by start coordinate:
O(n log n)

● Processing each of the n buildings using
the priority queue takes log n time

● Overall: O(n log n)

Ian's ugly
(but
accepted)
solution

Party Foul: 2 people
● We can put 2 people in the no-dueling party only if there is

some pair of people who are not enemies. We can find
such a pair (if it exists) by e.g. making a list of which
people each person hates, then seeing if anyone's list is
not complete. This is O(n2).

● I think we can't do better than this. Consider the scenario
in which there is just one pair of people who do not hate
each other. We would need to read the entire dataset to
narrow down to that pair… and the dataset would have
[(n * n-1) / 2] - 1 pairs, which is O(n2) just to read.

Party Foul: 3 people
● We can put 3 people in the no-dueling party only if there is

some "triangle" of people who are not enemies. Naively,
we can find such a triangle (if it exists) by e.g. making a
list of which people each person hates, then checking
each of the O(n3) possible triangles of people.

● It is hard to figure out how to do better than this! Probably
not something to just come up with during an interview,
but here is one wild solution…

Party Foul: 3 people

1
2

3 4

note: edges mean non-enemies here

take the cube of
the matrix
representing the
graph's edges

if there's a
triangle, you get
nonzero
elements on the
diagonal

Party Foul: 3 people

1
2

3 4

note: edges mean non-enemies here

if there's no
triangle, you get
only zero
elements on the
diagonal

Party Foul: 3 people

● So, cubing a matrix solves the problem!

● This takes O(n3) time using naive matrix
multiplication, but there are weird ways to multiply
matrices faster, e.g. Strassen's. You can go all the
way down to O(n2.3) or so!

● Therefore we have an O(n2.3) solution.
○ note: with ridiculous constant factors

Party Foul: as many people as
possible

● Extending the previous naive idea (check all possible subsets
of people to see if they don't all hate each other, then take the
biggest one that works), we get something terrible like O(2n n2).
(There are 2n subsets, and checking each one for enemies
takes O(n2) time.)

● This is a famously intractable problem, the "clique problem".
You would not be asked to solve it during an interview, but it is
good to be able to say "hey, that's the clique problem! It is
known to be intractable to solve!"

