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Announcements

● Our Tuesday meetings in Weeks 8 and 9 will be panels. So that 
all may speak freely, these will not be recorded. Please attend in 
person.
○ Panel 1: (tentatively) PM from Reddit, Engineer at Startup, + 1 

more
○ Panel 2: (tentatively) Engineers from Jane Street, Two Sigma, 

+ 1 more

● We will adjust the required number of points from 25 to 23 to 
account for the lack of recordings.



⭐ Problem 7-1: Bowling Balls

● You have a bunch of bowling balls (3 ≤ N ≤ 10000). Some miscreant removed the 
numbers on them, and they all look and feel kind of similar.

● You have been promised that:
○ at least two of the balls have different weights
○ at least two of the balls have the exact same weight

● You have a balance scale. You can put one bowling ball in each pan (the pans are 
too big to add more than this!) The scale tells you whether the left ball weighs 
more, the right ball weighs more, or they weigh exactly the same.

Write code / a strategy to, in as few weighings as possible in the worst case,
● Warm-up: Identify any pair of balls with different weights.
● Harder: Identify any pair of balls with the same weight.

Assume you have access to a function compare(i, j) that takes in indexes i, j and 
returns -1 if i weighs more, 1 if j weighs more, and 0 if they weigh the same.



⭐⭐ Problem 7-2: Preposterous
● A preorder traversal of a binary tree does the following, 

starting from the root:
○ print the root value
○ print a preorder traversal of the left child tree, if any
○ print a preorder traversal of the right child tree, if any

● A postorder traversal does the same kind of thing but in a 
different order:
○ print a postorder traversal of the left child tree, if any
○ print a postorder traversal of the right child tree, if any
○ print the root value



⭐⭐ Problem 7-2: Preposterous
● And for an inorder traversal:

○ print an inorder traversal of the left child tree, if any
○ print the root value
○ print an inorder traversal of the right child tree, if any
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Preorder: T, O, P, S
Inorder: O, P, T, S
Postorder: P, O, S, T



⭐⭐ Problem 7-2: Preposterous
● Suppose there is some unknown binary tree with N nodes, 

where 1 ≤ N ≤ 10000.
○ Not necessarily complete!
○ Not necessarily a binary search tree!

● All you are guaranteed is that all the values are all different. 
(Think of them as numbers rather than letters)

● You are given one list representing the preorder traversal of 
the tree, and another list representing the postorder traversal 
of the tree.

● Your goal is to produce the inorder traversal of the tree, or 
say it is ambiguous (i.e. there could be more than one).



⭐⭐ Problem 7-3: Travel Troubles

● You are in a magical country consisting of N towns (2 ≤ N ≤ 1000), some of which 
are connected by bidirectional toll roads (with at most one road directly 
connecting any two towns). But these are no ordinary toll roads -- each i-th road 
steals some of your current size, i.e., multiplies your current size by 1/Ki.

● You are currently in town 1, and you want to get to town N. (It is guaranteed that 
there is at least one way to get there.)

● Given a list of the roads and their costs, what is the largest size (as a fraction of 
your original size) that you can have when you reach your destination?

● Warm-up:  Ki  = 2 for all i.
● Harder: 2 ≤  Ki ≤  1000, for all i.
● Even harder: Now some roads multiply your size by Ki and some divide it by Ki. (In 

each case 2 ≤  Ki ≤  1000, and there is another parameter Si for each road that is -1 
if the road makes you shrink and 1 if the road makes you grow). The answer might 
be ∞, in which case you should report that (and loom and laugh ominously)



Solutions to 7-2 (discussed in-class)



Ambiguity!

● Our example from earlier: we are 
given [T, O, P, S] as the preorder list 
and [P, O, S, T] as the postorder list.

● This case is ambiguous!
○ We could produce [O, P, T, S], 

which accords with the tree we 
showed earlier.

○ But [P, O, T, S] is also consistent 
with the given data – check out 
that other tree…
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When is there ambiguity?

● Whenever a node has exactly one child. Then we could flip 
that child from being on the left to being on the right, or 
vice versa. This would not change either the preorder or 
postorder traversals, but it would change the inorder 
traversal.
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When is there not ambiguity?

● As long as each node has either zero or two children.
○ Zero: Pre, post, in for the node are all trivially the same.
○ Two: Pre will give A Pre(B) Pre(C), post will give Post(B) 

Post(C) A. It is clear that the B subtree comes before 
the C subtree, so we can return In(B) A In(C) as the sole 
inorder traversal. 

A

B C
… …

But how do we know 
where  the B subtree 
ends and the C 
subtree begins?



Subtree location

I
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Pre: ILVCS9U
Post: VS9CLUI

V C

S 9

● The root is the first 
element of Pre and the last 
element of Post.

● The first child is the 
second element of Pre.



Subtree location

I

L U

Pre: ILVCS9U
Post: VS9CLUI

V C

S 9

● Walk through Post and find 
that first child.

● Then recurse on the 
subparts.

In(LVCS9, VS9CL) + I + In(U,  U)



And so on…

I

L U

V C

S 9

In(LVCS9, VS9CL) + I + In(U,  U)

In(V, V) + L + In(CS9, S9C) + I + U
V + L + In(S, S) + C + In(9, 9) + I + U
V + L + S + C + 9 + I + U



What if a child were missing?

I

L

Pre: ILVCS9
Post: VS9CLI

V C

S 9

In(LVCS9, VS9CL) + I + In(   ,   )

No second child! 
Return "AMBIGUOUS"



Works for missing left children

I

L U

C

S 9

In(LCS9, S9CL) + I + In(U,  U)

In(CS9, S9C) + L + In( ,  ) + I + U
No second child! 
Return "AMBIGUOUS"



Code



"So what's the running time?"



This can be O(n2)! P
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● We repeatedly search the 
postorder list and find that 
the left subtree has the 
biggest size possible (the 
right subtree has size 1)

● We could mitigate this by 
searching from both ends 
at once, using the fact that 
the next-to-last entry in the 
Post list is the right child.



How can we salvage this?
● The answer itself is O(n), and it seems like there "should" be a way to hit 

that complexity…

● We waste so much time looking up where elements are in the Post list! 
Sometimes over and over…

● What if we do one initial pass over the Post string and make a hash table 
that lets us look up the position in the string of each element?

● This cuts the work of each subproblem down to O(1), and indeed makes 
the entire process O(n).

● (We have to do some math to figure out pointer offsets for the 
subproblems, but this is all constant time.)



What if there are repeated elements?
Uh hey thanks for coming to CS9! We're out of time

(If you do want to think on this, and you come up with a cool 
solution, please post it on Ed)



Don't let Ian forget to say the 
password!!!!!!



Solutions to 7-3



Travel Troubles: Solution
● If all Ki values are 2, then all that matters is how many roads 

you take. Then this just becomes breadth-first search.
● In the second version, we'd love to use a shortest-paths 

algorithm like Dijkstra's Algorithm, but that only works for 
adding up costs, not multiplying them! If only we had some way 
of making multiplication into addition…

● We do! We can take the logarithm of every Ki. The log of a 
product is the sum of the logs of the individual values.

● So we do Dijkstra's on these log-costs to get a smallest 
possible answer, then re-exponentiate the final answer to get 
the total factor that we shrink by. (This works because log is 
strictly increasing, and these values are all positive.) 



Travel Troubles: Solution
● In the third version, we can't pull the same trick with Dijkstra's 

because now there would be both negative and positive edge 
values after we take the logs of all edges. Except in certain 
edge situations (of which this is not one), Dijkstra's does not 
work correctly with negative edge values.

● However, the Bellman-Ford algorithm does, and it will also 
report an infinite cycle (i.e. if we can just go around and around 
a cycle with a net positive impact on our size, and then get 
arbitrarily large).


