
CS 9
Week 7 Problems

Andrew Benson
Ian Tullis

SIZESIZE

Announcements

● Our Tuesday meetings in Weeks 8 and 9 will be panels. So that
all may speak freely, these will not be recorded. Please attend in
person.
○ Panel 1: (tentatively) PM from Reddit, Engineer at Startup, + 1

more
○ Panel 2: (tentatively) Engineers from Jane Street, Two Sigma,

+ 1 more

● We will adjust the required number of points from 25 to 23 to
account for the lack of recordings.

⭐ Problem 7-1: Bowling Balls

● You have a bunch of bowling balls (3 ≤ N ≤ 10000). Some miscreant removed the
numbers on them, and they all look and feel kind of similar.

● You have been promised that:
○ at least two of the balls have different weights
○ at least two of the balls have the exact same weight

● You have a balance scale. You can put one bowling ball in each pan (the pans are
too big to add more than this!) The scale tells you whether the left ball weighs
more, the right ball weighs more, or they weigh exactly the same.

Write code / a strategy to, in as few weighings as possible in the worst case,
● Warm-up: Identify any pair of balls with different weights.
● Harder: Identify any pair of balls with the same weight.

Assume you have access to a function compare(i, j) that takes in indexes i, j and
returns -1 if i weighs more, 1 if j weighs more, and 0 if they weigh the same.

⭐⭐ Problem 7-2: Preposterous
● A preorder traversal of a binary tree does the following,

starting from the root:
○ print the root value
○ print a preorder traversal of the left child tree, if any
○ print a preorder traversal of the right child tree, if any

● A postorder traversal does the same kind of thing but in a
different order:
○ print a postorder traversal of the left child tree, if any
○ print a postorder traversal of the right child tree, if any
○ print the root value

⭐⭐ Problem 7-2: Preposterous
● And for an inorder traversal:

○ print an inorder traversal of the left child tree, if any
○ print the root value
○ print an inorder traversal of the right child tree, if any

T

O S

P

Preorder: T, O, P, S
Inorder: O, P, T, S
Postorder: P, O, S, T

⭐⭐ Problem 7-2: Preposterous
● Suppose there is some unknown binary tree with N nodes,

where 1 ≤ N ≤ 10000.
○ Not necessarily complete!
○ Not necessarily a binary search tree!

● All you are guaranteed is that all the values are all different.
(Think of them as numbers rather than letters)

● You are given one list representing the preorder traversal of
the tree, and another list representing the postorder traversal
of the tree.

● Your goal is to produce the inorder traversal of the tree, or
say it is ambiguous (i.e. there could be more than one).

⭐⭐ Problem 7-3: Travel Troubles

● You are in a magical country consisting of N towns (2 ≤ N ≤ 1000), some of which
are connected by bidirectional toll roads (with at most one road directly
connecting any two towns). But these are no ordinary toll roads -- each i-th road
steals some of your current size, i.e., multiplies your current size by 1/Ki.

● You are currently in town 1, and you want to get to town N. (It is guaranteed that
there is at least one way to get there.)

● Given a list of the roads and their costs, what is the largest size (as a fraction of
your original size) that you can have when you reach your destination?

● Warm-up: Ki = 2 for all i.
● Harder: 2 ≤ Ki ≤ 1000, for all i.
● Even harder: Now some roads multiply your size by Ki and some divide it by Ki. (In

each case 2 ≤ Ki ≤ 1000, and there is another parameter Si for each road that is -1
if the road makes you shrink and 1 if the road makes you grow). The answer might
be ∞, in which case you should report that (and loom and laugh ominously)

Solutions to 7-2 (discussed in-class)

Ambiguity!

● Our example from earlier: we are
given [T, O, P, S] as the preorder list
and [P, O, S, T] as the postorder list.

● This case is ambiguous!
○ We could produce [O, P, T, S],

which accords with the tree we
showed earlier.

○ But [P, O, T, S] is also consistent
with the given data – check out
that other tree…

T

O S

P

T

O S

P

When is there ambiguity?

● Whenever a node has exactly one child. Then we could flip
that child from being on the left to being on the right, or
vice versa. This would not change either the preorder or
postorder traversals, but it would change the inorder
traversal.

T

O S

P

T

O S

P

When is there not ambiguity?

● As long as each node has either zero or two children.
○ Zero: Pre, post, in for the node are all trivially the same.
○ Two: Pre will give A Pre(B) Pre(C), post will give Post(B)

Post(C) A. It is clear that the B subtree comes before
the C subtree, so we can return In(B) A In(C) as the sole
inorder traversal.

A

B C
… …

But how do we know
where the B subtree
ends and the C
subtree begins?

Subtree location

I

L U

Pre: ILVCS9U
Post: VS9CLUI

V C

S 9

● The root is the first
element of Pre and the last
element of Post.

● The first child is the
second element of Pre.

Subtree location

I

L U

Pre: ILVCS9U
Post: VS9CLUI

V C

S 9

● Walk through Post and find
that first child.

● Then recurse on the
subparts.

In(LVCS9, VS9CL) + I + In(U, U)

And so on…

I

L U

V C

S 9

In(LVCS9, VS9CL) + I + In(U, U)

In(V, V) + L + In(CS9, S9C) + I + U
V + L + In(S, S) + C + In(9, 9) + I + U
V + L + S + C + 9 + I + U

What if a child were missing?

I

L

Pre: ILVCS9
Post: VS9CLI

V C

S 9

In(LVCS9, VS9CL) + I + In(,)

No second child!
Return "AMBIGUOUS"

Works for missing left children

I

L U

C

S 9

In(LCS9, S9CL) + I + In(U, U)

In(CS9, S9C) + L + In(,) + I + U
No second child!
Return "AMBIGUOUS"

Code

"So what's the running time?"

This can be O(n2)! P

OR

LB

ME

TA

I C

● We repeatedly search the
postorder list and find that
the left subtree has the
biggest size possible (the
right subtree has size 1)

● We could mitigate this by
searching from both ends
at once, using the fact that
the next-to-last entry in the
Post list is the right child.

How can we salvage this?
● The answer itself is O(n), and it seems like there "should" be a way to hit

that complexity…

● We waste so much time looking up where elements are in the Post list!
Sometimes over and over…

● What if we do one initial pass over the Post string and make a hash table
that lets us look up the position in the string of each element?

● This cuts the work of each subproblem down to O(1), and indeed makes
the entire process O(n).

● (We have to do some math to figure out pointer offsets for the
subproblems, but this is all constant time.)

What if there are repeated elements?
Uh hey thanks for coming to CS9! We're out of time

(If you do want to think on this, and you come up with a cool
solution, please post it on Ed)

Don't let Ian forget to say the
password!!!!!!

Solutions to 7-3

Travel Troubles: Solution
● If all Ki values are 2, then all that matters is how many roads

you take. Then this just becomes breadth-first search.
● In the second version, we'd love to use a shortest-paths

algorithm like Dijkstra's Algorithm, but that only works for
adding up costs, not multiplying them! If only we had some way
of making multiplication into addition…

● We do! We can take the logarithm of every Ki. The log of a
product is the sum of the logs of the individual values.

● So we do Dijkstra's on these log-costs to get a smallest
possible answer, then re-exponentiate the final answer to get
the total factor that we shrink by. (This works because log is
strictly increasing, and these values are all positive.)

Travel Troubles: Solution
● In the third version, we can't pull the same trick with Dijkstra's

because now there would be both negative and positive edge
values after we take the logs of all edges. Except in certain
edge situations (of which this is not one), Dijkstra's does not
work correctly with negative edge values.

● However, the Bellman-Ford algorithm does, and it will also
report an infinite cycle (i.e. if we can just go around and around
a cycle with a net positive impact on our size, and then get
arbitrarily large).

