Mathematics

Jaehyun Park
CS 97SI
Stanford University

June 29, 2015

Outline

Algebra

Number Theory

Combinatorics

Geometry

Algebra

Sum of Powers

$$
\begin{aligned}
\sum_{k=1}^{n} k^{2} & =\frac{1}{6} n(n+1)(2 n+1) \\
\sum k^{3} & =\left(\sum k\right)^{2}=\left(\frac{1}{2} n(n+1)\right)^{2}
\end{aligned}
$$

- Pretty useful in many random situations
- Memorize above!

Fast Exponentiation

- Recursive computation of a^{n} :

$$
a^{n}= \begin{cases}1 & n=0 \\ a & n=1 \\ \left(a^{n / 2}\right)^{2} & n \text { is even } \\ a\left(a^{(n-1) / 2}\right)^{2} & n \text { is odd }\end{cases}
$$

Implementation (recursive)

```
double pow(double a, int n) {
    if(n == 0) return 1;
    if(n == 1) return a;
    double t = pow(a, n/2);
    return t * t * pow(a, n%2);
}
```

- Running time: $O(\log n)$

Implementation (non-recursive)

```
double pow(double a, int n) {
    double ret = 1;
    while(n) {
        if(n%2 == 1) ret *= a;
        a *= a; n /= 2;
    }
    return ret;
}
```

- You should understand how it works

Linear Algebra

- Solve a system of linear equations
- Invert a matrix
- Find the rank of a matrix
- Compute the determinant of a matrix
- All of the above can be done with Gaussian elimination

Outline

Algebra

Number Theory

Combinatorics

Geometry

Greatest Common Divisor (GCD)

- $\operatorname{gcd}(a, b)$: greatest integer divides both a and b
- Used very frequently in number theoretical problems
- Some facts:
$-\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)$
$-\operatorname{gcd}(a, 0)=a$
$-\operatorname{gcd}(a, b)$ is the smallest positive number in $\{a x+b y \mid x, y \in \mathbf{Z}\}$

Euclidean Algorithm

- Repeated use of $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)$
- Example:

$$
\begin{aligned}
\operatorname{gcd}(1989,867) & =\operatorname{gcd}(1989-2 \times 867,867) \\
& =\operatorname{gcd}(255,867) \\
& =\operatorname{gcd}(255,867-3 \times 255) \\
& =\operatorname{gcd}(255,102) \\
& =\operatorname{gcd}(255-2 \times 102,102) \\
& =\operatorname{gcd}(51,102) \\
& =\operatorname{gcd}(51,102-2 \times 51) \\
& =\operatorname{gcd}(51,0) \\
& =51
\end{aligned}
$$

Implementation

```
int gcd(int a, int b) {
    while(b){int r = a % b; a = b; b = r;}
    return a;
}
```

- Running time: $O(\log (a+b))$
- Be careful: a \% b follows the sign of a

$$
\begin{aligned}
& -5 \% 3==2 \\
& --5 \% 3==-2
\end{aligned}
$$

Congruence \& Modulo Operation

- $x \equiv y(\bmod n)$ means x and y have the same remainder when divided by n
- Multiplicative inverse
$-x^{-1}$ is the inverse of x modulo n if $x x^{-1} \equiv 1(\bmod n)$
$-5^{-1} \equiv 3(\bmod 7)$ because $5 \cdot 3 \equiv 15 \equiv 1(\bmod 7)$
- May not exist (e.g., inverse of $2 \bmod 4$)
- Exists if and only if $\operatorname{gcd}(x, n)=1$

Multiplicative Inverse

- All intermediate numbers computed by Euclidean algorithm are integer combinations of a and b
- Therefore, $\operatorname{gcd}(a, b)=a x+b y$ for some integers x, y
- If $\operatorname{gcd}(a, n)=1$, then $a x+n y=1$ for some x, y
- Taking modulo n gives $a x \equiv 1(\bmod n)$
- We will be done if we can find such x and y

Extended Euclidean Algorithm

- Main idea: keep the original algorithm, but write all intermediate numbers as integer combinations of a and b
- Exercise: implementation!

Chinese Remainder Theorem

- Given a, b, m, n with $\operatorname{gcd}(m, n)=1$
- Find x with $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$
- Solution:
- Let n^{-1} be the inverse of n modulo m
- Let m^{-1} be the inverse of m modulo n
- Set $x=a n n^{-1}+b m m^{-1}$ (check this yourself)
- Extension: solving for more simultaneous equations

Outline

Algebra

Number Theory

Combinatorics

Geometry

Binomial Coefficients

- $\binom{n}{k}$ is the number of ways to choose k objects out of n distinguishable objects
- same as the coefficient of $x^{k} y^{n-k}$ in the expansion of $(x+y)^{n}$
- Hence the name "binomial coefficients"
- Appears everywhere in combinatorics

Computing Binomial Coefficients

- Solution 1: Compute using the following formula:

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

- Solution 2: Use Pascal's triangle
- Can use either if both n and k are small
- Use Solution 1 carefully if n is big, but k or $n-k$ is small

Fibonacci Sequence

- Definition:
- $F_{0}=0, F_{1}=1$
- $F_{n}=F_{n-1}+F_{n-2}$, where $n \geq 2$
- Appears in many different contexts

Closed Form

- $F_{n}=(1 / \sqrt{5})\left(\varphi^{n}-\bar{\varphi}^{n}\right)$
$-\varphi=(1+\sqrt{5}) / 2$
$-\bar{\varphi}=(1-\sqrt{5}) / 2$
- Bad because φ and $\sqrt{5}$ are irrational
- Cannot compute the exact value of F_{n} for large n
- There is a more stable way to compute F_{n}
- ... and any other recurrence of a similar form

Better "Closed" Form

$$
\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
F_{1} \\
F_{0}
\end{array}\right]
$$

- Use fast exponentiation to compute the matrix power
- Can be extended to support any linear recurrence with constant coefficients

Outline

Algebra

Number Theory

Combinatorics

Geometry

Geometry

- In theory: not that hard
- In programming contests: more difficult than it looks
- Will cover basic stuff today
- Computational geometry in week 9

When Solving Geometry Problems

- Precision, precision, precision!
- If possible, don't use floating-point numbers
- If you have to, always use double and never use float
- Avoid division whenever possible
- Introduce small constant ϵ in (in)equality tests
- e.g., Instead of if (x == 0), write if (abs (x) < EPS)
- No hacks!
- In most cases, randomization, probabilistic methods, small perturbations won't help

2D Vector Operations

- Have a vector (x, y)
- Norm (distance from the origin): $\sqrt{x^{2}+y^{2}}$
- Counterclockwise rotation by θ :

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Make sure to use correct units (degrees, radians)
- Normal vectors: $(y,-x)$ and $(-y, x)$
- Memorize all of them!

Line-Line Intersection

- Have two lines: $a x+b y+c=0$ and $d x+e y+f=0$
- Write in matrix form:

$$
\left[\begin{array}{ll}
a & b \\
d & e
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\left[\begin{array}{l}
c \\
f
\end{array}\right]
$$

- Left-multiply by matrix inverse

$$
\left[\begin{array}{cc}
a & b \\
d & e
\end{array}\right]^{-1}=\frac{1}{a e-b d}\left[\begin{array}{cc}
e & -b \\
-d & a
\end{array}\right]
$$

- Memorize this!
- Edge case: $a e=b d$
- The lines coincide or are parallel

Circumcircle of a Triangle

- Have three points A, B, C
- Want to compute P that is equidistance from A, B, C
- Don't try to solve the system of quadratic equations!
- Instead, do the following:
- Find the (equations of the) bisectors of $A B$ and $B C$
- Compute their intersection

Area of a Triangle

- Have three points A, B, C
- Want to compute the area S of triangle $A B C$
- Use cross product: $2 S=|(B-A) \times(C-A)|$
- Cross product:

$$
\left(x_{1}, y_{1}\right) \times\left(x_{2}, y_{2}\right)=\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|=x_{1} y_{2}-x_{2} y_{1}
$$

- Very important in computational geometry. Memorize!

Area of a Simple Polygon

- Given vertices $P_{1}, P_{2}, \ldots, P_{n}$ of polygon P
- Want to compute the area S of P
- If P is convex, we can decompose P into triangles:

$$
2 S=\left|\sum_{i=2}^{n-1}\left(P_{i+1}-P_{1}\right) \times\left(P_{i}-P_{1}\right)\right|
$$

- It turns out that the formula above works for non-convex polygons too
- Area is the absolute value of the sum of "signed area"
- Alternative formula (with $x_{n+1}=x_{1}, y_{n+1}=y_{1}$):

$$
2 S=\left|\sum_{i=1}^{n}\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)\right|
$$

Conclusion

- No need to look for one-line closed form solutions
- Knowing "how to compute" (algorithms) is good enough
- Have fun with the exercise problems
- ... and come to the practice contest if you can!

