Dynamic Programming

Jaehyun Park
CS 97SI
Stanford University

June 29, 2015

Outline

Dynamic Programming

\square

2-dimensional DP

Interval DP

Tree DP

Subset DP

Dynamic Programming

What is DP?

- Wikipedia definition: "method for solving complex problems by breaking them down into simpler subproblems"
- This definition will make sense once we see some examples
- Actually, we'll only see problem solving examples today

Steps for Solving DP Problems

1. Define subproblems
2. Write down the recurrence that relates subproblems
3. Recognize and solve the base cases

- Each step is very important!

Outline

Dynamic Programming
1-dimensional DP
2-dimensional DP
Interval DP
Tree DP
Subset DP

1-dimensional DP Example

- Problem: given n, find the number of different ways to write n as the sum of $1,3,4$
- Example: for $n=5$, the answer is 6

$$
\begin{aligned}
5 & =1+1+1+1+1 \\
& =1+1+3 \\
& =1+3+1 \\
& =3+1+1 \\
& =1+4 \\
& =4+1
\end{aligned}
$$

1-dimensional DP Example

- Define subproblems
- Let D_{n} be the number of ways to write n as the sum of $1,3,4$
- Find the recurrence
- Consider one possible solution $n=x_{1}+x_{2}+\cdots+x_{m}$
- If $x_{m}=1$, the rest of the terms must sum to $n-1$
- Thus, the number of sums that end with $x_{m}=1$ is equal to D_{n-1}
- Take other cases into account $\left(x_{m}=3, x_{m}=4\right)$

1-dimensional DP Example

- Recurrence is then

$$
D_{n}=D_{n-1}+D_{n-3}+D_{n-4}
$$

- Solve the base cases
- $D_{0}=1$
- $D_{n}=0$ for all negative n
- Alternatively, can set: $D_{0}=D_{1}=D_{2}=1$, and $D_{3}=2$
- We're basically done!

Implementation

$$
\begin{aligned}
& D[0]=D[1]=D[2]=1 ; D[3]=2 ; \\
& \text { for }(i=4 ; i<=n ; i++) \\
& \quad D[i]=D[i-1]+D[i-3]+D[i-4] ;
\end{aligned}
$$

- Very short!
- Extension: solving this for huge n, say $n \approx 10^{12}$
- Recall the matrix form of Fibonacci numbers

POJ 2663: Tri Tiling

- Given n, find the number of ways to fill a $3 \times n$ board with dominoes
- Here is one possible solution for $n=12$

POJ 2663: Tri Tiling

- Define subproblems
- Define D_{n} as the number of ways to tile a $3 \times n$ board
- Find recurrence
- Uuuhhhhh...

Troll Tiling

1-dimensional DP

Defining Subproblems

- Obviously, the previous definition didn't work very well
- D_{n} 's don't relate in simple terms
- What if we introduce more subproblems?

Defining Subproblems

1-dimensional DP

Finding Recurrences

Finding Recurrences

- Consider different ways to fill the nth column
- And see what the remaining shape is
- Exercise:
- Finding recurrences for A_{n}, B_{n}, C_{n}
- Just for fun, why is B_{n} and E_{n} always zero?
- Extension: solving the problem for $n \times m$ grids, where n is small, say $n \leq 10$
- How many subproblems should we consider?

Outline

Dynamic Programming
\square2-dimensional DP
Interval DP
Tree DP
Subset DP

2-dimensional DP Example

- Problem: given two strings x and y, find the longest common subsequence (LCS) and print its length
- Example:
- x : ABCBDAB
- y : BDCABC
- "BCAB" is the longest subsequence found in both sequences, so the answer is 4

Solving the LCS Problem

- Define subproblems
- Let $D_{i j}$ be the length of the LCS of $x_{1 \ldots i}$ and $y_{1 \ldots j}$
- Find the recurrence
- If $x_{i}=y_{j}$, they both contribute to the LCS
- $D_{i j}=D_{i-1, j-1}+1$
- Otherwise, either x_{i} or y_{j} does not contribute to the LCS, so one can be dropped
- $D_{i j}=\max \left\{D_{i-1, j}, D_{i, j-1}\right\}$
- Find and solve the base cases: $D_{i 0}=D_{0 j}=0$

Implementation

$$
\begin{aligned}
& \text { for }(i=0 ; i<=n ; i++) D[i][0]=0 ; \\
& \text { for }(j=0 ; j<=m ; j++) D[0][j]=0 ; \\
& \text { for }(i=1 ; i<=n ; i++)\{ \\
& \quad \operatorname{for}(j=1 ; j<=m ; j++)\{ \\
& \quad \operatorname{if(x[i]==y[j])} \\
& \quad D[i][j]=D[i-1][j-1]+1 ; \\
& \quad \text { else } \\
& \quad D[i][j]=\max (D[i-1][j], D[i][j-1]) ; \\
& \}
\end{aligned}
$$

Outline

Dynamic Programming
1-dimensional DP
2-dimensional DP
Interval DP
Tree DP
Subset DPInterval DP21

Interval DP Example

- Problem: given a string $x=x_{1 \ldots n}$, find the minimum number of characters that need to be inserted to make it a palindrome
- Example:
- x : Ab3bd
- Can get "dAb3bAd" or "Adb3bdA" by inserting 2 characters (one 'd', one 'A')

Interval DP Example

- Define subproblems
- Let $D_{i j}$ be the minimum number of characters that need to be inserted to make $x_{i \ldots . j}$ into a palindrome
- Find the recurrence
- Consider a shortest palindrome $y_{1 \ldots k}$ containing $x_{i \ldots . j}$
- Either $y_{1}=x_{i}$ or $y_{k}=x_{j}$ (why?)
- $y_{2 \ldots k-1}$ is then an optimal solution for $x_{i+1 \ldots j}$ or $x_{i \ldots j-1}$ or $x_{i+1 \ldots j-1}$
- Last case possible only if $y_{1}=y_{k}=x_{i}=x_{j}$

Interval DP Example

- Find the recurrence

$$
D_{i j}= \begin{cases}1+\min \left\{D_{i+1, j}, D_{i, j-1}\right\} & x_{i} \neq x_{j} \\ D_{i+1, j-1} & x_{i}=x_{j}\end{cases}
$$

- Find and solve the base cases: $D_{i i}=D_{i, i-1}=0$ for all i
- The entries of D must be filled in increasing order of $j-i$

Interval DP Example

$$
\begin{aligned}
& \text { // fill in base cases here } \\
& \text { for }(t=2 ; \mathrm{t}<=\mathrm{n} ; \mathrm{t}++) \\
& \quad \text { for }(\mathrm{i}=1, \mathrm{j}=\mathrm{t} ; \mathrm{j}<=\mathrm{n} \text {; i++, } \mathrm{j}++) \\
& \quad / / \text { fill in } \mathrm{D}[\mathrm{i}][j] \text { here }
\end{aligned}
$$

- Note how we use an additional variable t to fill the table in correct order
- And yes, for loops can work with multiple variables

An Alternate Solution

- Reverse x to get x^{R}
- The answer is $n-L$, where L is the length of the LCS of x and x^{R}
- Exercise: Think about why this works

Outline

Dynamic Programming1-dimensional DP2-dimensional DP
Interval DP
Tree DP
Subset DPTree DP27

Tree DP Example

- Problem: given a tree, color nodes black as many as possible without coloring two adjacent nodes
- Subproblems:
- First, we arbitrarily decide the root node r
- B_{v} : the optimal solution for a subtree having v as the root, where we color v black
- W_{v} : the optimal solution for a subtree having v as the root, where we don't color v
- Answer is $\max \left\{B_{r}, W_{r}\right\}$

Tree DP Example

- Find the recurrence
- Crucial observation: once v 's color is determined, subtrees can be solved independently
- If v is colored, its children must not be colored

$$
B_{v}=1+\sum_{u \in \operatorname{children}(v)} W_{u}
$$

- If v is not colored, its children can have any color

$$
W_{v}=1+\sum_{u \in \operatorname{children}(v)} \max \left\{B_{u}, W_{u}\right\}
$$

- Base cases: leaf nodes

Outline

Dynamic Programming1-dimensional DP
2-dimensional DP
Interval DP
Tree DP
Subset DP

Subset DP Example

- Problem: given a weighted graph with n nodes, find the shortest path that visits every node exactly once (Traveling Salesman Problem)
- Wait, isn't this an NP-hard problem?
- Yes, but we can solve it in $O\left(n^{2} 2^{n}\right)$ time
- Note: brute force algorithm takes $O(n!)$ time

Subset DP Example

- Define subproblems
- $D_{S, v}$: the length of the optimal path that visits every node in the set S exactly once and ends at v
- There are approximately $n 2^{n}$ subproblems
- Answer is $\min _{v \in V} D_{V, v}$, where V is the given set of nodes
- Let's solve the base cases first
- For each node $v, D_{\{v\}, v}=0$

Subset DP Example

- Find the recurrence
- Consider a path that visits all nodes in S exactly once and ends at v
- Right before arriving v, the path comes from some u in $S-\{v\}$
- And that subpath has to be the optimal one that covers $S-\{v\}$, ending at u
- We just try all possible candidates for u

$$
D_{S, v}=\min _{u \in S-\{v\}}\left(D_{S-\{v\}, u}+\operatorname{cost}(u, v)\right)
$$

Working with Subsets

- When working with subsets, it's good to have a nice representation of sets
- Idea: Use an integer to represent a set
- Concise representation of subsets of small integers $\{0,1, \ldots\}$
- If the i th (least significant) digit is $1, i$ is in the set
- If the i th digit is $0, i$ is not in the set
- e.g., $19=010011_{(2)}$ in binary represent a set $\{0,1,4\}$

Using Bitmasks

- Union of two sets x and y : $\mathrm{x} \mid \mathrm{y}$
- Intersection: x \& y
- Symmetric difference: $\mathrm{x}^{\text {- }} \mathrm{y}$
- Singleton set $\{i\}: 1 \ll$ i
- Membership test: x \& (1 << i) != 0

Conclusion

- Wikipedia definition: "a method for solving complex problems by breaking them down into simpler subproblems"
- Does this make sense now?
- Remember the three steps!

1. Defining subproblems
2. Finding recurrences
3. Solving the base cases
