Dynamic Programming

Jaehyun Park

CS 97SI Stanford University

June 29, 2015

Outline

Dynamic Programming

- 1-dimensional DP
- 2-dimensional DP
- Interval DP
- Tree DP
- Subset DP

Dynamic Programming

What is DP?

Wikipedia definition: "method for solving complex problems by breaking them down into simpler subproblems"

This definition will make sense once we see some examples
Actually, we'll only see problem solving examples today

Steps for Solving DP Problems

- 1. Define subproblems
- 2. Write down the recurrence that relates subproblems
- 3. Recognize and solve the base cases

Each step is very important!

Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

- Problem: given n, find the number of different ways to write n as the sum of 1, 3, 4
- Example: for n = 5, the answer is 6

5	=	1 + 1 + 1 + 1 + 1
	=	1 + 1 + 3
	=	1 + 3 + 1
	=	3 + 1 + 1
	=	1 + 4
	=	4 + 1

- Define subproblems
 - Let D_n be the number of ways to write n as the sum of 1, 3, 4
- Find the recurrence
 - Consider one possible solution $n = x_1 + x_2 + \dots + x_m$
 - If $x_m = 1$, the rest of the terms must sum to n-1
 - Thus, the number of sums that end with $x_m = 1$ is equal to $D_{n-1} \label{eq:constant}$
 - Take other cases into account ($x_m = 3$, $x_m = 4$)

Recurrence is then

$$D_n = D_{n-1} + D_{n-3} + D_{n-4}$$

Solve the base cases

$$- D_0 = 1$$

- $D_n = 0$ for all negative n
- Alternatively, can set: $D_0 = D_1 = D_2 = 1$, and $D_3 = 2$
- We're basically done!

Implementation

- Very short!
- Extension: solving this for huge n, say $n \approx 10^{12}$
 - Recall the matrix form of Fibonacci numbers

POJ 2663: Tri Tiling

- Given n, find the number of ways to fill a $3\times n$ board with dominoes
- Here is one possible solution for n = 12

POJ 2663: Tri Tiling

Define subproblems

– Define D_n as the number of ways to tile a $3 \times n$ board

- Find recurrence
 - Uuuhhhhh...

Troll Tiling

Defining Subproblems

- Obviously, the previous definition didn't work very well
- D_n's don't relate in simple terms

What if we introduce more subproblems?

Defining Subproblems

Finding Recurrences

Finding Recurrences

- Consider different ways to fill the nth column
 - And see what the remaining shape is
- Exercise:
 - Finding recurrences for A_n , B_n , C_n
 - Just for fun, why is B_n and E_n always zero?
- \blacktriangleright Extension: solving the problem for $n\times m$ grids, where n is small, say $n\leq 10$
 - How many subproblems should we consider?

Outline

Dynamic Programming

1-dimensional DP

2-dimensional DP

Interval DP

Tree DP

Subset DP

- Problem: given two strings x and y, find the longest common subsequence (LCS) and print its length
- Example:
 - x: ABCBDAB
 - y: BDCABC
 - " $\ensuremath{\texttt{BCAB}}$ " is the longest subsequence found in both sequences, so the answer is 4

Solving the LCS Problem

- Define subproblems
 - Let D_{ij} be the length of the LCS of $x_{1...i}$ and $y_{1...j}$
- Find the recurrence
 - If $x_i = y_j$, they both contribute to the LCS
 - ► $D_{ij} = D_{i-1,j-1} + 1$
 - Otherwise, either x_i or y_j does not contribute to the LCS, so one can be dropped
 - $D_{ij} = \max\{D_{i-1,j}, D_{i,j-1}\}$
 - Find and solve the base cases: $D_{i0} = D_{0j} = 0$

Implementation

Outline

- **Dynamic Programming**
- 1-dimensional DP
- 2-dimensional DP
- Interval DP
- Tree DP

Subset DP

Problem: given a string x = x_{1...n}, find the minimum number of characters that need to be inserted to make it a palindrome

- Example:
 - x: Ab3bd
 - Can get "dAb3bAd" or "Adb3bdA" by inserting 2 characters (one 'd', one 'A')

- Define subproblems
 - Let D_{ij} be the minimum number of characters that need to be inserted to make $x_{i...j}$ into a palindrome
- Find the recurrence
 - Consider a shortest palindrome $y_{1...k}$ containing $x_{i...j}$
 - Either $y_1 = x_i$ or $y_k = x_j$ (why?)
 - $y_{2...k-1}$ is then an optimal solution for $x_{i+1...j}$ or $x_{i...j-1}$ or $x_{i+1...j-1}$
 - Last case possible only if $y_1 = y_k = x_i = x_j$

Find the recurrence

$$D_{ij} = \begin{cases} 1 + \min\{D_{i+1,j}, D_{i,j-1}\} & x_i \neq x_j \\ D_{i+1,j-1} & x_i = x_j \end{cases}$$

Find and solve the base cases: $D_{ii} = D_{i,i-1} = 0$ for all i

▶ The entries of D must be filled in increasing order of j - i

- Note how we use an additional variable t to fill the table in correct order
- And yes, for loops can work with multiple variables

An Alternate Solution

- Reverse x to get x^R
- ▶ The answer is n L, where L is the length of the LCS of x and x^R

Exercise: Think about why this works

Outline

- **Dynamic Programming**
- 1-dimensional DP
- 2-dimensional DP
- Interval DP

Tree DP

Subset DP

Tree DP Example

 Problem: given a tree, color nodes black as many as possible without coloring two adjacent nodes

Subproblems:

- First, we arbitrarily decide the root node r
- B_v : the optimal solution for a subtree having v as the root, where we color v black
- $W_v :$ the optimal solution for a subtree having v as the root, where we don't color v
- Answer is $\max\{B_r, W_r\}$

Tree DP Example

Find the recurrence

- Crucial observation: once v's color is determined, subtrees can be solved independently
- If v is colored, its children must not be colored

$$B_v = 1 + \sum_{u \in \text{children}(v)} W_u$$

- If v is not colored, its children can have any color

$$W_v = 1 + \sum_{u \in \text{children}(v)} \max\{B_u, W_u\}$$

Base cases: leaf nodes

Outline

- **Dynamic Programming**
- 1-dimensional DP
- 2-dimensional DP
- Interval DP
- Tree DP
- $\mathsf{Subset}\ \mathsf{DP}$

Subset DP Example

 Problem: given a weighted graph with n nodes, find the shortest path that visits every node exactly once (Traveling Salesman Problem)

- Wait, isn't this an NP-hard problem?
 - Yes, but we can solve it in ${\cal O}(n^22^n)$ time
 - Note: brute force algorithm takes ${\cal O}(n!)$ time

Subset DP Example

Define subproblems

- $D_{S,v}$: the length of the optimal path that visits every node in the set S exactly once and ends at v
- There are approximately $n2^n$ subproblems
- Answer is $\min_{v \in V} D_{V,v}$, where V is the given set of nodes

Let's solve the base cases first

- For each node v, $D_{\{v\},v} = 0$

Subset DP

Subset DP Example

Find the recurrence

- Consider a path that visits all nodes in ${\cal S}$ exactly once and ends at v
- Right before arriving v, the path comes from some u in $S-\{v\}$
- And that subpath has to be the optimal one that covers $S-\{v\},$ ending at u
- We just try all possible candidates for \boldsymbol{u}

$$D_{S,v} = \min_{u \in S - \{v\}} \left(D_{S - \{v\}, u} + \cot(u, v) \right)$$

Subset DP

Working with Subsets

- When working with subsets, it's good to have a nice representation of sets
- Idea: Use an integer to represent a set
 - Concise representation of subsets of small integers $\{0, 1, \ldots\}$
 - If the ith (least significant) digit is 1, i is in the set
 - If the ith digit is 0, i is not in the set
 - e.g., $19 = \texttt{O10011}_{(2)}$ in binary represent a set $\{0,1,4\}$

Using Bitmasks

- Union of two sets x and y: $x \mid y$
- Intersection: x & y
- Symmetric difference: x ^ y
- ▶ Singleton set {*i*}: 1 << i</p>
- Membership test: x & (1 << i) != 0</p>

Conclusion

- Wikipedia definition: "a method for solving complex problems by breaking them down into simpler subproblems"
 - Does this make sense now?

- Remember the three steps!
 - 1. Defining subproblems
 - 2. Finding recurrences
 - 3. Solving the base cases

Subset DP