Shortest Path Algorithms

Jaehyun Park

CS 97SI Stanford University

June 29, 2015

Shortest Path Problem

- Input: a weighted graph G = (V, E)
 - The edges can be directed or not
 - Sometimes, we allow negative edge weights
 - Note: use BFS for unweighted graphs
- Output: the path between two given nodes u and v that minimizes the total weight (or cost, length)
 - Sometimes, we want to compute all-pair shortest paths
 - Sometimes, we want to compute shortest paths from \boldsymbol{u} to all other nodes

Outline

Floyd-Warshall Algorithm

Dijkstra's Algorithm

Bellman-Ford Algorithm

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

- Given a directed weighted graph G
- Outputs a matrix D where d_{ij} is the shortest distance from node i to j
- Can detect a negative-weight cycle
- Runs in $\Theta(n^3)$ time
- Extremely easy to code
 - Coding time less than a few minutes

Floyd-Warshall Pseudocode

- Initialize D as the given cost matrix
- For k = 1,...,n:
 − For all i and j:
 → d_{ij} := min(d_{ij}, d_{ik} + d_{kj})
- ► If d_{ij} + d_{ji} < 0 for some i and j, then the graph has a negative weight cycle</p>
- Done!
 - But how does this work?

How Does Floyd-Warshall Work?

- Define f(i, j, k) as the shortest distance from i to j, using nodes 1,..., k as intermediate nodes
 - $\ f(i,j,n)$ is the shortest distance from i to j

$$- f(i,j,0) = \cot(i,j)$$

 \blacktriangleright The optimal path for f(i,j,k) may or may not have k as an intermediate node

- If it does,
$$f(i, j, k) = f(i, k, k - 1) + f(k, j, k - 1)$$

- Otherwise, f(i, j, k) = f(i, j, k 1)
- \blacktriangleright Therefore, f(i,j,k) is the minimum of the two quantities above

Floyd-Warshall Algorithm

How Does Floyd-Warshall Work?

We have the following recurrences and base cases

$$- f(i,j,0) = \cot(i,j)$$

- $f(i, j, k) = \min(f(i, k, k-1) + f(k, j, k-1), f(i, j, k-1))$
- \blacktriangleright From the values of $f(\cdot,\cdot,k-1),$ we can calculate $f(\cdot,\cdot,k)$
 - It turns out that we don't need a separate matrix for each k; overwriting the existing values is fine
- That's how we get Floyd-Warshall algorithm

Outline

Floyd-Warshall Algorithm

Dijkstra's Algorithm

Bellman-Ford Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

- \blacktriangleright Given a directed weighted graph G and a source s
 - Important: The edge weights have to be nonnegative!
- Outputs a vector d where d_i is the shortest distance from s to node i
- Time complexity depends on the implementation:

– Can be $O(n^2+m), \, O(m\log n), \, \text{or} \, O(m+n\log n)$

- Very similar to Prim's algorithm
- Intuition: Find the closest node to s, and then the second closest one, then the third, etc.

Dijkstra's Algorithm

- Maintain a set of nodes S, the shortest distances to which are decided
- Also maintain a vector d, the shortest distance estimate from s
- Initially, $S := \{s\}$, and $d_v := cost(s, v)$
- Repeat until S = V:
 - Find $v \notin S$ with the smallest d_v , and add it to S
 - For each edge $v \to u$ of cost c:
 - $\blacktriangleright d_u := \min(d_u, d_v + c)$

Dijkstra's Algorithm

Outline

Floyd-Warshall Algorithm

Dijkstra's Algorithm

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Bellman-Ford Algorithm

- \blacktriangleright Given a directed weighted graph G and a source s
- Outputs a vector d where d_i is the shortest distance from s to node i
- Can detect a negative-weight cycle
- Runs in $\Theta(nm)$ time
- Extremely easy to code
 - Coding time less than a few minutes

Bellman-Ford Pseudocode

• Initialize $d_s := 0$ and $d_v := \infty$ for all $v \neq s$

• For
$$k = 1, ..., n - 1$$
:

- For each edge $u \rightarrow v$ of cost c:
 - $\blacktriangleright \ d_v := \min(d_v, d_u + c)$
- For each edge $u \rightarrow v$ of cost c:

- If
$$d_v > d_u + c$$
:

Then the graph contains a negative-weight cycle

Why Does Bellman-Ford Work?

- A shortest path can have at most n-1 edges
- At the kth iteration, all shortest paths using k or less edges are computed
- ▶ After n-1 iterations, all distances must be final; for every edge $u \to v$ of cost c, $d_v \le d_u + c$ holds
 - Unless there is a negative-weight cycle
 - This is how the negative-weight cycle detection works

System of Difference Constraints

- Given m inequalities of the form $x_i x_j \leq c$
- ► Want to find real numbers x₁,..., x_n that satisfy all the given inequalities

Seemingly this has nothing to do with shortest paths
 But it can be solved using Bellman-Ford

Graph Construction

- Create node i for every variable x_i
- Make an imaginary source node s
- Create zero-cost edges from s to all other nodes
- Rewrite the given inequalities as $x_i \leq x_j + c$
 - For each of these constraint, make an edge from $j \mbox{ to } i$ with cost c

 \blacktriangleright Now we run Bellman-Ford using s as the source

What Happens?

▶ For every edge $j \rightarrow i$ with cost c, the shortest distance dvector will satisfy $d_i \leq d_j + c$

- Setting $x_i = d_i$ gives a solution!

- What if there is a negative-weight cycle?
 - Assume that $1 \rightarrow 2 \rightarrow \cdots \rightarrow 1$ is a negative-weight cycle
 - From our construction, the given constraints contain $x_2 \le x_1 + c_1$, $x_3 \le x_2 + c_2$, etc.
 - Adding all of them gives $0 \leq (\text{something negative})$
 - i.e., the given constraints were impossible to satisfy

Bellman-Ford Algorithm

System of Difference Constraints

- ► It turns out that our solution minimizes the span of the variables: max x_i min x_i
- We won't prove it
- This is a big hint on POJ 3169!