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1 The Basic Reproduction Number in a Nutshell

The basic reproduction number, R0, is defined as the expected number of secondary cases
produced by a single (typical) infection in a completely susceptible population. It is important
to note that R0 is a dimensionless number and not a rate, which would have units of time−1.
Some authors incorrectly call R0 the “basic reproductive rate.”

We can use the fact that R0 is a dimensionless number to help us in calculating it.

R0 ∝
(

infection

contact

)
·
(

contact

time

)
·
(

time

infection

)
More specifically:

R0 = τ · c̄ · d (1)

where τ is the transmissibility (i.e., probability of infection given contact between a suscepti-
ble and infected individual), c̄ is the average rate of contact between susceptible and infected
individuals, and d is the duration of infectiousness.

2 The SIR Epidemic Model

It is pretty clear how we calculate R0 given information on transmissibility, contact rates, and
the expected duration of infection. But how do we know that this quantity defines the epidemic
threshold of a particular infection? To understand this, we need to formulate an epidemic model.
The model we use is called an SIR model, where SIR stands for “Susceptible-Infected-Removed.”

For simplicity, we will deploy several assumptions:

1. Constant (closed) population size, N
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2. Constant rates (e.g., transmission, removal rates)

3. No demography (i.e., births and deaths)

4. Well-mixed population

A well-mixed population is one where any infected individual has a probability of contacting
any susceptible individual that is reasonably well approximated by the average. This is often
the most problematic assumption, but is easily relaxed in more complex models.

In our closed population of N individuals, say that S are susceptible, I infected, and R are
removed. Write s = S/N , i = I/N , r = R/N to denote the fraction in each compartment.

The SIR model is then:

ds

dt
= −βsi (2)

di

dt
= βsi− νi (3)

dr

dt
= νi (4)

where β = τ c̄ and is known as the effective contact rate, ν is the removal rate. By assumption
all rates are constant. This means that the expected duration of infection is simply the inverse
of the removal rate: d = ν−1.

What are the conditions for an epidemic? An epidemic occurs if the number of infected
individuals increases, i.e., di/dt > 0

βsi− νi > 0

βsi

ν
> i

At the outset of an epidemic, nearly everyone (except the index case) is susceptible. So we
can say that s ≈ 1. Substituting s = 1, we arrive at the following inequality

β

ν
= R0 > 1

Since β = τ c̄ and d = ν−1, we see that we have derived our expression for R0 given in
equation 1. This little bit of mathematical trickery explains why we have that cumbersome
phrase “in a completely susceptible population” tacked onto our definition for R0.

2.1 Heterogeneous Contact

Following the insights of Hethcote and Yorke (1984) on the role of partnership heterogeneity
in permitting continued gonorrhea transmission, Anderson et al. (1986) derived an analytical
relationship for the impact of such behavioral heterogeneity on the basic reproduction number
for HIV infection.
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Begin again with a population of N individuals that is divided into k subgroups, Ni, where
i is the average number of sexual partners per unit time. Ni = Npi, where pi is the proportion
of the population in the ith activity class. We use an SI model, since there is no recovery from
HIV infection (at least there wasn’t in 1986).

Assume (and this is a big assumption) that the risk of transmission increases linearly with the
average number of partners. Let λ = τI/N be the force of infection, where τ is the probability
of transmission given contact.1 Thus, the rate of formation of new infections in the ith activity
class is iλ. Let Xi(t) and Yi(t) be the number of susceptible and infectious individuals in activity
class i respectively. Our SI model is thus written as:

dXi

dt
= −iλXi (5)

dYi
dt

= iλXi − νYi (6)

At time t, assuming proportionate mixing (another big assumption) the overall force of
infection is:

λ(t) =
τ
∑

i iYi(t)∑
i iNi(t)

(7)

Integrate equation 5 to get

Xi(t) = Ni exp [−iψ(t)] , (8)

where ψ(t) is simply the summed force of infection up to time t:

ψ(t) =

∫ t

0
λ(g)dg.

Substitute 7 into 6 and sum to produce a differential equation for λ(t):

dλ

dt
= λ

(
τ
∑
i

i2e−iψpi/
∑
i

ipi − ν

)
. (9)

At the outset of an epidemic, we can assume that approximately everyone in each activity
class is susceptible (i.e., Xi ≈ Ni) and the summed force of infection is zero, ψ = 0, since there’s
been no epidemic yet! This simplifies equation 9 considerably. Note that, after simplification, the
term in the numerator (

∑
i i

2pi) is the expectation of a squared variable, IE(i2). This is related
to variance, which by definition is \V(i) = IE(i−E(i))2 = IE(i2)−IE(i)2. So IE(i2) = IE(i)+\V(i).
The denominator (

∑
i ipi) is the expected (or mean) number of contacts IE(i). Call the variance

in contacts σ2 and the mean number of contacts µ. Noting that β = τµ and defining the
coefficient of variation as c = σ/µ, we get the relationship:

1Anderson et al. (1986) use β for this probability, but this is confusing given more current usage where β
is more conventionally the product of transmissibility and the mean rate of contact between susceptibles and
infectious individuals. We therefore use τ in the derivation rather than β.
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dλ

dt
= λ

[
β(1 + c2)− ν

]
. (10)

Solving for λ̇ > 0, we recover the value of R0 for heterogeneous contacts.

R0 = R(M)
0 (1 + c2), (11)

where R(M)
0 is the mean-field solution for R0.

3 Epidemic Thresholds in Structured Populations

3.1 Next Generation Matrix: Intuitive Approach

If R0 is the number of secondary infections produced by a single typical infection in a rarefied
population, how do we define it when there are multiple types of infected individuals. For
example, what is a typical infection in a vector-borne disease like malaria? What about a
sexually transmitted infection where there are large asymmetries in transmissibility (like HIV)?
Or what about a multi-host pathogen like influenza?

It turns out that there is a straightforward extension of the theory for structured epidemic
models. The mathematics behind this theory is not especially difficult, but it does involve scary
German terms that are not familiar to the non-engineers in our midst. The key concept is that
we now need to average the expected number of new infections over all possible infected types.

Assume that we have a system in which there are multiple discrete types of infected individ-
uals (e.g., mosquitoes and humans; women and men; or humans, dogs, and chickens). We define
the next generation matrix as the square matrix G in which the ijth element of G, gij , is the
expected number of secondary infections of type i caused by a single infected individual of type
j, again assuming that the population of type i is entirely susceptible. That is, each element of
the matrix G is a reproduction number, but one where who infects whom is accounted for.

Once we have G, we are one step away from R0. The basic reproduction number is given
by the spectral radius of G. The spectral radius is the also known as the dominant eigenvalue
of G. The next generation matrix has a number of desirable properties from a mathematical
standpoint. In particular, it is a non-negative matrix and, as such, it is guaranteed that there
will be a single, unique eigenvalue which is positive, real, and strictly greater than all the others.
This is R0.

For illustrative purposes, we will limit our discussion to the case where there are two classes
of infected individual. The next generation matrix is thus 2× 2. For the 2× 2 matrix, there is a
fairly simple formula for the eigenvalues that everyone who took algebra in high school should
know. Define

G =

[
a b
c d

]
The eigenvalues of G are:

λ± =
T

2
±
√

(T/2)2 −D
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where T = a+ d is the trace and D = ad− bc is the determinant of matrix G.
Say you have a sexually transmitted disease in a completely heterosexual population. Define

f as the expected number of infected women and m as the expected number of infected men
given contact with a single infected member of the opposite sex in a completely susceptible
population. The next generation matrix is

G =

[
0 f
m 0

]
R0 is thus

√
mf . It is worth noting that this is the geometric mean of the expected number

of female and male secondary cases.
When you have more than two discrete types of infectious classes, the formula for calculating

the eigenvalues is not as simple, but the same ideas apply. In practice, we typically calculate
eigenvalues numerically using software like R, Matlab, or Mathematica.

3.2 Next Generation Matrix: More Formal Approach

A review paper by Heffernan et al. (2005) provides a nice readable introduction for calculating
R0 in structured population models. The notation I use here follows their usage.

Consider the next generation matrix G. It is comprised of two parts: F and V −1, where

F =

[
∂Fi(x0)

∂xj

]
(12)

and

V =

[
∂Vi(x0)

∂xj

]
(13)

These are square matrices of the partial derivatives of new infections (Fi) and transfers
between different compartments (Vi). The rank of these matrices is the number of distinct
classes of infections. For example, in a simple two-sex SIR model, the next generation matrix
would be 2×2 since there are two classes of infection (i.e., female and male). x0 is the disease-free
equilibrium state. This matrix should be non-negative, irreducible, and primitive.
R0 is then the dominant eigenvalue of the matrix G = FV −1.

Example: SEIR Epidemic Consider a Susceptible-Exposed-Infected-Removed (SEIR) Epi-
demic. This is an appropriate model for a disease where there is a considerable post-infection
incubation period in which the exposed person is not yet infectious.

The simple SEIR model consists of a set of four differential equations:

Ṡ = −βSI + λ− µS (14)

Ė = βSI − (µ+ k)E (15)

İ = kE − (γ + µ)I (16)

Ṙ = γI − µR (17)
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Figure 1: State diagram for the SEIR model. β is the effective contact rate, λ is the “birth”
rate of susceptibles, µ is the mortality rate, k is the progression rate from exposed (latent) to
infected, γ is the removal rate.

where β is the effective contact rate, λ is the “birth” rate of susceptibles, µ is the mortality rate,
k is the progression rate from exposed (latent) to infected, γ is the removal rate.

Note that in the absence of infection, the equilibrium number of susceptible is S∗ = λ/µ.
To calculate the next generation matrix for the SEIR model, we need to enumerate the

number of ways that (1) new infections can arise and (2) the number of ways that individuals
can move between compartments. There are two disease states but only one way to create new
infections. New infections arise through the exposed class. There are only two infection classes
E and I. Our F matrix collects the partial derivatives of the rate of new infections with respect
to changes in the infection classes:

F =

(
0 βλ

µ

0 0

)
, (18)

where we substitute the disease-free equilibrium for S.
The V matrix collects the partial derivatives of the various ways to move between the two

infection states:

V =

(
k + µ 0
−k γ + µ

)
(19)

R0 is the leading eigenvalue of the matrix FV −1. This is reasonably straightforward to
calculate since FV −1 is simply a 2× 2 matrix.

R0 =
kβλ

µ(k + µ)(γ + µ)
(20)

It is interesting to note that R0 is also the product of the rate of production of (1) new
exposures and (2) new infections, as it should be.
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4 What is a Generation?

In demography, R0 represents the ratio of total population size from the start to the end of
a generation, which is, roughly, the mean age of childbearing. R0 = erT , where r is the in-
stantaneous rate of increase of the population. So what is a generation in an epidemic model?
Generations in epidemic models are the waves of secondary infection that flow from each previ-
ous infection. So, the first generation of an epidemic is all the secondary infections that result
from infectious contact with the index case, who is of generation zero. If Ri denotes the repro-
duction number of the ith generation, then R0 is simply the number of infections generated by
the index case, i.e., generation zero. Now, these numbers are typically small and are therefore
susceptible to random sampling error. Consequently, we talk about expected (i.e., averaged over
many epidemics) numbers of secondary cases produced by generation zero. See Diekmann and
Heesterbeek (2000) or Heesterbeek (2002) for a full discussion of this topic.

Figure 2 shows a schematic representation of an epidemic. The zeroth generation of the
epidemic is the index case – patient zero – indicated in red. The number of secondary infections
generated by the case in generation zero is R0 = 3. In the first generation (blue), R1 = 6/3 = 2.
The second generation (cyan) has R1 = 12/6 = 2.

5 Will An Epidemic Infect Everyone?

Will an epidemic, once it has taken off in a population, eventually infect everyone? In order to
answer this question, we want to know how i changes with respect to the “fuel” for the epidemic,
s.

We thus divide equation 4 by equation 3.

di

ds
= −1 +

ν

βs

We solve this equation by first multiplying both sides by ds

di = (−1 +
ν

βs
)ds

We then integrate and do a little algebra, yielding

log(s∞) = R0(s∞ − 1) (21)

This is an implicit equation for s∞, the number of susceptibles at the end of the epidemic.
When R0 > 1, this equation has exactly two roots, only one of which lies in the interval (0, 1).
Subtract log(s∞) from both sides and we get R0(s∞−1)− log(s∞) = 0. Call the whole left-hand
side y. y will have different values for different values of log(s∞). Only a couple of those will
satisfy equation 21. log(s∞) = 0 (i.e., everyone remains susceptible since there is no epidemic)
will always satisfy the requirement of y = 0 (plug it in and see!). When R0 > 1, the other
solution to y = 0 is the actual value of the final size. This is the one we really care about. If
R0 < 1, the only value that satisfies equation 21 is s∞ = 1. In words, at the end of the epidemic,
everyone will still be susceptible (i.e., no one gets infected).
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Figure 3 shows the solutions of equation 21 for various values of R0 > 1 in black. The
point where the curve crosses the horizontal axis is the value for s∞, the total fraction of the
population infected at the end of the epidemic. As R0 gets larger, the final size of the epidemic
gets larger as well. Figure 3 also shows the solution when R0 < 1 in red. The curve never crosses
the horizontal axis, meaning that essentially none of the total population becomes infected when
an infection is sub-critical.

The conclusion we can draw from all this analysis is that, in general, a fraction of the
population will escape infection. That is, s∞ < 1. This is one of the fundamental insights of
mathematical theory of epidemics.

6 Optimal Virulence: Pathogen Life History Evolution

But enough about you, let’s talk about me for a while. It’s instructive to think about epidemics
from the pathogen’s perspective. Pathogens bear biological information in their nucleic acids.
This information varies from one copy of a pathogen to another, and the ability of a pathogen
to persist and multiply can be a function of this variability. We therefore have fulfilled the
necessary and sufficient conditions for natural selection. Pathogens evolve.

We will consider a model in which transmissibility and disease-induced mortality trade-off
introduced by van Baalen and Sabelis (1995). This interaction is mediated by virulence, which
we will take to be proportional to parasite burden or parasitemia. More copies of a virus (say)
means that conditional on contact with an infected individual, the pathogen is more likely to
be transmitted. However, more viral copies means the host is sicker – and potentially dead.
Dead hosts do not transmit and very sick hosts are less likely to be up and interacting with
susceptibles.

Consider a directly-transmitted infection from which there is no recovery (e.g., Herpes Sim-
plex). The population experiences a baseline mortality rate, µ, and a disease-induced mortality
δ.

ds/dt = −βsi− µs (22)

di/dt = βsi− (µ+ δ)i, (23)

It is straightforward to show that the basic reproduction number is given by:

R0 =
β

µ+ δ
> 1, (24)

The parameter µ is independent of the epidemic, but the parameters, β and δ can conceivably
be functions of virulence, which we denote by x.

An Evolutionary Stable Strategy (ESS) is a phenotype that can not be invaded by a rare
mutant. Loosely speaking, it represents the optimal phenotype. The ESS virulence occurs where
dR0/dx = 0.

Differentiate 24 with respect to x using the quotient rule:

dR0

dx
=
β′(µ+ δ)− δ′β

(µ+ δ)2
= 0
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Rearranging and evaluating β(x) and δ(x) at the ESS values of x (denoted x∗), we have:

dβ(x)

dδ(x)
=

β(x∗)

µ+ δ(x∗)
(25)

This result has a nice geometric interpretation. The ESS virulence occurs where a line rooted
at the origin is tangent to the curve that relates β to δ. This result is known as the Marginal
Value Theorem and has applications in economics and ecology as well as epidemiology. The
MVT model for optimal virulence is plotted in figure 4. In the lower curve, the tangent line hits
further out on the horizontal axis and mortality is higher.

Frank (1996) has a very thorough review of models of the evolution of virulence.

7 Malaria Models and Their Many Quantities

Human Blood Index. Entomological Inoculation Rate. Vectorial Capacity. Human Biting
Rate. Malaria models are confusing. The complexity of this vector-borne disease means that
mathematical models describing it have many parameters and such a wide variety of people
have worked on malaria models over such a long time (Sir Ronald Ross received the Nobel Prize
in Medicine in 1911 for the first malaria model) that the menagerie of parameters and derived
quantities can be daunting to the student trying to understand malaria transmission biology
and control.

Smith and McKenzie (2004) have written a nice paper in which they summarize this welter
of information. More recently, Mandal et al. (2011) have presented a comprehensive review of
different malaria models that have been employed over the years. In these notes, I will follow
the notation of Smith and McKenzie (2004), which has become approximately standard.

C “Vectorial Capacity”: Transmission potential of a mosquito population in the absence of
Plasmodium. Expected number of humans infected per infected human per day, assuming

perfect transmission efficiency (i.e., b = c = 1). C = ma2e−gn

g = ma2pn

− log(p) .

EIR “Entomological Inoculation Rate.” EIR = maZ = εSZ = εβ = mgβ = ma2cXe−gn

g+acX .

HBI “Human Blood Index,” proportion of mosquitoes that have ever fed on a human HBI =
a/(a+ g).

HBR “Human Biting Rate.” HBR = ma = εS.

IC Individual Vectorial Capacity: the expected number of infectious bites from a single vector
after feeding on an infectious host. IC = cPeS.

Pe Probability of surviving the length of the Plasmodium incubation period. Pe = e−gn.

Q Proportion of mosquito blood meals on humans.

S “Stability Index,” the expected number of mosquito bites on humans over a mosquito’s life-
time. S = a/g. Because g is constant and lifespan is therefore exponentially distributed,
S is also the number of bites after a mosquito becomes infected.
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V Slope of β with respect to X evaluated at X = 0 (i.e., zero prevalence in humans). This value
describes the total contribution to vectorial capacity of a single mosquito over its lifetime.

X Proportion of humans who are infectious.

Y Proportion of infected mosquitoes. Y = acX
g+acX .

Z Proportion of mosquitoes infectious (“Sporozite Rate”). Z = acX
g+acX e

−gn = Y Pe.

β Lifetime transmission potential. β = a2bcXe−gn

g(g+acX) .

ε Rate of mosquito emergence per human per day.

η(A) Proportion of surviving mosquitoes age A that have ever bitten a human. η(A) = 1−e−aA.

λ(A) Proportion of a mosquito cohort surviving to age A. λ(A) = e−gA

µ(A) Proportion of mosquitoes age A that are infectious. µ(A) = 1− e−acX(A−n).

ν(A) Proportion of mosquitoes age A that ever become infected. ν(A) = 1− e−acXA. Note that
acX is the rate at which mosquitoes become infected.

a Expected number of bites on humans per mosquito. a = Qf .

b Transmission efficiency from infectious mosquito to susceptible human.

c Probability of infection of an uninfected mosquito by biting an infectious human.

f Mosquito feeding rate. 1/f is then the interval between blood meals.

g Force of mortality (i.e., instantaneous mortality rate) for mosquitoes. g = − log(p)

m Equilibrium mosquito density per human m = ε/g.

n Length of incubation period.

p Probability of a mosquito surviving 1 day. p = e−g.

7.1 Some Derived Quantities

It is first worthwhile reviewing expectation and weighted averages of continuous variables, since
these are used in many of the derived measures in malaria models.

Say we have a random variable X which can only take on values greater than or equal to
zero (as most continuously distributed quantities of biological interest are). The expected value
of X is given by

IE(X) =

∫ ∞
0

xf(x)dx,
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where f(x) is the probability density function of x. In words, you sum (i.e., integrate) the
product of all possible values of X and the probability of observing a particular value of X. By
definition, ∫ ∞

0
f(x)dx = 1.

Say that we want to weight an average by something that does not sum to unity. We can
force our weighting function to behave like a probability by dividing by its sum:

x̄w =

∫∞
0 xw(x)dx∫∞
0 w(x)dx

,

where x̄w stands for a weighted average of X and w(x) is a weight function.
The Human Blood Index (HBI) is a weighted average of η(A), the proportion of mosquitoes

age A that have ever bitten a human. We weight the η(A) values by the survivorship of
mosquitoes to age A.

HBI =

∫∞
0 η(A)λ(A)dA∫∞

0 λ(A)dA
=

a

a+ g
. (26)

The proportion of infected mosquitoes, Y , is the survival-weighted average of the age-specific
fraction infected ν(A)

Y =

∫∞
0 ν(A)λ(A)dA∫∞

0 λ(A)dA
=

acX

g + acX
. (27)

The proportion of mosquitoes that are infectious Z is a survival-weighted average of the
age-specific proportion infectious µ(A):

Z =

∫∞
0 µ(A)λ(A)dA∫∞

0 λ(A)dA
= Y Pe =

acX

g + acX
e−gn. (28)

The lifetime transmission potential is simply survival-weighted sum of the product of trans-
mission efficiency b, expected number of bites on humans per mosquito a, and the age-specific
proportion of mosquitoes infected µ(A). Note that this is not a weighted average, but is simply
a sum:

β =

∫ ∞
0

baµ(A)λ(A)dA =
a2bcXe−gn

g(g + acX)
(29)

7.2 So What is the Vectorial Capacity Anyway?

Vectorial capacity, C, is a measure which is essentially independent of the prevalence of Plas-
modium infection. It represents the transmission potential of a mosquito population. Vectorial
capacity is very similar to R0 in one crucial way. It represents the expected number of humans
infected per infected human per day (assuming perfect transmission) in a completely suscepti-
ble human population, X = 0. Once we put in transmissibility (b and c) and the duration of
infectiousness r, we have a measure directly analogous to R0.
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Vectorial capacity is the product of three quantities: (1) the emergence rate of mosquitoes
per human per day, ε, (2) the squared number of mosquito bites on humans after mosquitoes
become infectious (the stability index, S), and (3) the probability of a mosquito surviving the
Plasmodium incubation period, Pe. The stability index is squared because it takes two bites to
transit malaria: the one that infects the mosquito and the one that infects the person.

C = εS2Pe (30)

= mg

(
a

g

)2

e−gn (31)

=
ma2e−gn

g
=

ma2pn

− log(p)
(32)

These latter two expressions are both encountered in the literature (remember that p = e−g

and g = − log(p)).
It is worth noting that this last form is often referred to as the Ross Equation or the Ross-

MacDonald Equation, and is commonly used for vector-borne diseases. Smith et al. (2012)
note that because it lacks a canonical form, it is probably more accurate to refer to the Ross-
MacDonald family of equations.

7.3 R0 for a Simple Malaria Model

The simplest model for malaria is as follows:

Ẋ = mabY (1−X)− rX (33)

Ẏ = acX(e−gn − Y )− gY (34)

where a is the expected number of bites on humans per mosquito, m is equilibrium mosquito
density per human, n is length of incubation period, g is the daily force of mosquito mortality, b
is the transmission efficiency from infectious mosquito to susceptible human, c is the probability
of infection of an uninfected mosquito by biting an infectious human, X is the proportion of
infected humans, Y is the proportion of infectious mosquitoes.

We can calculate R0 from the next generation matrix:

F =

(
0 abm
ace−gn 0

)
and

V =

(
−r 0

0 −g

)
making

FV −1 =

(
0 −abm

g

−ace−gn

r 0

)
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The dominant eigenvalue of FV −1 is

R0 =

√
ma2e−gnbc

rg

It is important to note that Smith and McKenzie (2004), Smith et al. (2005), and Smith
et al. (2007) use R2

0, though the call it R0. Either way, its threshold behavior R0 > 1 remains
the same.

The derivation of R0 here is done for only the simplest model. Mandal et al. (2011) present a
variety of different malaria models and their associated values of R0. Smith et al. (2007) present
a series of more realistic formulae for R0 which allow for heterogeneous biting, immunity, and
finite population effects, all features of real environments that can substantially change R0.

8 Epidemics in Multi-Host Communities

8.1 A Graphical Approach

Bob Holt and colleagues present a very important heuristic framework for thinking about the
persistence of pathogens in multi-species communities (Holt et al. 2003).

All of the following figures depict zero-growth isoclines for the pathogen. plot the mix of
species at which R0 = 1. The interior of the space inscribed by the isocline represents the
space where the pathogen can not be maintained in the community. is a central technique in
theoretical ecology. It is also widely used in microeconomics, where such curves are typically
called “indifference curves.”

The basic theory for this work is given in Tilman’s classic volume (Tilman 1982). All but
the last of the isoclines were anticipated by Tilman in his work on competition and the structure
of ecological communities.

The basic model – the “noninteraction” case (fig. 5) – is one in which pathogen persistence
is predicated on a critical threshold of either species 1 or species 2. The pathogen goes extinct
only if both species are under their critical densities (N1 and N2).

In the “weakly interacting” case (fig. 6), a mix of species makes pathogen persistence more
likely than a monoculture of either species. That is, a small number of S1 can substitute, albeit
inefficiently, for S2 being below threshold. (and vice-versa)

The “substitutable” case (fig. 7) characterizes a community where S1 and S2 efficiently
substitute for each other. A constant ratio of substitutability (the slope of the line) applies at
all host densities. In the special case of perfect substitutability applies when a single S1 can be
substituted for a singe S2 with regard to maintaining pathogen persistence.

It between-host transmission is more efficient than within-host transmission, the isocline
bends inward (fig. 8). Thus, in the “complementary” case, pathogen persistence is much more
likely in a multi-host community than in single host populations.

For vector-borne pathogens with complex life cycles, passage through an intermediate host is
obligate for the perpetuation of the transmission cycle. Frequently, passage through the ultimate
host is also obligate. Elimination of either intermediate or ultimate hosts from the community
will lead to pathogen extinction. Thus, in the “alternating” case (fig. 9), a critical threshold
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exists for one or both species. As long as both host species co-exist above their minimum critical
densities, the presence of a mix of both hosts makes pathogen persistence more efficient – this
is why the isocline bends inward.

The “inhibitory” case (fig. 10) is unusual, as the slope of the isocline is positive. For the given
plot, a critical threshold of S1 is required for pathogen persistence. The presence of any of S2
means that there must be more S1. Pathogen persistence will be much less likely in multi-host
communities.

Holt et al. (2003) note that this particular isocline does not appear in Tilman’s original
typology for competitive communities. There are some very interesting applications in infec-
tious disease ecology that we will discuss in class. The first is the case of intact mammalian
communities in Eastern North American woodlands and their diluting effect on Lyme disease
transmission (LoGiudice et al. 2003). The second is discussed by Cohen and Gürtler (2001), in
which the presence of peri-domestic chickens acts as a sink for Chagas’ disease transmission.

Multi-host communities change our expectations regarding the pathogen evolution. Special-
ist pathogens are expected to evolve toward intermediate virulence (Lenski and May 1994), as
discussed in the van Baalen and Sabelis (1995) paper cited in section 6. For generalist pathogens,
hosts which are not essential for pathogen fitness will not exert a sufficient selective force to push
the pathogen toward reduced virulence. This is why some zoonoses are so pathogenic. For exam-
ple, Echinococcus multilocularis is a cestatode worm enzootic in Central European foxes. When
it spills over into human populations, the case fatality rate can exceed 98%!
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Figure 2: Graphical depiction of “generations” in an epidemic.
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Figure 3: Solutions of equation 21 for various values of R0 > 1. The solution of equation 21
when R0 < 1 is plotted in red.
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Figure 4: Marginal value theorem for optimal virulence. The ESS virulence occurs where a line
rooted at the origin is tangent to the curve that relates β to δ. Two curves are depicted. The
first curve shows a pathogen in which transmissibility increases relatively rapidly with mortality.
Point A indicates the optimal balance between β(x) and δ(x) under this case, and the optimal
virulence is indicated x∗. For the second curve, relative transmission is less efficient. Therefore,
the tangent line from the origin to the curve hits further out (B) along the mortality axis and
the optimal virulence is higher (x∗∗).
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