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Abstract

We analyze the effects of a large fiscal incentive for R&D investment in China that awards a lower
average corporate income tax rate to qualifying firms. The sharp incentives of the program generate
notches, or jumps, in firm values, and vary over time and across firm characteristics. We exploit
a novel link between survey and administrative tax data of Chinese firms to estimate investment
responses, the potential for evasion, as well as effects on productivity and tax payments. We find
large responses of reported R&D using a cross-sectional “bunching” estimator that is new in the
R&D literature. We also find evidence that firms relabel administrative expenses as R&D to qualify
for the program, and that about a third of the increase in R&D may be due to relabeling. These
effects imply user cost elasticities of 2 for the reported response, and 1.3 for the real response. Using
the panel structure of the data, we estimate that the program increased firm productivity by 1.2%
for targeted firms. Finally, we estimate a structural model of R&D investment and relabeling, and
simulate the effects of counterfactual policies. We recover an elasticity of real R&D to TFP of 9.8%,
and show that the cost-efficiency of the program depends on the selection of firms into the program.
These results are crucial ingredients for designing policies that trade-off corporate tax revenue with
productivity growth.
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It is widely believed that economic growth is highly dependent on innovation and, in particular, on
R&D investment. For this reason, governments around the world encourage R&D investment through
tax incentives. As China’s development through industrialization reaches a mature stage, the country’s
leaders have focused their efforts on fostering technology-intensive industries as a source of future growth
for the country, which has led to an explosive growth in R&D investment. Figure 1 compares this growth
to the experience of other countries and shows that China has now equalled or surpassed developed-
country levels of R&D intensity. This paper analyzes the effects the InnoCom program, a large fiscal
incentive for R&D investment in the form of a corporate income tax cut. We exploit a novel link between
tax return data and survey data as well as sharp and changing tax incentives to provide new estimates
of the effects of fiscal incentives on R&D investment and productivity growth.

This paper analyzes quasi-experimental variation in the InnoCom program to answer two sets of
questions that are of both policy and economic interest. First, is R&D investment responsive to fiscal
incentives and, if so, do firms engage in evasion or manipulation of reported R&D in response to the tax
incentives? Quantifying these effects is crucial for governments to determine the cost of the marginal
yuan of R&D investment in terms of foregone tax revenue. Second, what is the effect of fiscal incentives
on firm-level and aggregate productivity growth, and how much do firms value R&D investment in
terms of future profits? These questions are central to the decision of whether and to what degree
governments should encourage R&D investment through tax subsidies.

Answers to these questions are often confounded by the lack of large and plausibly exogenous
variation in tax incentives. Since R&D usually requires both fixed and adjustment costs, small fiscal
incentives are unlikely to have large effects on R&D investment, especially at the individual firm level.
A second concern is that, as firms with better prospects for innovation are likely to invest more heavily,
comparisons of investment and profitability across different firms yield upward biases in the value
of R&D investment to firms. In addition, an outstanding question is whether firm responses to tax
incentives for R&D investment correspond to real activity or to relabeling of expenses. If measured
R&D is contaminated by relabeling, this might result in an upwardly-biased estimate of the user cost
elasticity of R&D investment, and a downwardly-biased estimate of the R&D elasticity of TFP.

We overcome these concerns by leveraging an unusual and large fiscal incentive for R&D investment.
Before 2008, firms with an R&D intensity (R&D investment over revenue) above 5% qualified for
a special status as high-tech firms that was accompanied by a lower average tax rate of 15%—a large
reduction from the standard rate of 33%. After 2008, the government established three thresholds of 3%,
4%, and 6% for firms of different size categories. The use of average, as opposed to marginal incentives,
creates a notch in the corporate income tax that generates very large incentives for firms to invest in
R&D. The combination of administrative tax data and survey data provides a new way to precisely
measure a firm’s R&D investment, exposure to the fiscal incentives, as well as firm-level outcomes of
interest, such as productivity. In addition, we leverage the unusual detail in our administrative data to
analyze whether firms respond to the tax incentive by relabeling non-R&D expenses.

Overall, we find that firms are highly responsive to the tax incentives in the InnoCom program, and
that a significant fraction of the response is due to relabeling of non-R&D expenses. However, we find
the program led to large increases in productivity, and that accounting for relabeling behavior results
in larger estimates of the effects of R&D on productivity. We use these insights to simulate the effects
of alternative policies, and show that firm selection into the program plays a crucial role in determining
the effects of the policy on investment, relabeling, and aggregate productivity growth.

Our analysis proceeds in four steps. We first provide descriptive evidence that the R&D notches
have significant effects on firms’ reported R&D intensity, and that part of this response may be due



to relabeling of non-R&D expenses. We show that a large number of firms choose to locate at the
threshold, and that introducing the tax cut led to a large increase in R&D investment. We use a group
of firms unaffected by the incentive prior to 2008 to show that the bunching patterns are driven by
the tax incentive, and are not a spurious feature of the data. We then analyze relabeling responses by
exploiting the fact that, under Chinese Accounting Standards, R&D is reported as a subcategory of
administrative expenses. Our detailed tax data allows us to separate R&D from other administrative
expenses, which we use to show patterns consistent with a significant relabeling response.

Second, we develop a rich model of firm behavior where R&D investment and relabeling decisions
depend on tax incentives, the effect of R&D on productivity, the costs of evasion, as well as on het-
erogeneity in firm productivity and adjustment costs. Our analysis characterizes the profit function of
the firm that is indifferent between the level of R&D implied by the notch and a level of investment
below the notch. The model shows that as long firm productivity is smoothly distributed across the
population, the InnoCom program leads to excess bunching at the R&D notch relative to a tax system
without a notch. We derive a bunching estimator that relates the bunching patterns to the percentage
increase in R&D following methods similar to those in Kleven and Waseem (2013) and Saez (2010).
Our model also predicts an increase in relabeling, and an increase in productivity that depends on the
effect of R&D on productivity, as well as on the fraction of the reported response that corresponds to
real activity. We then show that these predictions can be quantified empirically by linking our model
to new methods developed by Diamond and Persson (2016).

In our third step, we provide causal estimates of the effects of the InnoCom program on reported
R&D investment, relabeling, and productivity, as well as on other outcomes of policy interest such as tax
revenues. We first use the bunching estimator to quantify the percentage increase in R&D investment
that is due to the tax incentive. Consistent with our descriptive evidence, we find large increases in
R&D investment of 30% for large firms, of 20% for medium firms, and of 11% for small firms in 2011.
These intent-to-treat estimates mask the behavior of complier and non-complier firms. On average,
firms that comply with the program increase investment by 46% for large firms, of 33% for medium
firms, and of 29% for small firms.

We then provide causal estimates of the InnoCom program on relabeling, productivity, and tax rev-
enues. We find estimates of intent-to-treat effects that confirm an increase in reported R&D investment
and a decrease in administrative costs. We calculate the elasticity of R&D investment to the change in
the user cost that is induced by the InnoCom program, and we find an elasticity of 2 for reported R&D,
and, once we account for relabeled administrative costs, an elasticity of 1.3 for real R&D investment.
Even though a significant fraction of the response is consistent with relabeling, we find persistent and
statistically significant effects of the InnoCom program on future productivity and profitability. In
particular, between 2009 and 2011, the program led to an increase of 5.9% in profitability, and 8.4% in
productivity for every 100% increase in reported R&D. While the effects of the program on profitability
lessen the fiscal cost of the government, we find that increasing reported R&D investment by 10% cost
the government a 8.8% decrease in corporate tax revenues.

Finally, we propose a simulated method of moments approach to estimate the structural parameters
of our model, including costs of evasion, the effect of R&D on TFP, and the distributions of fixed and
adjustment costs. We then use these estimates to simulate the effects of counterfactual policies that
change the current policy parameters. We find that firm selection into the program plays a crucial role in
determining the economic effects of the program. In particular, if firms have heterogeneous adjustment
costs, the firms that participate may not be the most productive. Selection into the program generates
misallocation where low productivity firms with low adjustment costs may receive large tax benefits



that do not accrue to high productivity firms with high adjustment costs. This lowers the efficiency of
the policy and results in a lower ratio of productivity growth to tax expenditures.

The paper relates to several literatures. First, this paper is related to a large literature analyzing tax
incentives for R&D investment. Becker (2015) and Hall and Van Reenen (2000) survey evidence of R&D
tax incentives, and Hall and Van Reenen (2000) find a dollar-for-dollar effect of tax credits on R&D
investment. The recent empirical evidence so far is concentrated in OECD countries, where micro-level
data of firm innovation and/or tax records have become increasingly available.! While earlier work
typically relied on matching and panel data methods, there is an emerging literature that explores the
impact of tax incentives on R&D incentives in a quasi-experimental setup, in particular, by exploiting
policy discontinuities. Examples include Agrawal et al. (2014), Bgler et al. (2015), Dechezlepretre et al.
(2016), Eini6 (2014), Guceri and Liu (2015), and Rao (2015). To our knowledge, this is the first paper
to analyze R&D tax incentives in a large emerging economy such as China.? It is also one of the first
studies that combine administrative tax data with industry survey data to study the link between fiscal
incentives, R&D investment, and firm-level productivity.

Second, a previous literature has long documented “relabeling” as an important challenge to iden-
tifying the real impact of tax incentive on R&D (see Hall and Van Reenen (2000), Eisner et al. (1984),
and Mansfield and Switzer (1985)). This issue is likely more severe in a developing economy setting
(Bachas and Soto (2015), Best et al. (2015)). Our paper exploits unique data on firm expenditures to
jointly model and estimate firms’ R&D bunching and relabeling behaviors. Our policy simulations also
inform our understanding of the efficiency of different policies when firms may engage in evasion, as
in Best et al. (2015). In particular, size-based policies may be preferable to investment tax credits in
developing countries if they substantially increase the cost of evasion.

Third, our paper is related to a recent literature that uses non-parametric methods to recover
estimates of behavioral responses to taxation by analyzing the effects of sharp economic incentives, such
as kinks or notches in tax schedules, on aggregate patterns of “bunching” in distributions of economic
activity.? As detailed below, the R&D tax incentive creates a jump, or notch, in the after-tax profit
function, generating similar incentives to those in Kleven and Waseem (2013) and Best et al. (2015).
However, in contrast to this literature, the incentive generated by the notch targets a particular action,
increasing R&D investment. We exploit this feature of our setting to estimate treatment effects of the
program on R&D investment, relabeling, tax revenues, and growth in productivity using an estimator
recently developed by Diamond and Persson (2016). Finally, we develop a simulated method of moments
estimation approach that combines the estimates of treatment effects on relabeling and productivity

with the bunching estimator to recover structural parameters.*

'For instance, see Agrawal et al. (2014) and Czarnitzki and Licht (2006) for Canada, Einié (2014) for Finland, Mulkay
and Mairesse (2013) for France, Almus and Czarnitzki (2003) and Hussinger (2008) for Germany, Lach (2002) for Israel,
Boler et al. (2015) for Norway, Gonzélez and Pazé (2008) for Spain, Griffth et al. (2001), Guceri and Liu (2015), and
Dechezlepretre et al. (2016) for the UK, and Rao (2015) for the U.S.

*Ding and Li (2015) provide a recent review of the effects of Chinese innovation policy.

3These methods, pioneered by Saez (2010), have been used by researchers analyzing a wide range of behaviors. Kleven
(2015) provides a recent survey. Our project is most related to a smaller literature analyzing firm-level responses (Devereux
et al. (2014), Patel et al. (2016), Liu and Lockwood (2015), Almunia and Lopez-Rodriguez (2015), Bachas and Soto (2015))
as well as to papers analyzing the effect of constraints to optimizing behavior (Kleven and Waseem (2013), Best and Kleven
(2015), Gelber et al. (2014)).

4This model allows us to clarify the interpretation of cross-sectional estimates by addressing issues discussed in Einav
et al. (2015). Similarly, Blomquist and Newey (2017) note that cross-sectional estimators may not identify structural
parameters without variation in the non-linear incentives. We use data from an unaffected set of firms to overcome this
concern, and we also study the sensitivity of our structural parameters to changes in the reduced-form moments using the
methods of Andrews et al. (2017).



The rest of the paper is organized as follows. Section 1 provides a description of the fiscal incentive
for R&D investment, and discusses the potential for relabeling of R&D expenses in China. Section 2
discusses the data, and Section 3 provides descriptive evidence of the effects of the tax incentive on
R&D investment and relabeling. Section 4 develops a model of R&D investment that links traditional
estimates of productivity with bunching estimators. Section 5 describes our results on the real and
evasion responses to the InnoCom program, and how accounting for evasion affects estimates of the
effects of R&D on firm-level productivity. Section 6 culminates with the estimation of the structural
parameters of the model, and the simulation of counterfactual policies; Section 7 concludes.

1 Fiscal R&D Incentives and the Chinese Corporate Income Tax

China had a relatively stable Enterprise Income Tax (“EIT”) system in the early part of our sample
from 2000 - 2007. During that period, the EIT ran on a dual-track tax scheme with the base tax rate for
all “domestic owned” enterprises (DOE) at 33% and “foreign owned” enterprises (FOE) ranging from
15% to 24%.°

Our project analyzes the “InnoCom” program, which targets qualifying “high tech” enterprises
(HTE) and provides them a flat 15% income tax rate. This program is most important for DOEs,
including both state-owned and domestically private-owned enterprises, as they are not eligible for
many other tax breaks. Prior to 2008, the certification process was administered by the local Ministry of
Science and Technology, which established a long list of prerequisites. The most important determinants
for certification are the following:®

1. At least 30% of the firm’s (technician) employees must have a college degree, and at least 10% of
the firm’s total employment should be devoted to R&D.

2. The firm’s R&D intensity (ratio of R&D expenditure to total sales) must be greater than or equal
to 5%. In addition, more than 60% percent of the R&D expenditure must be incurred within
China.

3. The sales of “high tech” products must account for more than 60% of the firm’s total sales.

The program thus generates a large fiscal incentive to invest more than 5% of sales on R&D, which
we model in Section 4.

5The preferential treatment of FOEs has a long history dating to the early 1990s, when the Chinese government started
to attract foreign direct investment in the manufacturing sector. It offered all new FOEs located in the Special Economic
Zone (SEZ) and Economic and Technology Development Zone (ETDZ) a reduced EIT of 15%. It also offered a reduced
EIT of 24% for all FOEs located in urban centers of cities in the SEZs and ETDZs. The definition of “foreign owned” is
quite broad: it includes enterprises owned by Hong Kong, Macau, and Taiwan investors. It also includes all joint-venture
firms which has foreign share of equity larger than 25%. The effective tax rates of FOEs are even lower since most had
tax holidays, typically tax free for the first 2 years or when the firm becomes profitable, and then half the EIT rate for
the subsequent 3 years. In addition to the special tax treatments of FOEs, the Chinese government started the first round
of the “West Development” program in 2001. Both DOEs and FOEs that are located in west China and are part of
state-encouraged industries enjoy a preferential tax rate of 15%. West China is defined as the provinces of Chongqing,
Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang, Inner Mongolia and Guangxi. Finally,
there is also a small and medium enterprise tax break, which is common in other countries, but the revenue threshold is
as low as $50, 000 and is effectively irrelevant for our sample.

5The original government regulations also require that the firms operate in a number of selected state-encouraged
industries. However, due to the breadth and vagueness of these industry definitions, this requirement does not constitute
a substantial hurdle.



Corporate Income Tax Reform of 2008

In addition to leveraging the cross-sectional implications of the InnoCom program, we also exploit
changes in tax rates across time. The Chinese government implemented a major corporate tax reform
in 2008 in order to eliminate the dual-track system based on domestic/foreign ownership and established
a common rate of 25%.7 In concert with this reform, the Ministry of Science and Technology reformed
the InnoCom program by streamlining the application process, teaming-up with the Ministry of Finance
and the National Tax Bureau to improve compliance, and by changing the threshold requirement of
R&D intensity as a function of firms’ sales. The post-2008 requirements are as follows:

1. Firms with sales below 50 million RMB must maintain an R&D intensity at, or above 6%.

2. Firms with sales above 50 million RMB, but below 200 million RMB must maintain an R&D
intensity at, or above 4%.

3. Firms with sales above 200 million RMB must maintain an R&D intensity at, or above 3%.
4. More than 60 percent of R&D expenditures must be incurred within China

The rest of the pre-2008 requirements remain in effect. In addition, the state authorities further require
that firms meet all these criteria in the previous three accounting years, or from whenever the firm is
registered, in case the firm is less than three years old.

The InnoCom program has several desirable characteristics that allow us to avoid common problems
that arise when estimating the effects of fiscal incentives on R&D investment. First, researchers often
lack plausibly exogenous variation in fiscal incentives. As firms with better prospects for innovation are
likely to invest more in R&D, comparisons of investment and profitability across firms with different
levels of R&D may result in upwardly biased estimates of the value of R&D investment to firms. The
InnoCom program generates sharp counterfactual predictions for the distribution of R&D intensity
by changing firms’ average tax rate, which generates a notch in firms’ after-tax value functions. This
allows us to use cross-sectional estimation methods (e.g., Saez (2010), Kleven and Waseem (2013), and
Diamond and Persson (2016)) to identify causal effects of the tax incentives on firm investment and
productivity.

A second concern is that, since R&D usually requires large fixed costs, even randomly assigned
incentives might not have the statistical power to detect meaningful responses. Since the average tax
rate of the firm can fall from 33% to 15%, the incentives implied by this program are economically very
important and may lead firms to invest in projects with substantial fixed costs.

Potential for Evasion and Relabeling

A final concern is that the reported R&D investment might not represent a real change in investment,
but instead might be a form of tax evasion. This concern is important when interpreting the reported
elasticity of R&D investment as real activity, and may loom large when measuring the effects of R&D
investment on productivity. To our knowledge, the current literature is not able to circumvent this
problem. We now discuss features of the institutional environment that limit some forms of evasion and
suggest the that the most likely form of evasion is the mis-categorization of administrative expenses as
research expenses.

"Some of the existing previous tax breaks for FOEs were also gradually phased-out. For instance, FOEs which previously
paid an EIT of 15% paid a tax rate of 18% in 2008, 20% in 2009, 22% in 2010, and 24% in 2011. In contrast, the “West
Development” program will remain in effect until 2020.



The hypothesis that the entirety of the response is due to evasion is likely ruled out by the require-
ments of the InnoCom certification in order to obtain the preferential tax rate. First, the certification
process requires firms to maintain the required R&D intensity for a period of three years and firms
often use specialized consulting firms to ensure they satisfy the standards set by the Ministry of Science
and Technology. Second, part of this certification includes an audit of the firm’s tax and financial
standings. In addition, the Chinese State Administration of Tax, together with the Ministry of Science
and Technology, conducts regular auditing of the InnoCom HTE firms. These factors likely eliminate
the possibility for all-out evasion.

A second unlikely form of evasion is the reporting of “phantom expenses.” China relies on a value-
added tax (VAT) system with third-party reporting, and China’s State Administration of Tax (SAT)
keeps records of transaction invoices between a given firm and its third-party business partners. As
in other settings (e.g., Kleven et al. (2011)), it is hard for companies to report expenses that are not
reported by third-party vendors. For these reasons, it is very hard, if not impossible, for firms to
completely make up “phantom” R&D expenses.

From conversations with the State Administration of Tax as well as corporate executives, we rec-
ognize that the most important source of evasion is expense mis-categorization. Specifically, in the
Chinese Accounting Standard, R&D is categorized under “Administrative Expenses,” which also in-
cludes various other expenses that are related to corporate governance.® This raises the possibility that
firms reallocate the non-R&D administrative expenditure into R&D in order to over-report their R&D
intensity. These type of expenses are easily shifted, and it may be hard to identify relabeling in any
given audit. In particular, since the threshold of R&D depends on sales, it might be hard for firms to
perfectly forecast their expenses. A firm with unexpectedly high sales, for instance, might choose to
characterize administrative expenses as R&D in order to meet the InnoCom requirement in any given
year. For these reasons, we choose to focus on this form of evasion since the institutional setting limits
other types of evasion.

Our empirical strategy to detect relabeling leverages these institutional features and exploits the
detailed cost reporting in our administrative tax data. In particular, our administrative tax data
contains detailed information on the breakdown of operating expenses and R&D expenses. This allows
us to test whether firms that respond to the InnoCom program change spending in categories that are
more likely to be subject to manipulation, such as administrative or clerical services.

2 Data and Summary Statistics

We connect three large firm-level databases of Chinese manufacturing firms. The first is the relatively
well-studied Chinese Annual Survey of Manufacturing (ASM), an extensive yearly survey of Chinese
manufacturing firms. The ASM is weighted towards medium and large firms, and includes all Chinese
manufacturing firms with total annual sales of more than 5 million RMB (approximately $800,000),
as well additional state-owned firms with lower sales. This survey provides detailed information on
ownership, location, production, and the balance sheet of manufacturing firms. This data allows us to
measure total firm production, sales, inputs, and, for a few years, detailed skill composition of the labor
force. We supplement this data with a separate survey by the Chinese National Bureau of Statistics
that includes firms’ reported R&D. We use these data for years 2006—2007.

The second dataset we use is the administrative enterprise income tax records from Chinese State

8Examples include administrative worker salary, business travel expenses, office equipments, etc.



Administration of Tax (SAT). The SAT is the counterpart to the IRS in China and is in charge of
tax collection and auditing. In addition, the SAT supervises various tax assistance programs such
as the InnoCom program. The SAT keeps its own firm-level records of tax payments as well other
financial statement information used in tax-related calculations. We have acquired these administrative
enterprise income tax records from 2008-2011, which allows us to construct detailed tax rate information
for individual manufacturing firms. We also use these data to construct residualized measures of firm
productivity.” The scope of the SAT data is slightly different from the ASM, but there is a substantial
amount of overlap for the firms which conduct R&D. For instance, for the year of 2008, the share of
total R&D that can be matched with ASM records is close to 85%.

The third dataset we use is the list of firms that are enrolled in the InnoCom program from 2008—
2014. For each of these manufacturing firms, we have the exact Chinese name, and the year it was
certified with high-tech status. This list is available from the Ministry of Science and Technology
website, and we have digitized it in order to link it to the SAT and ASM data. We use these data to
cross-validate the high-tech status recorded in the SAT data.

Summary Statistics

Table 1 reports descriptive statistics of all the firms in our analysis sample. In panel A, we report the
summary statistics of our main dataset from the SAT for all surveyed manufacturing firms from 2008 to
2011. As discussed in Section 1, the 2008 tax reform creates an interesting pre- and post-test for FOEs,
as these firms did not have an incentives to obtain the high-tech certification prior to 2008. Similarly,
the change in the R&D intensity threshold across size-groups allows us to trace the response of firms
across time.

Our data are comprised of around 1.2 million observations and about 300,000 firms in each sample
year. On average, 8% of the sample reports positive R&D. Among firms with positive R&D, the ratio
of R&D to sales ratio, i.e. R&D intensity, is highly dispersed. The 25th-, 50th-, and 75th-percentile are
0.3%, 1.5%, and 4.3%, respectively. The administrative expense to sales ratio, which we use as a measure
of misreporting to detect evasion, is close to 5.8% at the median. While our measure of residualized
TFP is normalized by construction, the distribution of productivity has a reasonable dispersion with
an interquantile range of 1.8%.

We also report input and output variables that we used to construct measures of firm performance.
As in standard micro-level producer data, these variables are all quite dispersed and skewed, and their
means are much larger than their medians. For instance, the mean sales is 118.2 million RMB, while
the median firm’s sales is 10.6 million RMB. Similarly, the average number of workers is 175, while the
median is 48. The summary statistics are quite stable over the four years, which is why we only report
pooled moments.

In panel B, we report the summary statistics of Chinese manufacturing firms with R&D activity in
the Annual Survey of Manufacturing during the period 2006-2007. Since the National Statistical Office
of China stops reporting firm R&D activity after 2007, we mostly use these firms in our descriptive
evidence analysis. We have a similar sample size of around 300, 000 each year, although the firms in the
ASM sample are noticeably larger than those in the SAT sample. The difference is more pronounced
when we look at the lower quartile (i.e. 25%) of the distribution of sales, fixed assets, and the number
of workers. This is consistent with the fact that the ASM is weighted towards medium and large firms.
Interestingly, the firms in the ASM sample do not appear to invest more in R&D despite being larger.

9We discuss the details of this procedure in Appendix A.



The fraction of positive R&D firms is slightly higher than 10%, however, R&D intensity ranges from
0.1% to 1.7% at the 25th and 75th percentile in this sample.

3 Descriptive Evidence of Firms’ Responses to Tax Notches

In this section, we provide descriptive evidence suggesting that R&D investment by Chinese manu-
facturing firms is responsive to the fiscal incentives of the InnoCom program, and that part of this
response may be due to relabeling. In particular, we document stark bunching patterns precisely above
tax notches, and we show that the ratio of administrative expenses to sales drops sharply at the notch.

3.1 Bunching Response

We first analyze data from the post-2008 period as the phasing out of the dual-track system provides
for cleaner comparisons across firms. Moreover, the multiple tax notches based on firm size generate
rich variation in R&D bunching patterns.

Figure 2 plots the empirical distribution of the R&D intensity of Chinese firms in 2011. We limit
our sample to firms of R&D intensity between 1% and 15% to focus on firms with non-trivial innovation
activities. The first panel in Figure 2 shows the histogram of overall R&D intensity distribution. There
are clear bunching patterns at 3%, 4%, and 6% of R&D intensity, which correspond to the three
thresholds where the corporate income tax cut kicks-in. This first panel provides strong prima-facie
evidence that fiscal incentives provided by the InnoCom program play an important role in firm’s R&D
investment choices.

To further validate that these R&D bunching patterns are motivated by this specific policy, the
remaining panels of Figure 2 plot the histograms of R&D intensity for the three different size ranges
specified by the InnoCom program. For firms with annual sales less than 50 million RMB in sales, we
find clear bunching at 6%, and we find no evidence of bunching at other points. Similarly, for firms with
annual sales between 50 million and 200 million RMB, we only find bunching at 4%, while for firms with
more than 200 million RMB annual sales, we only observe bunching at 3%. These patterns are consistent
with the size-dependent tax incentive programs laid out in the InnoCom program. Moreover, these plots
allay concerns of potential “round number problems” that might occur if firms report rounded versions
of true data and that are present in other bunching studies (e.g., Kleven and Waseem (2013)) as there
are no other significant spikes in the data.

Next, we analyze the sample of data from the pre-2008 period, and we report in Figure 3 the
empirical distribution of Chinese firms’ R&D intensity during 2006-2007. Recall that the tax incentive
of the InnoCom was not size-dependent before 2008, and kicked-in uniformly at a 5% R&D intensity
level. In addition, our pre-2008 data has information of each firm’s employee education based on the
Census of Manufacturing conducted in 2004. This allows us to refine our sample to firms with more than
30% college educated workers, consistent with the requirement of InnoCom program. It is reassuring
here that we observe the R&D intensity bunching solely at 5%, and no significant spikes at 3%, 4%, and
6%. The contrast of R&D intensity bunching patterns across different time periods provides further
evidence that Chinese firms respond actively to the tax notches based on R&D intensity.

Bunching Response to the Tax Reform of 2008

The previous figures look at the cross-sectional distribution of R&D intensity and show a striking pattern
of bunching for both pre and post-2008 periods. We now explore some of the variation over time in the



Chinese corporate income tax system described in Section 1.

Consider first the behavior of FOEs in the large category (sales above 200 million RMB) as the
incentive to invest in R&D changes dramatically for these firms after 2008. Before 2008, most of the
large FOEs benefited from the dual-tax system and faced an EIT rate between 15% to 24%. These firms
were not likely to obtain the HTE certification as they saw little to no tax benefits from the InnoCom
program. However, when the dual-tax system was phased-out in 2008, the InnoCom program becomes
the most important tax incentive program for large FOEs.'” In Figure 4, we compare the R&D intensity
distribution for the large FOEs before and after 2008. To make the two samples comparable, we only use
those firms that we were able to match between the SAT and ASM data. The figure illustrates clearly
that the changing EIT system has a large impact on firm behavior. Large FOEs have no clear pattern
of bunching before 2008, in contrast to DOEs that show a clear bunching at 5% of R&D intensity level.
This is consistent with the fact that FOEs already faced very favorable EIT treatment during that
period. In contrast, FOEs start behaving like DOEs after 2008. Their R&D intensity distribution starts
to show a very distinguishable bunching at the 3% level, which is the exact threshold required for these
firms to qualify as HTEs.

We now consider the behavior of “small” (sales below 50 million RMB) DOEs. This is an interesting
group of firms since it is the only category that saw an increase in the required R&D intensity threshold
from 5% to 6%. Figure 5 shows this adjustment process. Similar to the previous case, we restrict our
analysis to those firms that we can match across samples over time. While there is a stable bunching
pattern at 5% for years 2006 and 2007, it almost completely disappears in 2008. However, it takes a few
additional years for this group of firms to gradually increase their R&D to generate a clear bunching
at 6%. This pattern is indicative of adjustment cost or other constraints that a firm needs to overcome
when they start to increase R&D investment.

Lack of Sales Manipulation

The stark bunching patterns in these figures raise the concern that firms may manipulate their sales.
There are two ways firms may do this. First, if a firm wants to be categorized as a larger firm, they
may over-report their sales in order to qualify for a lower R&D intensity threshold. Second, since the
incentives of the InnoCom program are stated in terms of R&D intensity (R&D/Sales), firms could
increase their R&D intensity by under-reporting sales.

We analyze both types of misreporting but we note that it is unlikely that firms will manipulate
sales. First, firm managers would not want to under-report sales as this is seen as a measure of their
performance on the job. Second, China’s VAT system with third-party reporting makes it hard for firms
to manipulate their revenue since, in the case of over-reporting, they would have to provide evidence for
these phantom sales. Nonetheless, there is the possibility that firms that are close to achieving either
the size threshold or the intensity threshold may manipulate the timing of their sales by accelerating or
slowing-down transactions that are close to the end of the year.

Consider first the case of manipulating sales for the purpose of reaching the R&D intensity threshold.
Panel A in Figure 6 plots firms’ log sales relative to their R&D intensity. For each group of firms, we
report average log sales for small bins of R&D intensity as well as an estimated cubic regression that
is allowed to vary below and above each threshold. If firms under-reported sales in order to achieve
the target, we might expect a sudden drop in sales to the right of each threshold. In contrast, this

10Since most of these firms are located in coastal Special Economic Zones or in Economic and Technology Development
Zones, the Western Development program usually does not apply.



figure shows that both the data and the estimated polynomial regressions are remarkably stable at each
notch. Table A.1 reports estimates of the structural break at the notch and shows that we do not detect
evidence of sales manipulation.

We now consider whether firms manipulate their sales to qualify for a lower threshold. Panels B
and C in Figure 6 show the histogram of firms around the size thresholds. Since larger firms face lower
R&D intensity thresholds, we might expect firms to bunch on the right of the size threshold. These

figures show that firms are not responding to the incentives by manipulating their size.'!

3.2 Detecting Relabeling of R&D Investment

We now explore the degree to which the bunching response may be due to expense mis-reporting. As
mentioned above, under Chinese Accounting Standards, R&D is categorized under “Administrative
Expenses.” For this reason, we look for evidence of evasion by studying the ratio of non-R&D admin-
istrative expenses to sales. Figure 7 explores how this ratio is related to R&D intensity, and whether
this ratio changes discontinuously at the relevant notches. For each size group, this figure groups firms
into bins of R&D intensity and plots the mean non-R&D admin expense-to-sales ratio for each bin. We
report the data along with an estimated cubic regression of the expense ratio on R&D intensity with
heterogeneous coefficients above and below the notches. The green dots are for large sales firms, red for
medium sales firms, and blue for small firms. For each size category, there is an obvious discontinuous
jump downward at each threshold. Once the firms get further away from the bunching threshold, there
is no systemic difference of the admin expense-to-sales ratio for firms with either low or high R&D inten-
sities. This pattern is very consistent with the hypothesis that firms mis-categorize non-R&D expenses
into R&D when they get close to the bunching thresholds.'?

In Table A.2, we report the estimated jump at the notch from the series regression to further quantify
the size of the downward jump for each size group. The coefficient of structural break is highly significant
for all three groups. The large, medium, and small sales firms reduce their admin expense-to-sales ratio
by 1.4%, 1.3%, and 0.8%, respectively. Comparing the drop to the R&D intensity at the notch, we
find that =22
for small sales firms. As we discuss in Section 5.2, these estimates do not have a causal interpretation;

is on average 23.3% for large sales firms, 32.9% for medium sales firms, and 26.9%

however, they present strong descriptive evidence that firms may respond to the InnoCom program by
relabeling non-R&D expenses.

As a robustness check, we conduct a similar set of analysis focusing on the ratio of R&D to total
administrative expenses. In this case, expense mis-categorization would result in discontinuous increases
in this ratio at the notch. This is confirmed in Table A.3 and in Figure A.1. We also explore the degree
to which evasion is related to firm liquidity. In Table A.4, we analyze whether the jump in the non-R&D
administrative expense-to-sales ratio is larger for firms with more current assets. This table shows that
mis-reporting may be larger for firms with high current asset ratios.'?

Combined, these figures provide strong qualitative evidence that firms actively respond to the incen-
tives in the InnoCom program by increasing reported R&D investment, and by relabeling administrative
costs as R&D. Our quantitative analysis will focus on measuring the size of the change in R&D invest-

11 our estimations, we further restrict our sample to exclude firms that are close to the size threshold and this does
not affect our estimates.

12The existence of different thresholds across size groups also allows us to conduct a set of falsification tests. In particular,
we find that when we impose the “wrong” thresholds of the other size groups, there is no observable discontinuity.

13 Appendix B provides additional analyses suggesting that a fraction of the reported R&D activity may be relabeled by
contrasting the effect of reported R&D on TFP above and below the notch.
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ment, analyzing the degree to which the response is due to relabeling, and studying how evasion may
influence the effect of R&D on productivity.

4 A Model of R&D Investment and Corporate Tax Notches

This section develops a model of R&D investment where firms may respond to notches in the corporate
income tax schedule in China by investing in R&D, and by relabeling non-R&D expenses. The objective
of the model is three-fold. First, the model shows that a standard model of firm investment and evasion
may produce the patterns described in Section 3.2. Second, the model motivates a bunching estimator
for the increase in R&D investment, as in Saez (2010) and Kleven and Waseem (2013), as well as
an estimator of causal treatment effects on relabeling and productivity, as in Diamond and Persson
(2016). We present estimates of these causal effects in Section 5. Finally, the model relates the extent
of bunching and the treatment effects on relabeling and productivity to structural parameters of the
model, which we estimate in Section 6.

We start with a simple model and develop extensions to allow for relabeling, and for fixed costs
of certification and adjustments costs of R&D investment. Full details of the model are presented in
Appendix C.

4.1 Model Setup

Consider a firm i with a unit cost function c(¢1, p;) = c(p;) exp{—¢i}, where p; is the cost of inputs.'
¢t is log-TFP and which follows the law of motion given by:

Git = pdit—1 +eln(Dj 1) + us, (1)

where D; ;1 is R&D investment, and u;; ~ ii.d. N(0,02). This setup is consistent with the R&D

literature where knowledge capital is depreciated (captured by p) and influenced by continuous R&D

expenditure (captured by €). In a stationary environment, it implies that the elasticity of TFP with
15

respect to a permanent increase in R&D is =)

/

We assume the firm faces a constant elasticity demand function: p; = g;, /0 This implies that we

can write expected profits as follows:
69—
Elri] = ElmDis—1=0]D{5 )"

R&D Choice Under A Linear Tax

Before considering how the InnoCom program affects a firm’s R&D investment choice, we first consider
a simpler setup without such a program. In a two-period context with a linear tax, the firm’s inter-
temporal problem is given by:

max (1 — tl)(ﬂ-il - Dzl) + ﬁ(l - tg)]E[mg].

Dy

The optimal choice of D;; given by:

1
1 1—1t 1 G—1)e—1
Dy = . 9
! (0 — 1) B(1 — t3) E[mia|Di1 = 0] (2)

14Note that any homothetic production function with Hicks-neutral technical change admits this representation.
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Notice first that if the tax rate is constant across periods, the corporate income tax does not affect the
choice of R&D investment.'”
This equation shows that the optimal R&D choice has a constant elasticity with respect to the net

of tax rate, so that
dln Dil 1

din(1—t;) 1—(0—1)e

In particular, this elasticity suggest that firms that have a higher valuation of R&D (greater value of
(6 — 1)e) will be more responsive to tax incentives.

The choice of R&D depends on potentially-unobserved, firm-specific factors, as they influence
E[mi2|D;t—1 = 0]. An important insight from this analysis is that we can recover these factors from Dj;
as follows:

1 I1—t 1-(6-1)
G-DeB0 -t ®)

Substituting into the objective function, we can write the value of the firm as:

E[']TiQ’Dil = 0] =

T(Dirlts) = (1— t1) [m + Da ((911)5 _ 1” . (4)

A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure, modeled after the incentives

in the InnoCom program:
o — t%T if Dy < a&m
2= tHT if Dy > afm

where sales equal 671, t%T > tf T and where LT /HT stands for low-tech /high-tech. Intuitively, this tax
structure induces a notch in the profit function at D = afn1, where « is the R&D intensity required
to attain the high-tech certification. Figure 8 presents two possible scenarios following this incentive.
Panel (a) shows the situation where the firm finds it optimal to choose a level of R&D intensity below
the threshold. At this choice, the first order condition of the linear tax case holds and the optimal level
of R&D is given by Equation 2. From this panel, we can observe that a range of R&D intensity levels
below the threshold are dominated by choosing an R&D intensity that matches the threshold level a.
Panel (b) shows a situation where the firm is indifferent between the internal solution of Panel (a) and
the “bunching” solution of Panel (b). The optimal choice of R&D for this firm is characterized both by
Equation 2 and by Dy = afm;.

Whether the firm finds it optimal to set R&D intensity equal to the notch threshold depends on
firm-level conditions that are summarized by E[m|D;;—1 = 0], as well as on the degree to which
R&D investment is valued by firms in terms of future profits (i.e., (@ — 1)). However, as long as
E[mi2|D;t—1 = 0] is smoothly distributed around the threshold «, this incentive will lead a mass of firms
to find D1 = afm optimal and thus “bunch” at this level. Our analysis proceeds by studying when
firms decide to bunch and by characterizing the R&D intensity of the firm that is marginal between
both solutions in terms of the R&D intensity.

Let IT(afm|t4T) be the value of the firm conditional on bunching at the notch. Using the optimal
choice for an internal solution in Equation 3, we manipulate IT(af7 [t}T) by substituting the unobserved

5 This simple model eschews issues related to the source of funds, as in Auerbach (1984).
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components of the firm-decision, i.e. E[m2|D;; = 0]:

(0-1)e HT
HTN B (1 —t1)Diy (abfm 1-t
(afm [t77) = (1 —t1)(m — abfm) + -1 \ Dy I

We then obtain the relative profit from bunching by subtracting profits in the first period (1 — t1)m;
and by dividing by the after-tax cost of R&D investment from bunching at the notch (1 — ¢1)afm:

5 o d 1—(0-1)e 1 1— té_IT
I(afm|ts ) = <a> X @=1): X <1—tLT> -1, (5)
2

where we define d = GDﬂii as the R&D intensity of the firm in the internal solution (without bunching).

A similar manipulation of Equation 4 results in the relative profit from not bunching:

(Dat5") = g X <(9_11)5 - 1) : (6)

A firm will decide to bunch if the relative profit from doing so (Equation 5) is greater than the relative
profit from not bunching (Equation 6). Comparing Equations 5 and 6, we see that Equation 5 shows
a larger cost of investment in the first period (since d < «) and higher profits in the second period.

Profits are higher because of the tax benefit, (1 ?LT) > 1, and because of the productivity effect from

the additional investment in R&D, ( )(9 Ve s,
Note that when a firm is already close to the notch, i.e., g ~ 1, it will be very likely to bunch

L H
since the tax cut ensures (11 iLT> > 1 and therefore H(a@m]tHT) > (D [t5T). As d decreases from

a, the value of bunching decreases faster than the value of the firm when the firm does not bunch.'®

Let d*~ be the R&D intensity of the firm that is indifferent between bunching and not bunching (i.e.,
M(afm [t4T) = (D} |t5T)), and note that this firm satisfies:

ar=\ ' T0hE 1 1— 8T 4= 1
1 = x[—— 1),
(T) e (i) (oY) "

Relative Profit Bunching Relative Profit Not Bunching

In this simple model, firms with d € [d*~, @] would decide to bunch at the notch.

To gain intuition behind Equation 7, note that the decision to bunch is influenced by firm-level
conditions that are summarized by E[m2|D;;—1 = 0], as well as on the degree to which R&D investment
is valued by firms in terms of future profits (i.e., £(f — 1)). Our model uses Equation 3 as a sufficient
statistic of firm-level determinants of R&D investments to provide a link between the increase in the
investment, d*~ to «, the profitability elasticity of R&D to the firm, (6§ — 1)e, and the magnitude of

HT
the tax incentive, (11 iQLT) It can be shown that d*~ is decreasing in both (f — 1)e and (1 ttLT), SO

that we would observe more bunching if firms have a higher valuation of R&D, or if the tax incentive
is larger.

4.2 Real and Relabeled R&D Investment Under Tax Notch

As discussed above, one mechanism driving the large bunching responses we observe might be the manip-
ulation of reported R&D investment. This section extends the model by allowing for firms to misreport

5Note that, while Equation 6 is linear in R&D intensity, Equation 5 is concave in d (as long as (6 — 1)e < 1).
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their costs and shift non-RD costs to the R&D category. We show that the bunching predictions from
the previous sections remain unaffected. However, the interpretation of the reported bunching response
is now a combination of real and relabeled activity. While relabeling obscures the link between bunching
and the firms’ valuation R&D, we show that we may uncover firms’ valuation of R&D in addition to
their costs of misreporting by analyzing the model’s implications for productivity and relabeling.

Denote a firm’s reported level of R&D spending by D;. The expected cost of misreporting to the
firm is given by h(D1, Dl). We assume that the cost of mis-reporting is proportional to the reported
R&D, Dy, and depends on the percentage of misreported R&D, & = DID;IDH so that:

h(Dy,D;) = D1h(6).

We also assume that h satisfies 2(0) = 0 and A/(-) > 0. Finally, define II(Dy, D;|t) as the value function
of a firm’s inter-temporal maximization problem when the firm faces tax ¢ in period 2, invests D on
R&D, and declares investment of D;.

Firms qualify for the lower tax whenever Dy > afm;. Notice first that if a firm decides not to bunch
at the level afmy, there is no incentive to misreport R&D spending as it does not affect total profits or
the tax rate. However, a firm might find it optimal to report D; = afm, even if it actually invested a
lower level of R&D.

Consider now the optimal relabeling strategy of a firm conditional on bunching. The first-order-

condition for relabeling implies the following condition:!”

J 1—(6—1)e TN (1 —t1) — W'(6%))
o I allh) ;

~
Productivity Benefit from Reducing Evasion Investment Cost and Reduction in Evasion Cost

The optimal fraction of misreported R&D, §*, depends on the firm’s R&D intensity if it did not bunch,
d. Since the firm is bunching, the R&D reported by the firm is afm;. The firm increases its real R&D
investment to D*K = (1 — 6*)afm, which is such that afm > D*K > D;;. As the firm increases the
fraction of relabeled R&D, 4, the productivity benefits and the costs of investment decrease, but there
is also an increase in the cost of evasion. Note that J* is increasing in the tax advantage (%) and
decreasing in both the valuation of R&D, €, and the marginal cost of evasion.

The firm decides to bunch if the profits from the optimal relabeling strategy II(afm;, D{¥ [tIT) are
greater than the profits from not bunching I1(D;1, Di1 [t57). Notice that the relative profits from not
bunching are still characterized by Equation 6. As in the case without evasion, we obtain an expression

for the relative profits from bunching as follows:

d 120D (%) /1T . h(5*)
<a<1—6*>> X<0—1>ax(1—t2§T>‘“‘“‘a<1—t1> ©)

Relative Profit from Bunching Evasion Cost

Equations 5 and 9 are very similar and are identical in the case when §* = 0, such that there is no

evasion. When §* > 0, the cost of investment is smaller, the productivity gains are also smaller, and
the firm also incurs a cost of evasion.

To understand the implications for bunching from this equation, consider the firm that is indifferent
between bunching and potentially misreporting, and not bunching. Panel (c) of Figure 8 shows that if

17 Appendix C shows the detailed derivation and shows that this results is robust to including fixed and adjustment
costs.
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the firm is willing to misreport R&D in order to reach the notch, it will have a lower internal solution
than if evasion were not possible. The indifference condition of the marginal firm is now:

a= e L= (1= (1 5y M)
a(l—6) (6 —1)e 1— T a(l —ty)
—_———
Relative Profit from Bunching Evasion Cost

= fx(@—l) . (10)

Relative Profit from Not Bunching

Note that since the firm can always elect to report truthfully (6 = 0), the relative profit from bunching
in the case with evasion is greater than in the case without evasion. Since the relative profit from not
bunching has not changed, this implies that misreporting allows more firms to bunch than in the case
without relabeling. That is, the marginal firm with relabeling will have a lower threshold d*~, which
implies that we should see more bunching when firms are able to misreport R&D. However, this also
implies that the observed bunching patterns are a combination of real increases in R&D as well as
increases in reported R&D that are due to relabeling of other expenses.

4.3 Adjustment Costs of Investment and Fixed Certification Costs

Our model provides a link between firms’ valuation of R&D and the patterns described in Section 3.
However, the simple model in the previous section predicts bunching patterns that are counterfactual
to what we observe in the data. First, as in common in studies of R&D investment, the distribution
of R&D investment in China has large variability even conditional on firm TFP. In a world without
the InnoCom program, our model would predict a deterministic relationship between R&D and TFP.
Second, while our model predicts that all firms with d € [d*~, @] would bunch at the notch, we find some
firms do not obtain the InnoCom certification despite being very close to the notch. This is consistent
with the guidelines of the program discussed in Section 1, that show that a greater-than-notch R&D
intensity is not a sufficient condition for participating in the program. Indeed, firms with high R&D
intensity may not participate in the program due to constraints that prevent them from hiring the
sufficient number technical employees, if they do not obtain a significant fraction of their sales from
new products, or due to compliance and registration costs. Finally, the literature on R&D investment
suggests that R&D is subject to adjustment costs. If this were the case and adjustment costs limited
firms responses, using Equation 7 to link the bunching response to (f —1)e would result in a downwardly
biased value of (6 — 1)e.

We thus augment our model to allow for firms to face adjustment costs of investment and fixed costs

of certification. We follow the investment literature and adopt a quadratic formulation for adjustment

07T1i Dz
2 Om;

equipment, as well as limits to technological opportunity. Intuitively, the law of motion for TFP allows

costs that is governed by: b X This term represents both fiscal costs of installing new
for strong returns to scale, as it implies that increasing R&D will have a proportional increase in the
TFP of all units of production within a firm. Since the adjustment costs are proportional to firm size,
they limit the returns to scale in R&D investment.

We also assume that firms pay a fixed costs of certification that is given by: ¢ X afr1;. We see this
term as representing the cost to the firm of complying with the additional requirements of the program,
such as hiring additional high-tech workers, in addition to the costs of complying with the InnoCom
program.
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Appendix C shows that for given values of (b, c), we obtain a similar result to Equation 10, which
links the R&D intensity of the marginal firm to the effect of R&D on profitability. In this case, however,
the marginal firm depends on the values of (b, c), which we denote d, .. As expected, we find that d
is increasing (smaller response) with both adjustment, b, and fixed, c; costs. We also allow for firms (;f
similar pre-existing productivity to have heterogeneous adjustment and fixed costs. For this reason, we

now redefine d*~ = mind, , as the smallest R&D intensity for which there is a marginal firm.
,C ’

Our augmented model results in a reasonable distribution of R&D intensity in the case without a
notch, does not predict a “hole” in the distribution near the notch, and allows for firms with similar
productivity levels to engage in different patterns of investment depending on their fixed and adjustment
costs. As we show in the following sections, the model also allows us to link the bunching response to
the increase in R&D and the parameters governing firms’ valuation for R&D and costs of evasions in a
manner that is robust to the presence of adjustment costs.

4.4 Empirical Implications for Bunching on R&D

We now describe how we use the model to quantify the distributional patterns described in Section 3.
Figure 9 provides the intuition for this procedure. Panel (a) provides a counterfactual distribution of
R&D intensity under a linear tax. Denote this counterfactual density by ho(-). Panel (a) demonstrates
the effect of the notch on the distribution of R&D intensity in a world of unconstrained firms. In this
case, there is a range of R&D intensity levels that is dominated by the threshold «, as shown by the
density of R&D intensity with a notch, hi(d). Firms with an internal solution in this range will opt
to bunch at the notch, which generates the bunching patterns. Define the missing mass in the range
[d*~, o], relative to the counterfactual distribution, as B.

The prediction in Panel (a) of Figure 9 is quite stark in that no firms are expected to locate in
the dominated interval. As discussed above, the presence of fixed and adjustment costs may constrain
firms from responding to the incentives in the InnoCom program. For given values of (b, c), a firm will
be constrained from responding if d < d, ., an event that we denote by I[d < d, ]. The fraction of
constrained firms at a given value of d in the range (d*~, «) is given by 7

Pr(Constrained|d) = /H[d < dy Jho(d, b, c)d(b, c) = hi(d),
b,c
where ho(d, b, c) is the joint density of R&D intensity, and fixed and adjustment costs, and where the
second equality notes that we observe this fraction of firms in the data.'®
Panel (b) of Figure 9 describes graphically how allowing for this degree of heterogeneity, in addition
to frictions, affects the predicted bunching pattern. In particular, the area B can now be computed as
follows:

B = Id > dy Jho(d, b, c)d(b, c)dd = (1—1[d < d; ))ho(d, b, )d(b, c)dd
1l /]

= /(hg(d) — Pr(Constrained|d))dd = /(ho(d) — hi(d))dd.
d== ar=
To understand the empirical content underlying this bunching prediction, it can be shown that
the percentage increase in R&D intensity for firms that may potentially respond to the incentive by

'8We view this formulation as a micro-foundation for the constraints discussed in Kleven and Waseem (2013).
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bunching can be expressed as a function of the missing mass B and the counterfactual density at the

notch:?
_ E[d|Notch,d € (d*~,d**)] — E[d|No Notch,d € (d*~,d*")] B

Ad = ~
E[d|No Notch, d € (d*—,d**t)] 2ahg ()’

where d** > « is chosen to capture the extent of bunching.

(11)

As in Kleven and Waseem (2013), we can also relate the bunching patterns to the behavior of the
a—d*~
(6%

marginal firm. Defining AD* = as the percentage increase in R&D intensity relative to the

notch, we have:

B
AD* ~ .
aho(a)(1 — Pr(Constrained))

4.5 Model Implications for Evasion and Productivity

In addition to the bunching predictions, our model predicts that firms that bunch may engage in
relabeling, and that their future TFP will increase to the extent that the reported R&D investment
constitutes real activity. We formalize these predictions by linking our model to the estimator for
treatment effects proposed by Diamond and Persson (2016). As in the case of the average increase in
the R&D of Equation 11, we study the average effect on a given outcome Y over the region (d*~,d*"):

e+ e+

E[Y|Notch,d € (d*~,d*")] — E[Y|No Notch,d € (d*~,d*")] = /th(d)dd /Yho(d)dd. (12)
d*= d*—

The first thing to notice about this quantity is that E[Y|Notch,d € (d*~, d*1)] is directly observed in the
data. In Section 5.2 we discuss the econometric approach to estimating E[Y |No Notch,d € (d*~,d*")].

To interpret this treatment effect note that the region (d*~, d*") includes firms that do not respond
to the program, as well as firms whose R&D intensity is already above the notch. Conceptually, we
can partition the firms in the region (d*~,d*") into compliers, never-takers, and always-takers. In our
setting, the never-taker firms are firms below the notch that are constrained from responding to the
policy. The always-taker firms are firms that are already above the notch. By assuming that there are
no defier firms, we can show that Equation 12 has the interpretation of an intent-to-treat, and that this

effect is identified by the behavior of complier firms that respond to the incentives of the program:*’

a*t «a
ITTY = / Yhi(d)(1 — Pr(Constrained|d))I[dy € (d*~, a)]dd — / Y ho(d)(1 — Pr(Constrained|d))dd.
(6% d*_
To see that this equation represents the behavior of the compliers, note that the first integral evaluates
the average value of Y for firms that were previously below the notch, denoted by I[dy € (d*~, a)], and
that were not constrained in their response. The second integral compares this value to the average
value for the same complier firms under the counterfactual scenario where there is no notch.

Our model for the evolution of TFP predicts a tight connection between the I'TT for productivity
and the ITT for R&D. To see this, note that for a given firm we would expect to observe:

¢ — 9 = p(¢1 — ¢7) + e(Ind} — Ind}) + (uj — uf),

19 Appendix D contains details of these approximations. Note that in practice we may compute the left-hand-side of this
equation without an approximation by evaluating the expectations using the estimated counterparts of ho(d) and hi(d).
Note that the approximation of AD”* relies on the assumption that Pr(Constrained) does not depend on d.

2Tn our setting, defier firms are those that would be above the notch without the InnoCom program and below the
notch in the presence of the InnoCom program. Appendix D provides details of this derivation.
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where the superscript 1 corresponds to the notch and 0 corresponds to the no-notch case, and where
subscripts denote time periods. Averaging over the firms in the excluded region we find:*!

ITT? = cITT™%

If complier firms respond to the InnoCom program by relabeling administrative expenses as R&D
expenses this relation is adjusted by replacing ITT™% with the ITT on real investment. In this case,
our model also predicts a negative I'TT on administrative expenses that is informative of firms’ cost of
evasion. Section 6 discusses how we link estimated treatment effects to structural parameters even in
the case where these relations might not admit a closed-form expression.

5 Effects on Investment, Relabeling, Productivity

This section presents estimates of the causal effects of the InnoCom program on investment, relabeling,
and productivity. Section 5.1 estimates the investment response from the bunching estimator. Section
5.2 presents estimates of treatment effects on relabeling, productivity, and tax revenues.

5.1 Bunching Estimates of Investment Response

We now describe how we estimate hg(-) to recover the empirical quantities B and ho(«). We follow
the literature (see, e.g., Kleven (2015)) by estimating a flexible polynomial on a subset of data that
excludes the area around the threshold, and by using the fitted polynomial on the excluded region as an
estimate of hg(-). Mechanically, we first group the data into bins of R&D intensity and then estimate
the following regression:
P
c; = Z’Bk . (dj)k +7;-1 [d*f <d; < d*+] + vy,
k=0

where ¢; is the count of firms in the bin corresponding to R&D intensity level d; = %jll, and where

(d*~,d*") is the region excluded in the estimation. Given the monotonically decreasing shape of the
R&D intensity, we restrict the estimated §j’s to result in a decreasing density.

P
An estimate for hg (d) is now given by ¢ = > B - (d)k. Similarly, we obtain a counterfactual
k=0
estimate for ho(a) and B as follows:
P o P
ho(a) = Zﬁk ()" and B= Z Zﬂk . (dj)k.
k=0 dj=d*~ k=0

Finally, an estimate of the fraction of constrained firms relative to the counterfactual density is given
by:

v Pr(Conmled]a*) Ao
a*(a”) = i =5 ’
fro(a™) > B (a)
k=0

where a~ is the value of R&D such that a firm would be willing to jump to the notch even if R&D had
no effects on productivity.??

2INote that E[¢p1 — ¢9] = E[u} — uI] = 0 by construction.

22This “money-burning” point is easy to compute. Note that the tax benefit is given by Profits x (t”7 — ¢t*T) and the
cost of jumping to the notch is Sales x (a — ™), which implies that o~ = a — (7T —¢t*T) x %. Using the average net
profitability ratio in our data of 7%, this implies that firms in the range (a — .07 x (t#7 —¢"), @) are not able to respond
to the incentives of the InnoCom program. For the case of the large firms we have (o™, «) = (2.3%, 3%).
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Implementing the bunching estimator requires choosing the degree of the polynomial, and selecting
the excluded region. We follow Diamond and Persson (2016) in using a data-based approach to selecting
the excluded region (i.e., (d*~,d*")), and the degree of the polynomial, p. In particular, we use K-fold
cross-validation to evaluate the fit of a range of values for these three parameters. Our cross-validation
procedure searches over values of p < 7, and all possible discrete values of d*~ < o and d** > « that
determine the excluded region. For each value, the procedure estimates the model in K = 5 training
subsamples of the data and computes two measures of model fit on corresponding testing subsamples of
the data. First, we test the hypothesis that the excess mass (above the notch) equals the missing mass
(below the notch). Second, we compute the sum of squared errors across the test subsamples. We select
the combination of parameters that minimizes the sum of squared errors, among the set of parameters
that do not reject the test of equality between the missing and excess mass at the 10% level.?? Finally,
we obtain standard errors by bootstrapping the residuals from the series regression, generating 5000
replicates of the data, and re-estimating the parameters.

Figures 10-11 display the results of the bunching estimator for the three different notches for 2009
and 2011. The red line displays the observed distribution of R&D intensity hi(-), the vertical dashed
lines display the data-driven choices of the omitted region, and the blue line displays the estimated
counterfactual density ho(-). Each of these graphs also reports the percentage increase in R&D intensity
for complier firms, Ad/(1—a*), the fraction of firms that are constrained below the notch point, a*(a™),
and the p-value of the test that the missing mass and the excess mass are of the same magnitude.

Panel (a) of Figure 10 shows an increase in R&D intensity of 19% for small firms in 2009. This
estimate corresponds to the response of complier firms that are not otherwise constrained in their
ability to respond to the incentives of the InnoCom program. The specification test shows that using
the missing mass or the excess mass results in statistically indistinguishable estimates. We also find
that 74% of the firms are not able to respond to the incentive. As these are small firms, many firms may
be constrained in their ability to increase investment to a significant degree, to develop a new product,
or to increase the fraction of their workforce with college degrees. In addition, a higher failure rate
among small firms implies that a long process of certification may never pay off in lower taxes.

Panels (b) and (c) show the same set of results for medium and large firms in 2009. We find similar
increases in R&D intensity of 49% and 35%, respectively. In both cases, using the missing mass and the
excess mass results in statistically indistinguishable estimates of the increases in R&D. The estimated
fraction of firms that face constraints to respond to the program is now 66% and 57%, respectively.
When we analyze these firms, we find that most of these firms have low profitability, or are already
benefitting from other tax credits. Both of these features would lower the incentive to be certified by
the InnoCom program. Figure 11 shows similar qualitative patterns for 2011, where we find that the
fraction of constrained firms is now smaller in all cases, and the average increase in R&D is greater. It
is worth noting that these effects are estimated with a high degree of precision as standard errors are
often an order of magnitude smaller than the estimates.

Table 2 provides further details behind these statistics. The first column of the table reports Ad, the
percentage increase in R&D intensity for all of the firms in the excluded region. This statistic is always
smaller than when we adjust for the fraction a*(a™) of firms that are constrained from responding to the
policy. Note that this statistic measures the same quantity as the ITT estimator for log-R&D intensity
(Ind) in the framework of Section 4.5 but relies on the approximation in Equation 11. For large firms

23Note that a common practical problem in the literature is the higher frequency in the reporting of “round numbers.”
As Figures 2 and 3 in Section 3 demonstrate, our data does not display “round-number” problems that are often present
in other applications.
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in 2009, we see an increase in R&D intensity of 14.9% among all firms in the excluded region.

Column (4) reports the percentage increase in R&D intensity relative to the notch for the marginal
buncher. This effect represents the largest possible response for complier firms. While understanding
the behavior of firms of different sizes is interesting from an economic perspective, policy makers may
be interested in the aggregate increase in R&D across the economy. Figure A.2 shows that the vast
majority of R&D is conducted by firms in the large sales category, so it makes sense to focus on these
firms when when mapping these estimates to the patterns in Figure 1. In Column (5) we report the level
increase in R&D intensity by multiplying AD* by a(1 — a*(a™)). This column shows that, for large
firms in 2011, the marginal bunchers increased their R&D intensity by 1.9 percentage points, which
would indeed contribute to the aggregate growth in R&D intensity in Figure 1.

We now explore the robustness of our estimates. First, we show in Panel (a) of Figure 12 that
our estimator is able to recover a null effect in the absence of the policy. This panel estimates the
effect of a non-existent notch on the distribution of R&D intensity of large firms in 2008, which were
not subject to the incentives of the InnoCom program, and finds a small and insignificant estimate of
Ad/(1—a*). Second, we explore the potential for firms’ extensive margin responses to bias our estimate.
If the bunching we observe is driven by firms who previously did not perform any R&D, the missing
mass would not equal the excess mass. This would lead us to underestimate both the excess mass and
Ad/(1 —a*). In Panel (b) of Figure 12 we use data for large firms in 2011 and we restrict the sample
to firms that had positive R&D in 2009 and 2010. This panel shows that we obtain a very similar, if
slightly smaller, estimate of Ad/(1 — a*) when we rule out extensive margin responses. Finally, one
potential concern with estimating the counterfactual density using a polynomial regression is that a large
excluded region may result in a biased estimate of the counterfactual density. We assuage this concern
by using data from large firms in 2008 who were not subject to the incentives of the InnoCom program
in order to inform the shape of the density in the excluded region. We combine this un-manipulated
density with the density in 2011, hq(d), by ensuring that the combined density is continuous at the
boundaries of the excluded region, d*~ and d**.?* Panel (c) of Figure 12 shows that using these data to
inform the shape of the counterfactual density in the excluded region results in very similar estimates
of both the counterfactual density and Ad/(1 — a*).

5.2 ITT Estimates on Productivity, Relabeling, and Tax Collections

We now use an estimator of treatment effects developed by Diamond and Persson (2016) to estimate
the effects of the InnoCom program on productivity, relabeling, and on fiscal costs. The intuition of
the estimator is to compare the observed aggregate mean outcome for firms in the excluded region to a
suitable counterfactual. For a given outcome Y;4,, the estimator is:

ITTY2 = E[Y;,|Notch,dy, € (d;,d;;")] — E[Y;,|No Notch, dy, € (df,, d;;)]
1 arr —
= Nmawga 2. Yin— [ ho(dy)E[Yis,|di,, No Notch]dds, (13)

dj gy €(d*—,d*T)

The first quantity is the observed average value of a given outcome Y;;, over the excluded region.
The second quantity is a counterfactual average value of Y ;,, which is constructed by combining the

21et h3"°%(d) denote the un-manipulated density of large firms in 2008. We combine h; (d) with h2°°%(d) = a+BhZ°%(d),

*+y *— . . . ..
where 8 = hgoﬁég*+;_%ég8(dl,) and o = hy(d*7) — Bh3"%®(d* ™). As discussed in Blomquist and Newey (2017), variation

in non-linear incentives can help in identifying responses when using bunching approaches.
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counterfactual density of R&D intensity, il()('), estimated as part of the bunching analysis, with an
estimated average value of the outcome conditional on a given value of R&D.

Since the estimator compares averages over the excluded region, which includes compliers and non-
compliers, we interpret it as an intent-to-treat (ITT). As an example, the I'TT on Y = In d measures the
percentage increase in R&D intensity over the excluded region, Ad, without imposing the approximation
of Equation 11. One way to think of tMunterfactual is from the point of view of the law of iterated
expectations. As the quantity E[Y|d;,, No Notch] recovers the average value of a given outcome had
there been no notch, the integral simply averages this function of d;, over the excluded region with
respect to the counterfactual density of R&D, ho(dy, ). Taking ratios of these estimates produce Wald
estimates of treatment effects.

In order to implement this estimator, we estimate E[Yihldm Notch] as a flexible polynomial

regression of Y; ;, on R&D intensity over the same excluded region used to estimate iLo(‘)ZQS

p
Yiep = Y Br(dig))" +y-1[d7 <diy, <d™] +6Y5y, + b5 + v
k=0

E|[Y4,|dt; =d,No Notch]

Figure 13 presents a visual example for the case of administrative costs, where we estimate a cubic
regression of the admin expense to sales ratio on R&D intensity in 2009, and where the excluded region
corresponds to Panel (c¢) of Figure 10. As in Figure 7, we observe a significant drop in the ratio after
the notch that is likely due to relabeling of expenses to qualify for the InnoCom program. As detailed in
our model, firms self-select into the treatment depending on whether they face fixed or adjustment costs
that prevent them from obtaining the high-tech certification. This selection prevents the econometrician
from using data just beneath the threshold as a control group for firms above the threshold.

In contrast, our procedure does not rely on such comparisons across firms, but instead relies on
the assumption that E[Y;4,|ds,, No Notch] is smooth around the notch, and that it may be approxi-
mated with data outside the excluded region that, by definition, is not subject to a selection prob-
lem. As shown by Figure 13, this flexible polynomial fits the data outside of the region very well.
Moreover, we observe from Figure 7 that small- and medium-sized firms have smooth and flat rela-
tions between administrative expenses and R&D intensity around the 3% level, which suggests that
our estimate of E[Y;,|ds,, No Notch] represents a valid counterfactual. Armed with an estimate of
E[Y;t,|d¢,, No Notch], we then compute an average value for firms in the excluded region by combining
this estimate with an estimate of the counterfactual density, which in this case corresponds to Panel (c)
of Figure 10. The resulting ITT estimate in Equation 13 thus compares the observed average outcome
over the excluded region, to a counterfactual average over the same region.’ We obtain standard errors
for ITT estimates in Equation 13 by bootstrapping this procedure.

Panel (a) of Table 3 presents estimates of ITT effects of the InnoCom program on several outcomes.
We focus on large firms since they account for more than 90% of al R&D investment (see Figure A.2),
and we study how the decision to invest in R&D in 2009 affects productivity and tax payments in 2011.
We find that R&D investment for firms in the excluded region increased by 14.6% in 2009, which is
very close to the bunching estimate of Ad. We also find a decrease in the administrative cost ratio of
9.6%. When compared with the average value of the ratio, we find that administrative costs decreased

25Note that this regression is not causal. Its role is purely to predict the outcome over the excluded region.
26In particular, this estimate does not rely on comparisons of firms that are close to the notch, as in the case of a
regression discontinuity.
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by 0.33% (of firm sales). We use this estimate to construct an approximation to the fraction of R&D
investment that was relabeled. Compared to the increase in R&D intensity of 0.89% (column (5) in

Table 2), this would imply that (0'33% N) 37% of the increase in R&D intensity was due to relabeling.

0.89%
Note that this approximation is imperfect because it assumes that all firms engage in the same relabeling

activity. As our model in Section 4.2 shows, the fraction of relabeling may vary across firms that are
closer or farther away from the notch. The structural model in Section 6 relaxes this strong assumption.
Nonetheless, this estimate would imply that the real increase in R&D investment was closer to 9%. The
last 2009 outcome that we analyze is the effect of the policy on the user cost of R&D, where we find a
decrease of 7.1%.%7

Panel (a) of Table 3 also reports the effects of the policy on outcomes in 2011. We find that between
2009 and 2011, the policy led to an increase in TFP of 1.2%. We find a comparable effect on the profit
ratio of 0.9%. Finally, we observe an overall decrease in corporate tax revenues of 12.8%.

The second panel of Table 3 presents ratios of these estimates along with bootsrapped confidence
intervals. The first row shows that reported R&D increased by 2% for every 1% decrease in the user
cost. When we use the approximation above to obtain an estimate of the real increase in R&D, we
obtain a user cost elasticity closer to 1.3. Comparing the R&D increase with the growth in the profit
ratio, we find that doubling R&D would lead to an increase in the profit ratio of 5.9%.?® We find slightly
larger effects on TFP, with an increase of 8.4%. In order to relate this estimate to our parameter ¢,
note that this effect reflects the cumulative effect over two time periods, which should be discounted by

1+ p = 1.725. These reduced-form estimates are thus consistent with a value of € ~ 0.049 (% %).
However, if we take into account that about 37% of the reported R&D response is due to relabeling,

we would obtain an estimate of ¢ ~ 0.077 (% 0 0.084 Given the strong assumptions we need

in order to calculate the fraction of relabeled Rgﬁflwoe.gzzely on the structural model in Section 6 to
generate our main estimate of €. However, it is worth pointing out that estimates of the effects of
R&D on TFP that do not account for relabeling are likely downwardly-biased. Finally, we consider
how much it costs the government to increase R&D investment in terms of foregone revenue. We find
that doubling R&D investment would cost the government about 88% of corporate tax revenue. This
estimate is also downwardly-biased to the extent that the R&D response is due to relabeling. These
estimates are crucial ingredients for deciding whether the InnoCom policy is too expensive, or whether
externalities from R&D investment merit further subsidies. In the next section we refine these estimates
by accounting for relabeling of R&D, and by analyzing how changes in the InnoCom program would

affect the government’s cost of incentivizing R&D investment.

6 Structural Estimation and Simulation of Counterfactual Policies

While the causal estimates discussed in the previous section describe the effects of the current policy,
the evaluation of alternative policies requires a model of firm selection into the policy, as well as how
investment and relabeling decisions affect productivity.

2"To compute the user cost of R&D, we first generate an equivalent-sized tax credit by dividing the tax savings form
the policy by the R&D investment, and then use the standard Hall and Jorgenson (1967) formula as derived by Wilson
(2009).

28The interpretation of this ratio deserves caution as it represents the effects of increasing R&D as well as other effects of
the InnoCom program, such as the tax cut. See Jones (2015) for a useful exposition of the economics of such restrictions.
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6.1 Structural Estimation

This section proposes a method of simulated moments (MSM) framework to estimate the structural
parameters of the model in Section 4 by matching the estimated estimates from Section 5 to simulated
counterparts.

We first discuss how we parametrize the model. We begin by calibrating 6, which we set at § = 5
based on the survey by Head and Mayer (2014).2 We then calibrate the distribution of underlying
productivity ¢;. We use the fact that the evolution of productivity in Equation 1 is an AR(1) process
that implies a stationary normal distribution with persistence p and variance 2. Given a value of
f = 5, the persistence and volatility of log sales of non-R&D performing firms map directly into p and
o2, which yields the following calibrated values of p = 0.725 and o = 0.385. Finally, we use the following
functional form for the cost of evasion % (see, e.g., Notowidigdo (2013)). Note that this function
may be linear, convex, or concave depending on the value of 7.

We then use the method of simulated moments to estimate the structural model parameters including
productivity effect of R&D, e, the cost of evasion, n, and distributions of the adjustment costs, b, and
fixed costs, ¢. We assume that b and c¢ are distributed i.i.d. across firms, that b is log-normally
distributed, so that b ~ LN (up, 02), and that ¢ has an exponential distribution, so that ¢ ~ EXP ().
In summary, our simulated sample will discipline the set of parameters Q = {e,n, up, op, fc }-

To implement the MSM estimator, we form the criterion function:

o= 1400 T [ o) |

where W is a weighting matrix. h®(Q) and RITT(Q) are moment conditions that are related to our
bunching and ITT estimators, respectively. hZ(Q) is based on our estimates of d*~, d*T, and the
distribution of R&D intensity based on these cutoffs. In other words, we choose our model parameters
so that our simulated data can rationalize the bunching patterns estimated in Section 5.1. In addition
to this unconditional empirical density, we also require that the model match the joint distribution of
firms’ measured TFP and R&D intensity. As we discuss below, these moments play an important role
in identifying key model parameters.

We use the treatment effects on reported R&D, admin expense ratio, and TFP from Section 5.2
to form the last set of moments, /77 (Q). Let w = {¢1,b,c} denote a firm with random draws of
its fundamentals of productivity, adjustment cost, and fixed cost. We generate the simulated model

counterpart of our ITT estimates to construct moments of the form:3°

RITT(Q) = / E[Y (w;Notch) — Y (w; No Notch)]|dF,, — ITTY,

dNo Notch(w)e(d*77d*+)

where ITTY is an estimate from Section 5.2. As a simple example, consider the case where Y is
next-period productivity. Our model predicts that F[@s(w; Notch) — ¢2(w; No Notch)] = ¢[ln dNoteh —
In @»Ne Noteh] - Thig shows that the estimated effects on firm productivity will inform the values of
€. While there is no closed-form expression for the fraction of relabeled R&D, we can form a similar
moment to match the estimated effect on the admin expense ratio, which will inform 7, the cost of

evasion.

29This value implies a gross markup of % = 1.25. We calibrate 6 since, without data on physical quantity produced,
we are not able to separately identifying this parameter from the productivity distribution.

30Note that we restrict the support of firm fundamentals w = {¢1,b,c} by requiring the counterfactual R&D to be in
the excluded region.
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6.1.1 Identification

While each of the simulated moments depends on multiple parameters, we give a heuristic description
of the data patterns that identify each parameter. We start with the most central parameter: the
returns to R&D, €. One interesting observation is that, while the bunching patterns certainly inform
this parameter, the bunching patterns alone are not able to separately identify ¢ and the unobserved
and heterogeneous adjustment and fixed costs. This is intuitive since both the benefit and cost of R&D
enter the optimal choices of innovating firms. Two additional sets of moments help to separately identify
these parameters. First, we rely on the model insight that firms’ R&D decisions are not distorted below
d*~ and above d**. Thus, the ranking of firms’ measured productivity across these regions is determined
by €, and is not affected by the InnoCom program. For this reason, including the joint distribution of
TFP and R&D intensity in 2 () helps to identify . Second, the ITT estimates on reported R&D and
measured TFP also help to discipline €. Note, however, that these estimates combine three distinctive
forces: the returns to R&D, selection into the treatment, and the potential for relabeling. In practice, we
find that the relabeling margin (and the evasion cost parameter 1) plays an important role in influencing
these ITT moments. For this reason, the ITT estimate on the admin expense ratio is also crucial in
order to pin down both 7 and €.

Given ¢ and 7, the identification of the distributions of adjustment and fixed costs is quite intuitive.
First, the parameters of the distribution of adjustment costs, u, and oy, are identified by the counter-
factual distribution of R&D intensity below d*~ and above d*T. Next, the fraction of firms that bunches
(in the excluded region) and the ITT on reported R&D inform parameter of the distribution of fixed
costs of certification: p.. Finally, the location of d*~ is jointly determined by all the parameters.

6.1.2 Estimates

Table 4 reports estimates of our structural parameters: (g,n, iy, 0p, ftc). We follow Chernozhukov and
Hong (2003) and use a Laplace-type estimator that is based on Markov Chain Monte Carlo (MCMC) to
estimate our model. This procedure provides a numerically attractive way of obtaining point estimates
and conducting inference. We construct the weighting matrix W based on the bootstrapped covariance
matrix of our data moments.

Panel (a) reports the parameter estimates and the standard errors. All the estimates are statistically
significant. Consider the estimate for £. The estimate from Panel (a) implies that doubling R&D
increases measured TFP by 9.8%. Since the InnoCom program requires that firms commit to a three-
year increase in R&D, the interpretation of this coefficient is closer to a medium-run effect. The
estimated evasion cost parameter is 5.663, which indicates that, at the margin, the cost of evasion is
highly convex in terms of 4. In other words, it is easy for firms to overstate their R&D by a small amount,
but the cost rises quickly for firms that are farther away from the required threshold . Note that the
benefits of relabeling for a firm come both in the form of lower costs of investment, as well as lower
adjustment costs, which include costly technological opportunity constraints. Thus, firms who face a
higher shadow cost of R&D (i.e. higher b) will be more willing to relabel R&D. On average, we calculate
that firms’ realized evasion cost is 4.7% of the R&D savings. Finally, the estimated certification cost is
quite modest: for the firms who decide to bunch and certify as high-tech firms, the fixed certification
cost is on average 2% of their realized profit.

Panel (b) compares the simulated moments with the data moments and shows that our model does
a very good job of matching the data. The model replicates the distribution of firm-level R&D intensity
and the bunching pattern almost perfectly. It also captures the positive correlation between R&D
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intensity and measured productivity very well. The ITT estimates are the moments with the largest
bootstrapped standard deviations. For this reason, they are matched less precisely based on our optimal
weighting matrix. In particular, our model predicts a slightly smaller ITT on TFP. However, given the
fact that we attribute all of the reduction in administrative expense to relabeling, the model prediction
can be interpreted as a lower bound on the productivity gains from real R&D effort.

Finally, we evaluate the sensitivity of our point estimates to each individual moment using the
methods of Andrews et al. (2017). We calculate the local derivative of our estimated parameters
with respect to each moment. The recovered sensitivity matrix is reasonable and conforms to the
heuristic discussion above. We find that the joint distribution of TFP and R&D intensity are important
determinants of €. For instance, if we double the TFP of firms above d**, € would increase substantially
by close to 0.05. These methods also allow us to consider the potential that part of the reduction in
administrative expenses is not due to evasion.®" If half of the decrease in admin costs is not related
to relabeling, our sensitivity analysis shows that ¢ would decrease by 0.002, which is a very modest
amount. We report the complete set of sensitivity results in Figure A.3.

Overall, the structural model exploits the estimates from our reduced-from analysis for identification,
is able to replicate these data patterns quite well, and provides a useful micro-foundation for simulating
the effects of counterfactual policies.

6.2 Simulation of Counterfactual Policies

We now use our model estimates to simulate the effects of alternative R&D tax incentives, and we
quantify their implications for reported R&D investment, real R&D investment, tax revenue, and pro-
ductivity growth. We focus on policies that are reasonably close to the form of the InnoCom program.
We maintain the structure of an average corporate income tax cut when firm R&D intensity is above
a certain threshold, and we vary the location of the threshold to explore differences in both firm-level
and aggregate responses.

We take our structural estimates and the existing policy as a benchmark (where a@ = 3 and tf T -
15%), and explore how different combinations of a and 5/ change the excluded region, how firms select
into the policy by obtaining the InnoCom certification, and how firms adjust their real R&D investment,
as well as their relabeling behavior. These individual-level responses help us further digest the effects
on aggregate outcomes like tax revenue losses and productivity growth.

Figure 14 studies the effects of changing the preferential tax rate for three values of the notch: 2%,
3%, and 6%. The first two panels analyze how the characteristics of the compliers depend on the policy
parameters. We find that higher values for the notch lead to a selection of more productive firms, and
of firms with lower adjustment costs, on average. This graph also shows that as we increase the tax
break for high tech firms (lower preferential tax rate), the program selects firms with lower productivity
and higher adjustment costs. The selection effect is more pronounced based on adjustment costs than
on productivity. For instance, when we change the threshold from 3% to 2%, the average adjustment
cost for the compliers almost doubles. This indicates that the firms that comply with the new policy
have a much worse set of technological opportunities. These results show that there are decreasing
returns from expanding the InnoCom program by increasing the tax advantage, and that a larger tax
break might exacerbate misallocation of R&D by incentivizing R&D investment in firms with lower
productivity and higher adjustment costs.

31For instance, administrative costs may reduce if the tax incentive causes firms to pay more close attention to their
accounting of R&D expenses, or if firms substitute inputs in response to the policy.
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Panel (c) shows that, for every level of the notch, there is more real R&D investment when firms
benefit from larger tax breaks. When we move from a small tax break of 22% towards a large one
of 10%, the increase of the real R&D for compliers increase by around 10 percent for every level of
the notch. This magnitude is broadly consistent with the user cost elasticity that we estimated in our
reduced-form analysis. On the other hand, the fraction of the total response that is due to evasion is
also increasing in the size of the tax break. As panel (d) illustrates, when we set the notch threshold at
0.06, moving the preferential tax rate from 22% to 10% increases the fraction of reported R&D due to
relabeling by almost 15 percentage points. The increase is slightly less pronounced when the threshold is
lower. As we discuss above, firms’ evasion motives are largely driven by their heterogeneous technology
opportunity b. When the notch threshold is harder to achieve, the selection of high adjustment cost
firms into the program is increasingly driven by evasion. Panel (e) then plots the average growth in
productivity induced by these R&D incentives for firms that may potentially respond to the policy
(in the excluded region). This effect is a combination of the effect on real R&D that we documented
in panel (c), as well as the effect on the fraction of compliers, which is larger when there is a lower
preferential tax. We see that when the preferential tax is reduced to 10%, the average firm sees a TFP
increases of 1.4%. This is a larger increase than in the benchmark case (a« = 0.03) where firms see a
0.8% increase in TFP, and is due both because there is an increase in the fraction of compliers, as well
as an increase in real R&D investment.

Finally, panel (f) plots the ratio of the change in taxes to the change in total real R&D investment.
This ratio represents the average cost to the government of increasing real R&D investment. We compute

this ratio for different values of o and 27

and plot these combinations according to the tax-to-R&D
ratio and the total increases in real R&D. This graph thus represents cost frontiers for a government that
wants to increase R&D by a given amount. The current policy of a = .03 and t#7 = 0.15 corresponds
to a cost-ratio of about 2.3. This ratio is much greater than that reported in Table 3, 0.88, since this
accounts for heterogeneous relabeling of R&D. The black line shows that a policy defined by a = .06
and 7T = 0.15 would result in a similar increase in real R&D investment, but at a lower average cost.
Alternatively, a policy defined by o = .06 and a larger tax advantage t77 = 0.12 would result in a
larger increase in R&D investment for a similar tax-to-R&D ratio. However, as shown in Panel (d),
this policy would also be accompanied by more evasion. These graphs show how firm selection into
the program depends on different policy choices that result in non-trivial tradeoffs between encouraging
R&D investment at the lowest cost to taxpayers, introducing misallocation across firms with different
adjustment costs, and incentivizing relabeling activities.

7 Conclusions

Governments around the world devote considerable tax resources to incentivize R&D investment; how-
ever, there is widespread concern that firms respond by relabeling other expenses as R&D expenditures.
This paper takes advantage of a large fiscal incentive and detailed administrative tax data to analyze
these margins in the important case of China. We provide striking graphical evidence consistent with
both large reported responses, and significant scope for relabeling. Despite the relabeling responses,
we find significant effects on firm-level productivity and profitability that are consistent with sizable
returns to R&D.

Optimal subsidies for R&D will depend on the fiscal cost for the government and whether the
R&D investment has external effects. This paper provides a useful metric that traces the government’s
tradeoff between own-firm productivity growth and tax revenues. If R&D is believed to have positive
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externalities on other-firm productivity, our estimates provide a bound on the size of the externality
that would justify government intervention.

Finally, while we find evidence consistent with evasion, the unusual structure of the InnoCom pro-
gram may limit the scope of evasion through pre-registration and auditing. In contrast, R&D investment
tax credits may be more susceptible to evasion in developing, and even developed countries. As this pa-
per demonstrates, accounting for evasion may have large effects on the design of R&D subsidy policies,
and future research should explore the potential for relabeling in other contexts.
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Figure 1: Cross Country Comparison: R&D as Share of GDP
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Figure 3: Bunching at 5% R&D Intensity (2005-2007)

50
|

40
|
3
X

30

Density

20
|

10
|

I I I I I I I
1% 3% 5% 7% 9% 1% 13%
R&D Intensity

Source: Annual Survey of Manufacturers. See Section 2 for details.

34

T
15%



Histogram

Figure 4: Foreign-Owned, Large Companies
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(b) Lack of Firm Size Manipulation: Small and Medium Firms
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Figure 7: Empirical Evidence of Evasion
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Figure 9: Theoretical Predictions of Bunching
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Figure 10: Estimates of Excess Mass from Bunching at Notch (2009)
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Figure 11: Estimates of Excess Mass from Bunching at Notch (2011)
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Figure 12: Robustness of Bunching Estimates

(a) Placebo: Foreign Firms with Sales>200m RMB in 2008 (b) No Extensive Margin: Sales>200m RMB in 2011
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Figure 13: Estimates of Excess Mass from Bunching at Notch (2009) and ITT on Admin Cost Ratio
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for details on the bunching estimator.
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Figure 14: Simulated Effects of Counterfactual Policies
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Table 1: Descriptive Statistics

Panel A: State Administration of Tax Data 2008 - 2011

Mean Std p25 p50 P75 # of Obs.
Sales (mil RMB) 118.263 1394.828 2.579 10.608 42.056 1202257
Fixed Asset (mil RMB)  32.912  390.406  0.402 2.089  10.743 1139038
# of Workers 175.402  852.494 17.000 48.000 136.000 1213497
R&D or not (%) 0.081 0.273 0.000  0.000  0.000 1219630
R&D/Sales (%, if>0) 3.560 7.019 0.337 1.544 4.296 98258
Adm Expense/Sales (%)  9.417 11.886  2.809 5.814 11.103 1171365
TFP (%) 2.058 0.522 1.638  2.007 2.434 1100845

Panel B: Annual Survey of Manufacturing 2006 - 2007

Mean Std p25 p50 p75 # of Obs.
Sales (mil RMB) 110.801 1066.080 10.760 23.750 59.513 638668
Fixed Asset (mil RMB)  42.517  701.282 1.630 4.492  13.370 638668
# of Workers 238.379 1170.327 50.000 95.000 200.000 638668
R&D or not (%) 0.102 0.303 0.000  0.000 0.000 638668
R&D/Sales (%, if>0) 1.631  3.184  0.118 0461  1.736 65267

Notes: Various sources, see Section 2 for details.
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Table 2: Bunching Estimates of Reported R&D Investment

(a) R&D Investment in 2009

0 @) ) @ )
Sales Perc. Inc. in d Fraction Constrained Perc. Inc. in d Marginal Buncher =~ R&D Intensity of
Group For Compliers Response Marginal Buncher
Ad a*(a”) e AD* a(l —a*(a™))AD*
Small 0.056 0.739%%* 0.189%** 0.378%** 0.556
(0.093) (0.283) (0.046) (0.092) (0.748)
Medium 0.133%* 0.659%+* 0.391°%%* 0.782%** 1.087**
(0.067) (0.027) (0.150) (0.299) (0.541)
Large 0.149%4* 0.570%** 0.347#%* 0.694*+* 0.897H**
(0.019) (0.016) (0.029) (0.058) (0.108)
(a) R&D Investment in 2011
0 @) ) @ )
Sales Perc. Inc. in d Fraction Constrained Perc. Inc. in d Marginal Buncher = R&D Intensity of
Group For Compliers Response Marginal Buncher
Ad a* (o) ﬁg&_) AD* ol — a*(a”))AD*
Small 0.114* 0.605%* 0.289%** 0.577H** 1.368**
(0.061) (0.273) (0.063) (0.125) (0.664)
Medium 0.207#4* 0.369%** 0.327* 0.655* 1.549%+*
(0.035) (0.072) (0.195) (0.390) (0.373)
Large 0.307#%* 0.3347%%* 0.461°#%* 0.921%** 1.856%**
(0.078) (0.032) (0.082) (0.165) (0.448)

Source: Administrative Tax Return Database. See Section 2 for details on data sources and Section 5 for details on the
estimation. Standard errors in parentheses.

*p<.1, p<.05 T p<.0l
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Table 3: Estimates of Treatment Effects

(a) Estimates of Intent-to-Treat (ITT) Effects

Bootstrap
ITT SE T-Stat 5th Perc. 95th Perc.

2009

Admin Costs -0.096 0.025 -3.822 -0.136 -0.054
Admin Costs (level) -0.003 0.001 -3.686 -0.005 -0.002
R&D 0.146 0.065 2.245 0.037 0.251
R&D (real) 0.090 0.044 2.074 0.022 0.165
User Cost -0.071 0.037 -1.929 -0.130 -0.009
2011

Tax -0.128 0.018 -7.293 -0.159 -0.101
TFP 0.012 0.006 1.953 0.001 0.022
Profit Ratio 0.009 0.005 1.888 0.001 0.016

(b) Wald Estimates of Treatment Effects

Bootstrap
Wald Estimate 5th Perc. 95th Perc.

2009

Reported R&D to User Cost -2.052 -7.919 -0.016
Real R&D to User Cost -1.272 -4.900 -0.010
2011

TFP to Reported R&D 0.084 0.002 0.281
Profit Ratio to Reported R&D 0.059 0.000 0.204
Tax to Reported R&D -0.879 -2.730 -0.458

Source: Administrative Tax Return Database. See Section 2 for details on data sources
and Section 5 for details on the estimation. Standard errors obtained via bootstrap.

ITT

1
= NExcluded Z Y; _/

1€(D*~,D*+)
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Table 4: Structural Estimates

(a) Point Estimates

TFP Elasticity Evasion Distribution of  Distribution of

of R&D Cost Adjustment Costs  Fixed Costs
€ n Hb Ob He
Estimate 0.098 5.663  8.581 1.648 0.629
SE 0.004 0.175  0.216 0.137 0.043

Note: Estimates based on calibrated values of 8 =5, p = 0.725, and o = 0.385.

(b) Simulated vs. Data Moments

Simulated Data
Prob Mass < d™* 0.284 0.280
Frac. not Bunch. 0.676 0.675
Prob Mass > d™* 0.198 0.189
Bunching Point d—* 0.75% 0.88%
ITT reported R&D 0.162 0.146
ITT TFP 0.008 0.012
ITT admin -0.27% -0.33%
TFP < d™* -0.032 -0.032
TFP between d~* and d™* 0.003 0.000
TFP > d™* 0.056 0.056

The simulation is based on 30,000 firms.
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Online Appendix: Not For Publication

This appendix contains multiple additional analyses. Appendix A discusses the estimation of our
measure of residualized log-TFP. Appendix B provides additional analyses suggesting that a fraction of
the reported R&D activity may be relabeled by contrasting the effect of reported R&D on TFP above
and below the notch. Appendix C provides a detailed derivation of the model. Finally, Appendix D
provides approximations of bunching implications.

A Estimation of Residual Productivity

This appendix describes how we construct an empirical measure of firm-level productivity qb;t. First,
we use the structure in our model of constant elasticity demand to write firm revenue (value-added) as:

6—1
Inr; = (0> [kInky + (1 — &) Inly + di,

where [;; is the labor input which we assume may be chosen each period. Second, we obtain the following

relation from the first order condition of cost minimization for the variable input /;:

Inst, =In <wlit> =In [(1 —K) <91>] + vit,
Tt 0

where vy ~ iid, and E[vy] = 0 is measurement error or a transitive shock in factor prices. Third, we

obtain a consistent estimate of (1 — ﬁ)(%) for each 3-digit manufacturing sector. Finally, given our
benchmark value of § = 5, we construct a residual measure of log TFP as follows:

by = %mnt —Alnky — (1 — &) Inly.

B Inferring Relabelling from Productivity Effect of R&D

We now investigate the implications of firm bunching and evasion behavior for measured productivity.
Our benchmark model assumes the following relationship between R&D and the firm productivity:

Git = poit—1 +eln(Djr—1) + ui.

Our evasion analysis indicates that firms have incentives to over-report their R&D in order to obtain
the HTE status.

This measurement problem can result in attenuation bias in the estimated effectiveness of R&D on
firm productivity. We overcome this challenge by borrowing from the model intuition that firms do not
misreport if they decide to have an R&D intensity below the qualifying threshold. Thus, our empirical
specification allows the elasticity of log TFP with respect to log reported R&D, i.e. ¢, to depend on
whether or not the firm is below or above the respective HTE threshold.

dit = pdit—1 + Pil[Above] x In RD; ;1 + [ol[Below] x In RD; 41 + wit.

Table A.5 reports the results of this regression analysis. All specifications include industry-year
fixed effects and the standard errors are clustered at the industry level. Overall, the coefficients on
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lagged log R&D are always highly significant. Column (1) shows that doubling R&D increases firm-
level productivity by 2.8%. Comparing columns (1) and (2), we find that separately estimating the
R&D elasticity based on a firm’s position relative to the notch produces results consistent with the
presence of evasion. When a firm’s R&D intensity is below the notch, doubling R&D spending improves
productivity by 2.8%. However, when a firm’s R&D intensity is above the notch, this magnitude is
reduced to 2.5%, around ten percent lower than the “no evasion” group. The last row of the table
shows that this difference is statistically significant at the 1% level.

Columns (3)-(5) report similar estimates when we estimate this equation separately for small,
medium, and large firms. The magnitude of the R&D elasticity varies across these groups, with the
effectiveness of R&D improving when firm size is larger. Doubling R&D improves the productivity of
a small firm by 1% but improves the productivity of a large firm by 4.4%. We also find evidence of
smaller effects of R&D on productivity for firms that are above the notch, and likely misreporting. This
difference also grows with firm size and is statistically significant in all cases. The attenuation in the
effect of R&D on productivity suggests a second measure of relabeling given by: 1 — % This measure
is reported in the last row of the table and is overall lower than that reported in the previous section. A
potential concern with this measure is that it represent decreasing returns to scale in R&D investment.
Table A.6 assuages this concern by showing that we do not obtain the same pattern of results when we
replicate this table at a fake notch that is above the true notch.

C Detailed Model Derivation

C.1 Model Setup

Consider a firm ¢ with a constant returns to scale production function given by:

git = exp{ it } F(Kit, - -+, Vir),

where Ky, - -+, Vi are static inputs with prices w;;, and where ¢;; is log-TFP which follows the law of
motion given by:
Git = pit—1 +eln(Dj—1) + ui

where D; ;1 is R&D investment, and w;; ~ i.i.d. N(O,O‘2). This setup is consistent with the R&D
literature where knowledge capital is depreciated (captured by p) and influenced by continuous R&D

expenditure (captured by €). In a stationary environment, it implies that the elasticity of TFP with
15

respect to a permanent increase in R&D is =5

The cost function for this familiar problem is given by:

C(pit)

C(q; it wit) = qc(Pit, wit) = QM,

c(wit)

= - is the unit cost function.
exp{¢it}

where ¢(dit, wit)

The firm faces a constant elasticity demand function given by:

—-1/6
Dit = Q4 / )
where 6 > 1. Revenue for the firm is given by qilt_l/ ' Tna given period, the firm chooses ¢;; to
1-1/0
maxdq;, / —Qz‘tC(@t,wit)-

qit
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The profit-maximizing g;; is given by:

L, (6-1 1 ?
“=\"0 c(@it, wit) )

0 1 g
Revenueit = (9—1 C((b,t,p,t)> = qu'tc((ﬁihpit)

That is, revenues equal production costs multiplied by a gross-markup 9341. Head and Mayer (2014)

Revenue is then given by:

survey estimates of 8 from the trade literature. While there is a broad range of estimates, the central
estimate is close to a value of 5, which implies a gross-markup around 1.2. Per-period profits are then
given by:

1, 6 —1)0-1 _
Tt = mqitc(@‘t; wit) = (99)0(@‘1&, wz’t)l .

Uncertainty and R&D investment enter per-period profits through the realization of log-TFP ¢;;. We
can write expected profits as follows:

6 —1)0-1 -
Elmy] = (99)0(P¢i¢—1 + (6 —1)0°/2, wit)l_eDz(i—i)E

09—
= E[Trit‘DLt—l = O]Dz(,t—?a’

where E[m;|D; 1 = 0] denotes the expected profit without any R&D investment.

We follow the investment literature and model the adjustment cost of R&D Investment with a

quadratic form that is proportional to revenue 0m;; and depends on the parameter b:

bOmi [Dil ] 2

Di a0 1) = ry
9(Di, i) 2 O0min

C.2 R&D Choice Under Linear Tax

Before considering how the InnoCom program affects a firm’s R&D investment choice, we first consider
a simpler setup without such a program. In a two-period context with a linear tax, the firm’s inter-
temporal problem is given by:

max (1 —t1) (mi1 — Dy — g(Di1, 0m1)) + B(1 — to) E[mso],

1

where the firm faces and adjustment cost of R&D investment given by ¢(D;1,60m;1). This problem has
the following first-order condition:

FOC: —(1—1t)) <1+b{f“

6—1)e—1
MD + B(1 — t)e(0 — 1) DYV R0 Dy = 0] = 0. (C.1)
K]
Notice first that if the tax rate is constant across periods, the corporate income tax does not affect the
choice of R&D investment.*? In the special case of no adjustment costs (i.e., b = 0), the optimal choice
of D;y is given by:

1 1—t 1 (=

(0 —1)e B(1 — t3) E[mia| Dip = 0] (C.2)

Dilz[

32This simple model eschews issues related to source of funds, as in Auerbach (1984).
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This equation shows that the optimal R&D choice has a constant elasticity with respect to the net of

tax rate, so that
dln Dil 1

din(1 —t3)  1—(0—1)’
In particular, this elasticity suggest that firms that have a higher valuation of R&D, that is when (6 —1)e

is greater, the firm will be more responsive to tax incentives.

Even in the general case (unrestricted b), we also observe that the choice of R&D depends on
potentially-unobserved, firm-specific factor ¢;; that influences E[m;2|D;—1 = 0]. An important insight
for the proceeding analysis is that we can recover these factors from Dj; as follows:

N Din
E[mie|Ds1 = 0] = B — t2)€1(9 —1) (1 +b [HWZJ) '

Second Order Condition

This problem may feature multiple solutions. To ensure our model results in sensible solutions, we
confirm the second order condition at the estimated values. The SOC is given by:

SOC: —(1—t) <b [ D + B(1 = t2)e(6 — 1)((0 — 1)e — 1) DYV ?Em5| Dy = 0] < 0.

0wy
It is sufficient to have (6 — 1)e < 1 such that the second order condition holds. We can also apply the
implicit function theorem to show that R&D decision D;; is increasing in ¢;; if (0 — 1)e < 1, a feature
that is consistent with numerous empirical studies.

C.3 A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure that mirrors the incentives
in the InnoCom program:

o — téT if D7 < afm
2 th if D1 > afm

sales equal 0wy, téT > téIT and where « is the R&D intensity required to attain the high-tech certi-
fication and LT /HT stands for low-tech/high-tech. In addition, we also introduced a fixed costs of
certification ¢ such that firms need to pay ¢ x afmy; to obtain the tax benefit when they pass the R&D
intensity threshold. Intuitively, this tax structure induces a notch in the profit function at D; = afmn;.
Figure 8 presents two possible scenarios following this incentive. Panel (a) shows the situation where
the firm finds it optimal to choose a level of R&D intensity below the threshold. At this choice, the
first order condition of the linear tax case holds and the optimal level of R&D is given by Equation C.1.
From this panel, we can observe that a range of R&D intensity levels below the threshold are dominated
by choosing an R&D intensity that matches the threshold level a. Panel (b) shows a situation where the
firm that is indifferent between the internal solution of Panel (a) and the “bunching” solution of Panel
(b). The optimal choice of R&D for this firm is characterized both by Equation C.1 and by D; = of.

Which of the two scenarios holds depends on determinants of the R&D investment decision that
may vary at the firm level and are summarized by E[m2|D;;—1 = 0], adjustment and fixed costs b, c,
as well as on the degree to which R&D investment is valued by firms in terms of future profits (i.e.
e(0 —1)). However, as long as E[m;2|D;+—1 = 0] and (b, ¢) is smoothly distributed around the threshold
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a, this incentive will lead a mass of firms to find D; = afm; optimal and thus “bunch” at this level.
Our analysis proceeds by first identifying the firm that is marginal between both solutions in terms of
the R&D intensity and then by using the identity of the marginal firm to relate the amount of bunching
at the notch to the firm’s valuation of R&D investment (6 — 1).

We start by characterizing the firm that is indifferent between level of R&D given by the notch and
a lower level of R&D investment D7, . Define II(-|t) as the value function of the firm’s inter-temporal
maximization problem when facing tax t in period 2. A firm ¢ is a marginal buncher if:

(D [t;") = T(abmt;"),

where the left-hand side is the profit from an internal solution facing the low-tech tax rate t47 and the
right hand side is the bunching solution when facing the high-tech tax rate t7. Using the optimal
choice for an internal solution in Equation C.1, we can manipulate II(D}] [t57) to obtain:

*— *— b@?’( _D*_
(D [t57) = (1-t) <7T7l1_Di1 - 2Zl [ -

2
] > + B(1 - téT)(fo)(a_l)gE[WiﬂDﬂ = 0]
Omin

= (1-t) <m + <€(91_1) — 1) D}y + by <€(91_1) — ;) [Zir) ,  (C3)

where we substitute for E[m;3|D;; = 0] using the optimality condition above.

Similarly, we manipulate IT(af7|tTT) by substituting for the unobserved components of the firm-

decision, i.e. E[m;2|D;1 = 0], using Equation C.1 to obtain:

I(afm |tiT)

697'('1'1 0497'('1'1 2 HT (6—1)e
92 + B(l — tQ )(01(971'2'1) E[ﬂ'ig’Dil = 0]

(1—1y) (ml —afmi(1+c) — .

b0
= (1 — tl) (ml — 04977'1'1(1 + C) _ @ 6207‘-11
(1-t") <04(97Tz‘1>(9_1)E ( [D?HD —
1+b || ) Dy ). C.4
To-na-_an \ o O ) P (C4)

We then use Equations C.3 and C.4 and the indifference condition that defines the marginal bunching
firm to obtain a relation between the percentage difference in R&D intensity and the parameters of
interest: (0 — 1)e.

o4



Subtracting I1(afm [t8T) from II(D;~[t;T) and manipulating we obtain:

_ 12
1 1 1\ [D? o2blr;
= (——— —1)D + b7y [ ——— — = a | g 11 i
0 (5(0 —-1) ) i+ bOmi (5(9 - 1) 2) [em] abmi (1 +c) 2

(1—thT) afmy \ OV L [P e
e(0—1)(1 -t \ DY 071 il
- _ 42
1 Dr 1 1 D; ab
— -1 71 b —— = il 1 i
0 (5(9 - 1) > afm e <5(9 —1) 2) [oﬂml] tled 2

B (1—t5T) <a97Tz‘1>(9_1)8_1 <1 +ab [ Dy D
e(0—1)(1—t&T) \ Dy afmi

0 = (8(91_1)—1> (1—AD*)+ab<E(91_1)—;> (1—AD*)2+1+c+%b
_4HT _ *x\1—(0—1)e
- ((1 _j%T)) X (1 ?(?_) 1) (1 + ab<1 - AD*)) ’ (C5)

where the first line ignores the common term (1 —#%;) in both equations, the second line divides by afny,
and the third line defines AD* = % as the percentage increase in R&D spending due to the
notch. Given a random draw of b, ¢, Equation C.5 is an implicit function for (6 — 1)e, thus the empirical

quantity AD* provides a source of identification for the returns to R&D.

C.4 R&D Choice Under Tax Notch with Evasion

Assume now that firms may misreport their costs and shift non-RD costs to the R&D category. Fol-
lowing conversations with CFOs of large Chinese companies, we model evasion as a choice to misreport
expenses across R&D and non-RD categories. Misreporting expenses or revenues overall is likely not
feasible as firms are subject to third party reporting (see, e.g., Kleven et al. (2011) and Pomeranz (2015)).

Denote a firm’s reported level of R&D spending by D;. The expected cost of misreporting to the
firm is given by h(Dj, Dl). We assume that the cost of mis-reporting is proportional to the reported
R&D, Dy, and depends on the percentage of mis-reported R&D, %, so that:

1

. . - (D —-D
h(D1,Dy) = Dih (11> .
D,

We also assume that h satisfies h(0) = 0 and h/(:) > 0.

The effects of the InnoCom program are now as follows:

o — té’T ifD1<a07r1
2= té_IT if D7 > abm

Notice first that if a firm decides not to bunch at the level afw, there is no incentive to misreport
R&D spending as it does not affect total profits and does not affect the tax rate. However, a firm might
find it optimal to report D = afm even if the actual level of R&D is lower. We characterize the firm
that is indifferent between bunching, and potentially misreporting, and not bunching.
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We start by characterizing the firm that is indifferent between level of R&D given by the notch
and a lower level of R&D investment D;. Define II(D;, D;|t) as the value function of the firm’s inter-
temporal maximization problem when facing tax ¢ in period 2 that spends D; on R&D but that declares
D;. A firm 4 is a marginal buncher if:

(D, Dy [tz") = T(afm, Di*[tT),

where the left-hand side is the profit from an internal solution facing the low-tech tax rate téT , the

right hand side is the bunching solution when facing the high-tech tax rate th

chooses a real R&D level of D*E.

, and where the firm

We first consider II(D};, DI [t5T). Since the firm need not mis-report in this case, Equation C.3
still describes the profit in this case. We then manipulate II(afmy, Di%[t1T) using the FOC for D} to
obtain:

bomy [DrK T
H(Oz@ﬂ'il,D;KHé{T) = (1—t1) <7Ti1—D;-k1K—Ck67TZ'10— il il )

L 37'('2'1 ]
+B(1 — 57" (D) VB mia| Din = 0] — h(D}¥, abm)
bomi [ DT
| O |

* (0-1)e *—
(1—t)(1 =) <D1K> < [D’l D —
i 14+b| 2| ) pr C.6
oo ya o \ by 0] ) P (C.6)

2
= (1 — tl) <7TZ'1 — Dz*lK — Oé@ﬂ'ilc — ) — h(DTK, (197'('1)

We then use Equations C.3 and C.6 and the indifference condition that defines the marginal bunching
firm to obtain a relation between the percentage difference in R&D intensity and the parameters of
interest: (6 — 1)e. Subtracting II(afmry, DiE[tT) from II(D};, D} [t5T) and rearranging we obtain:

- K12
0 = (6(91_ 5~ 1) DY + bl (5(91_ i ;) [?ﬁll] + DI + afmic+ be;“ [?ﬁﬂ
o a-dm (D;aK ) o (1 o [DD ey MO, abm)
e(0—1)(1— 5Ty \ DI Omi1 i (1—t)
*— x— 72 *K *K 72
0= () a0 (o 3) L] * ot 5 |t
o a-dm (D;K )”1’“ <1 o { Dy D DS R(DiK, abm)
e(@—-1)(1— t%T) Di abmi ol (1—ty)

where the first line ignores the common term (1 — ¢;) and the second line divides by afm;. We now

use the definitions AD* = % as the percentage increase in R&D spending due to the notch

and § = th;IDI as the percentage of misreporting relative to the reported value. These definitions and
assumptions yield the following condition:

oo+ (55 () v (@ ) o e)
(1— 8Ty (1 —AD*\'""7Y /14 ab(1 — AD*)\ = h(6*)(1 — 6%)
- (1—t§T)< 16 ) ( e(f—1) ) (1-t1)

0 = 1+

(C.7)
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Notice that in the special case with no evasion, when 0* = 0, Equation C.7 is identical to Equation C.5.

In the case when the firm decides to bunch and evade, we have the additional information that D
is chosen optimally. From Equation C.6, the firm solves the following problem:

bor;y [ DX - (afm — D
max (1—t1) (ﬂ'il — DX — abmic — % [07;11} ) — afmih <a7207r111>

(L—t)( 5Ty ( DENCV (T e
e(0—1)(1—t5T) \ D} Ot i
with the following FOC:

(ofmm]) = ) GE) T o]
afmiy 1—tET Dy O

]NI/ (0407T1 — DEK> 1

Oé(97T1 1-— tl

il

i

Notice that this equation is equivalent to:

>

EEA I R TEE

C.8)
_ * 1— HT (
1-AD i) (1+ab(1 — AD"))

Equation C.8 along with Equation C.7 now form a system of two equations that are implicit functions
for AD* and 0%, given a draw of (b,c).

D Bunching Approximations

This appendix details derivations of expressions that approximate changes in the R&D investment with
the estimated density.

D.1 Percentage Increase in R&D Intensity of Marginal Firm

As in previous papers, (e.g., Kleven and Waseem (2013)), we can use similar approximations to relate
the quantities B and ho(a) to the behavior of the marginal firm. We first consider the special case
without frictions, and note that

B = / ho (w) du ~ ho(a) (@ — d*) = ho(a)a % | (D.1)
= AD*

The first part of Equation D.3 makes the point that the excess mass B will equal the fraction of the
population of firms that would have located in the dominated region. This quantity is defined by the
integral of the counterfactual distribution hg(-) over the dominated interval, which is given by (d*~, «).
The second part of Equation D.3 approximates this integral by multiplying the length on this interval
by the value of the density at . Simplifying this expression and solving for AD* we obtain:

B

AD* ~ :
ho(a)a

(D.2)
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Thus, in order to estimate AD*, it suffices to have an estimate of the counterfactual density hg(-), and
to use this to recover the quantities B and ho(«). Note that while AD* is the percentage increase

relative to the notch, the percentage increase relative to the initial point of the marginal firm is given
by: AD* _ a—d”

1—-AD* — ~d*
In the case of heterogeneous frictions, we may obtain a similar approximation if we assume that the

probability of being constrained does not depend on d. This may happen, for instance, if a constant
fraction of firms are constrained regardless of d. While this may be a strong assumption, it provides a
useful approximation for B. To see this, note that

B = / / I[d > d Jho(d, b, ¢)d(b, c)dd
d*— b,c

_ / / 1[d > d; Jho(b, cld)d(b, c)ho(d)dd

d*— b,c
a

= /(1 — Pr(Constrained|d))hq(d)dd,
d*—
where the second line uses the definition of conditional probability, and the third line integrates over

(b, c¢). Using the assumption that Pr(Constrained|d) does not depend on d and using the same approx-
imation as in Equation D.3, we obtain:

«

B = (1Pr(Constrained))/ho(d)dd

=
—dr
~ (1 — Pr(Constrained))ho(a)a a -
~———
AD*

The formula for AD* now becomes:

B
ho(a)a(1 — Pr(Constrained))

AD* ~

D.2 Average Percentage Increase in R&D Intensity

We now derive an approximation of the average percentage increase in R&D due to the notch. We begin
by writing the average R&D intensities in both situations as:

dr+ a d*t
o et a—d~ T —«
E[d|No Notch,d € (d*,d* )] = [ dho(d)dd = ho(d)dd + ho(d)dd  (D.3)
e RS "
d d
dr+ a d*t
o et a—d~ T -«
E[d|Notch,d € (d*,d*")] = | dhi(d)dd ~ 5 hi(d)dd + hi(d)dd  (D.4)
e RS "
d d
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We can then write the change in R&D intensity as:

E[d|Notch, d € (d*~,d*")] — E[d|No Notch,d € (d*~,d*")] ~ d / d*+(h1(d) — ho(d))dd (D.5)

«

B

L d / " (ha(d) — ho(d))dd  (D.6)

*—

-B
— B(d-d). (D.7)

where we use the fact that the excess mass above the notch is equal to the missing mass below the
notch.
Now, taking the following approximation of E[d|No Notch, d € (d*~, d*1)]:

a-+ d+

dho(d)dd ~ / aho(a)dd

*—

E[d|No Notch,d € (d*~,d*")] = /

*—

= ahg(a)(d™" —d*7) = 2aho(a)(d — d),

we obtain:
E[dNotch, d € (d*~,d**)] — E[d|No Notch,d € (d*~,d*")] B
E[d|No Notch, d € (d*—, d**)] ~ 2aho(a)’

Note that while these derivations do not explicitly include the role of heterogeneous frictions, these

(D.8)

expressions are not affected by the presence of heterogeneous frictions.

D.3 Identification of Intent-to-Treat Effect

The ITT estimates are identified by firms that “comply” with the tax incentive. To see this, note:

E[Y|No Notch,d € (d*~,d*")] = Y ho(d) x Pr(Constrained|d)dd (D.9)
d*—

Never Takers
da*t

+ /Yho(d) X (1 — Pr(Constrained|d))dd + / Y ho(d)dd
d*— «

/

Compliers Always Takers
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Similarly, we can write

«
E[Y|Notch,d € (&=, d"")] = / Y ha(d)dd (D.10)
d*—
|
Never Takers

+ / Yhi(d) x (1 — Pr(Constrained|d)) x I[dy € (d*, «)]dd

Compliers

ar+

n / Yh(d)I[do € (e, d*H)]dd,

Always Takers

where we assume that there are no defier firms that would be above the notch without the Inno-
Com program, but would be below the notch with the InnoCom program. Noting that hg(d) X
Pr(Constrained|d) = h(d), and that hi(d) x I[dy € (a, d*+)] = ho(d), we can write the ITTY as:

=t «a
ITTY = / Yhi(d)(1 — Pr(Constrained|d))I[dy € (d*,«)]dd — [ Yho(d)(1 — Pr(Constrained|d))dd,

d
(D.11)

which is just the change in the average of firms in the excluded region that is driven by the compliers.

Approximation of Intent-to-Treat Effect
Finally, we can obtain more intuition behind the I'TT estimates by noting that:
da*t «
B = / hi1(d)(1 — Pr(Constrained|d))I[dy € (d*~, a)|dd = / ho(d)(1 — Pr(Constrained|d))dd.
(0% d*—

Using this fact, the following expression is an approximation of Equation D.11:
ITTY =~ B(Y —Y) (D.12)

where Y = E[Y|d € (a,d*")] and Y = E[Y|d € (d*~, «)]. This equation gives a discrete treatment effect
interpretation to the I'TT by showing that the I'TT is driven by the amount of switching of compliers
between the “below notch” and “above notch” regions, given by B, and the change in the outcome
associated from being in the “above notch” region. Combining this equation with Equation D.7 we
obtain the Wald estimator as follows:

which gives the interpretation of the increase in Y for a given unit increase in d. Note that this
interpretation carries the implication that there are no other effects from being certified as an InnoCom
firm on Y beyond the effect on d.
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Appendix Graphs

Figure A.1: Alternative Empirical Evidence of Evasion
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Figure A.3: Sensitivity Analysis
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Appendix Tables

Table A.1: Lack of Sales Manipulation around R&D Intensity Thresholds

(1) (2) (3)
Small Medium Large

Structural Break 0.108 -0.021 0.055
(0.103)  (0.067)  (0.114)

Observations 1,096 1,952 1,665

Percentage Misreported

(SE)

Source: Administrative Tax Return Database. See Section 2 for
details on data sources and Section 5 for details on the estimation.
Standard errors in parentheses.

*p<.1,™ p<.05 " p<.01

Table A.2: Estimates of Mis-categorized R&D

(1) (2) (3)
Small  Medium Large

Structural Break -0.014**  -0.013** -0.008***
(0.007)  (0.004) (0.003)
Observations 5,016 8,336 8,794
Percentage Misreported Relative to Notch @ .233** .329*** .269***
(SE) (.111) (.093) (.095)

Source: Administrative Tax Return Database. See Section 2 for
details on data sources and Section 5 for details on the estimation.
Standard errors in parentheses.

*p<.1," p<.05 " p< .01
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Table A.3: Alternative Estimates of Mis-categorized R&D

) ) ©)
Low Sales Medium Sales High Sales
Structural Break 0.02 0.03** 0.05**
(0.02) (0.01) (0.01)
N 4028 6461 7222
Mean Ratio Above « 0.47 0.45 0.51
Fraction Constrained: a* 0.87 0.47 0.41
Percentage Evasion: §* 0.25 0.15 0.16

Standard errors in parentheses
*p < 0.10, ¥ p < 0.05, *** p < 0.01

Table A.4: Estimates of Mis-categorized R&D by Current Asset Ratio

(1) (2) (3)
Low Medium  Large
(a) Low Current Asset Ratio

Structural Break -0.017**  -0.013***  -0.004
(0.007)  (0.004)  (0.002)
Percentage Misreported — .278** .326*** 17
(SE) (.111) (.088) (.081)
(b) High Current Asset Ratio
Structural Break -0.020*  -0.013*  -0.011**
(0.011)  (0.007)  (0.005)
Percentage Misreported — .328* .318* .375**
(SE) (181)  (171)  (.166)

Standard errors in parentheses
*p<.1, ™ p<.05 " p<.01
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Table A.5: Effects of R&D on Log TFP

(1) (2) (3) (4) (5)
All All Small  Medium Large
Lagged Log TFP 0.7355%  0.735"* 0.724** 0.713"*  0.738"*"
(0.009)  (0.009)  (0.015)  (0.014)  (0.014)
100 X Log R&D 2.779***
(0.260)
100 X Log R&D X Above Notch 2.510"**  0.968***  1.503*** 3.767*
(0.232)  (0.355)  (0.320)  (0.397)
100 X Log R&D X Below Notch 2.809***  1.017**  1.681*** 4.364***
(0.263)  (0.408)  (0.373) (0.454)
Observations 21,052 21,052 6,030 7,662 7,360
Implied §* =1 — 2 107+ 048 .106*** 137
(.008)  (.041)  (.027) (.017)

Source: Administrative Tax Return Database. See Section 2 for details on data sources and Section 5 for
details on the estimation. Industry X Year FE, standard errors in parentheses, clustered at Industry level.

* p<0.10, ™ p < 0.05, ™ p < 0.01

it = poin_1 + Brl[Above] x In RDy_1 + fol[Below] x In RDy_1 + ust

Table A.6: Effects of R&D on Log TFP: Placebo with Fake Notch
(1) (2) (3) (4) (5)

All All Small  Medium  Large
Lagged Log TFP 0.716**  0.717** 0.705***  0.688*** 0.726***
(0.014)  (0.014)  (0.027)  (0.021)  (0.017)
100 X Log R&D 3.319***
(0.449)
100 X Log R&D X Above Notch 3.280***  1.514*  3.518"* 5.391***
(0.433)  (0.827)  (0.591)  (0.579)
100 X Log R&D X Below Notch 3.315**  1.370*  3.779*** 5.324***
(0.444)  (0.793)  (0.687)  (0.656)
Observations 9,223 9,223 3,203 3,528 2,492
Implied §* =1 — & 011 -.105 .069* -.013

(016)  (.08)  (.041)  (.03)

Source: Administrative Tax Return Database. See Section 2 for details on data
sources and Section 5 for details on the estimation. Industry X Year FE, standard
errors in parentheses, clustered at Industry level.

*p<0.10, " p < 0.05, *** p < 0.01

bit = pdit—1 + Bil[Above] x In RD;_; + Bol[Below] x In RDy_1 +
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