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For nearly a century, investigators in the social sciences
have used regression nodels to deduce cause-and-effect
rel ati onships frompatterns of association. Path nodels and
aut omat ed search procedures are nore recent devel opnents. In ny
view, this enterprise has not been successful. The nodels tend
to neglect the difficulties in establishing causal relations, and
t he mat hematical conplexities tend to obscure rather than clarify
t he assunptions on which the analysis is based.

Formal statistical inference is, by its nature, conditional
| f mai ntai ned hypotheses A, B, C, ... hold, then H can be tested
agai nst the data. However, if A B, C ... remain in doubt, so
nmust inferences about H  Careful scrutiny of maintained
hypot heses should therefore be a critical part of enpirical
wor k-- a principle honored nore often in the breach than the
obser vance.

Thi s paper focuses on nodeling techniques that seemto
convert association into causation. The object is to clarify the
di fferences anong the various uses of regression, as well as the
source of the difficulty in making causal inferences by nodeling.
The di scussion will proceed mainly by exanples, ranging from
(Yule 1899) to (Spirtes, dynour, and Schei nes 1992).



1. Qutline

Many treatnments of regression seemto take for granted that
t he investigator knows the rel evant variables, their causal
order, and the functional formof the relationships anbng t hem
measur enents of the independent variables are assuned to be
wi thout error. |Indeed, Gauss devel oped and used regression in
physi cal science contexts where these conditions hold, at |east
to a very good approxi mation.l Today, the textbook theorens
that justify regression are proved on the basis of such
assunpti ons.

In the social sciences, the situation seens quite different.
Regression is used to discover relationships or to disentangle
cause and effect. However, investigators have only vague ideas
as to the relevant variables and their causal order; functional
forns are chosen on the basis of convenience or famliarity;
serious problens of neasurenment are often encountered.

Regression may offer useful ways of summarizing the data and
maki ng predictions. Investigators may be able to use summari es
and predictions to draw substantive conclusions. However, | see
no cases in which regression equations, |et alone the nore
conpl ex net hods, have succeeded as engi nes for discovering causal
rel ati onships. O course, there may be success stories that |
have not found; nor does a track record of failure necessarily
project into the future.

One of the first applications of regression techniques to
social science is (Yule 1899). Recent exanples will be found in
(Spirtes, dymour, and Scheines 1992), to be cited here as SGS
(The SGS theory is sunmarized in dynmour 1993, cited as CG) SGS
have attracted considerable attention in the phil osophy of
sci ence, because they have devel oped conputerized al gorithns that
search for path nodels. Wth their algorithnms, SGS claimto nmake
rigorous inferences of causation fromassociation. This is a
bol d claim which does not survive exam nation.

1 Gauss was fitting orbits to astrononical observations,
with |l east squares to estimate the elenents of the orbits (Gauss
1809). (Stigler 1986, 145-46) awards priority to (Legendre 1805).
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The bal ance of this paper is organized as foll ows.
Section 2 discusses Yule’'s work. Sections 3 and 4 explain the
critical idea of "exogeneity." Section 5 describes a
contenporary regression nodel. Sections 6-10 review SGS and
reanal yze sonme of their exanples. Sections 11-12 canvass sone
mat hemati cal issues. Possible responses to nmy critique will be
found in section 13. There is a brief reviewof the literature
in section 14, and conclusions are presented in section 15. For
ease of reference, standard fornulas for regression are given in
an appendix. | have tried to make nost of the paper accessible
to non-statistical readers, particularly if they will permt the
occasi onal undefined technical term sections 11 and 12 are nore
speci al i zed.



2. Yule's regressi on nodel for pauperism

One of the first regression nodels in social science was
devel oped by Yule-- "An Investigation into the Causes of
Changes in Pauperismin England, Chiefly During the Last Two
| ntercensal Decades."? In late 19th century Engl and, poor
peopl e coul d be supported either inside the poor house or
outside. Did provision of support outside the poor house
i ncrease the nunber of poor people?

To address this issue, Yule used data fromthe censuses of
1871, 1881, and 1891. (In England, the census is taken in years
that end with 1.) He considered the periods 1871-81 and 1881-91,
rel ati ng changes in the nunber of paupers to changes in the
"outrelief ratio," that is, the ratio between the nunber of
paupers supported outside the poor house and inside. He used
regression to control for two confounders-- changes in the
popul ation and its age structure.

H s equation can be witten as foll ows:
(1) APaup = a + bxAQut + cxAPop + dxAQd + error.

Here, A stands for percentage difference, Paup for the nunber of
paupers, Qut for the outrelief ratio, Pop for popul ation size,
and A d for the proportion of people aged 65 and over.

Yul e’s unit of analysis was the "union," which seens to have
been a small geographical area like a county.® He had four
kinds of areas: rural, mxed, urban, netropolitan. He used
"Ordinary Least Squares” (COLS) to estimate the coefficients from
the data, with a "50 cm Gavet" slide rule to do the arithnetic.

To be nore specific, Yule estimated a separate equation for
each time period (1871-81 and 1881-91) and each kind of area.
There were 2 tine periods and 4 kinds of areas, thus, 2 x 4 = 8
equations. Wthin a tine period, all areas of the same kind--
for instance, all rural unions-- are governed by one equati on.
(By coincidence, there are 4 coefficients in each equation, and 4
ki nds of areas.)

2 See (Yule 1899), (Stigler 1986, 345-58), and (Desrosiéres
1993).

3 There were about 600 such areas in England. A poor-|aw
uni on "consisted of two nore parishes conbined for adm nistrative
purposes." (Stigler 1986, 346).



Yul e was | ooking for the "Hooke’s Law of Poverty." Nature
ran an experinment, with lots of variation over tinme and
geogr aphy, and Yule analyzed the results. Regression was needed
to control for the confounding effects of change in popul ation
and age structure. The equations were held to show that, other
t hi ngs being equal, changes in the outrelief ratio create
correspondi ng changes in the nunber of paupers. Indeed, if you
increase the outrelief ratio by 1 percentage point but hold the
ot her factors constant, you will increase the nunber of paupers
by b percent, b being the coefficient of outrelief in equation
(1). More qualitatively, if b is positive, welfare creates
paupers.

For a nmoment, | turn from Yule to nethodol ogy. A regression
equation like (1) is usually witten as

(2) Y =XB + e.

In this equation, the vector Y represents the dependent vari abl e,
i ke pauperism the matrix X represents the explanatory (or
"independent”) variables, like the outrelief ratio, population,
and age structure. These are observable. The vector f
represents paraneters, which are not observable but may be
estimated fromthe data: paraneters are "social constants,”

whi ch characterize the process that generated the data. In Yule's
equation, P has four conponents-- the paraneters a, b, ¢, din
equation (1). The error or "disturbance"” terme is also
unobservabl e, and represents the inpact of chance factors
unrelated to X. Statistical inferences are often based on
"stochastic assunptions” about &, e.g., € is independent of X
its conmponents are independent and identically distributed with
mean 0. For details, see the appendi x bel ow.

Three possi bl e uses for regression equations are as foll ows:

(1) to summari ze data, or
(1i) to predict values of the dependent variable, or
(ti1) to predict the results of interventions.

Yul e could certainly have summari zed his data by sayi ng that
for a given time period and unions of a specific type, with
certain values of the explanatory variables, the change in
pauperi smwas about so much and so nuch. I'n ot her wor ds, he
could have used his equations to estimate the average val ue of Y,
given the values of X. This use of regression may run into
technical problens if there are outliers, or nonlinearities in



the regression surface. However, at least in principle, there do
seemto be technical fixes for such problens. Furthernore,
stochasti c assunptions about the disturbance term play al nost no
role. Therefore, |ike nost statisticians, | believe that
regression can be quite hel pful in summarizing | arge data sets.

For prediction, there is a ceteris paribus assunption: the
systemw ||l remain stable. Prediction is already nore
conplicated than description. On the other hand, if you nmake a
series of predictions and test them against data, it may be
possi ble to show that the systemis stable, or sufficiently
stable for regression to be quite helpful.? Again, any
particul ar use of regression to make predictions may go off the
rails, but there do not seemto be essential difficulties of
principle invol ved.

Causal inference is different, because a change in the
systemis contenplated: for exanple, there will be an
intervention. Descriptive statistics tell you about the
correlations that happen to hold in the data; causal nodels claim
to tell you what will happen to Y if you change X. I ndeed,
regression is often used to make counter-factual inferences about
the past: what would Y have been if X had been different? This
use of regression to make causal inferences is the nost
intriguing-- and the nost problematic. Difficulties are created
by omtted variables, incorrect functional form etc. O course,
if the results of causal nodeling were with any frequency checked
against the results of interventions, the bal ance of argunent
m ght be very different.®

For description and prediction, the nunerical values of the
i ndi vi dual coefficients fade into the background: it is the
whol e |inear conbination on the right hand side of the equation
that matters. For causal inference, it is the individual
coefficients that do the trick. |In equation (1), for exanple, it
is b that should tell you what happens to pauperi sm when the
outrelief ratio is manipul at ed.

4 (Meehl 1954) provides some wel | - known exanpl es.
Predictive validity is best denonstrated by nmaking real ex ante
forecasts in several different contexts (Ehrenberg and Bound
1993).

5 A'so see (Manski 1993).



At this renmove, the flaws in Yule s argunent may be
apparent. For exanple, there seemto be sone inportant variables
m ssing fromthe equation, including variables that neasure
econom c activity. Here is Yule’'s comment on the |ast-naned
factor:

A good deal of tine and | abour was spent in making trial of
this idea, but the results proved unsatisfactory, and
finally the nmeasure was abandoned altogether. [p. 253]

Yul e seens to have used the rate of popul ation growth-- APop in
equation (1)-- as a proxy for economc activity, although that
creates anbiguity. Oher things being equal, popul ation growth
will by itself add to the nunber of paupers; inits role as
proxy, however, population growh should reduce pauperism

The equations for nmetropolitan unions are shown bel ow, for
1871-81 and 1881-91:°

(1871-81) APaup

13.19 + 0.755 x AQut - 0.322 x APop
- 0.022xAAd + residual.

(1881-91) APaup 1.36 + 0.324 x AQut - 0. 369 x APop

+ 1.37 xAA d + residual.

For exanple, one nmetropolitan union is Westm nster. Over
the period 1871-81, the percentage changes in Qut, Pop and A d
are -73, -9, and 5, respectively. The percentage change in Paup
predi cted fromthe regression equation is

13.19 + 0.755%(-73) - 0.322x(-9) - 0.022x5 = - 39.

The actual percentage change in Paup is -48. The "residual” is
residual = actual - predicted = -48 - (-39) = -9.
6

These, and the other 6 equations, are reported in Yule's
Table C, p. 259. Hs Table XI X gives data for nmetropolitan
unions, in the formof "percentage ratios" for 1871-81 rather
than differences, apparently to avoid negative nunbers. The
equations were fitted to data; the nunerical coefficients in the
di spl ays are estimates for the correspondi ng paranmeters in (1);
the residuals are observable, but are only approximations to
unobser vabl e di sturbance terns.



The coefficients in the regression equation are estimted so as
to mnimze the size of the residuals. (Technically, it is the
sum of the squares that is mnimzed-- hence the term"| east
squares.") The linear conbination of explanatory variables on
the right side of the equation has therefore been optim zed; but
there is no guarantee that individual coefficients will make nuch
sense.

There are sone noticeable inconsistencies in Yule's
coefficients, over tinme and across the various kinds of
geography. Nor are the signs of the coefficients entirely
reasonabl e. These inconsistencies may not by thensel ves be
fatal, but certainly raise the question of whether the equations
hold true for any well-defined popul ation of tines and pl aces.
|f the coefficients do not have a life of their own-- outside
Yul e’s particular data set-- they cannot be used to answer
questions of the form "What woul d happen if you change the
outrelief ratio?" The coefficients may be useful for descriptive
pur poses, but not for causal inference or even prediction.

Moreover, there are famliar difficulties of interpretation.
At best, Yule showed that changes in pauperismand the outrelief
rati o were associ ated, even after adjusting for changes in the
popul ation and its age structure. The direction of the causal
arrow, however, is by no neans clear. Yule's theory is that
outrelief is the cause, and pauperismthe effect. That is a
reasonabl e view. However, the opposite idea seens equally
tenable-- a union that is flooded with paupers may not be able to
bui |l d poor houses fast enough, and resorts to outrelief. [If so,
pauperi sm causes outrelief. Also, Governor Pete WIlson's theory
may have sone plausibility for 19th century England if not 20th
century California: unions that provide generous outrelief
attract paupers from el sewhere. ’

7 According to (Stigler 1986, 356-7), Pigou criticized Yule
for ignoring "the non-quantitative facts of the situation.... It
is well known that, during recent years, those unions in which
out-relief has been restricted have, on the whole, enjoyed a
general adm nistration nuch superior to that of other unions.”

Stigler responds that "Pigou’s ad hoc speculation ... could
not, of course, be disproved fromthe data Yule used.” In
effect, this allows Yule to defend hinself by pleading ignorance.



Yul e nust have been aware of these problens. After
al l ocating the changes in pauperismto their various causes
(including the residual), he wthdraws all causal clains wth one
deft sentence:

Strictly, for "due to" read "associated with." [footnote 25,
p. 270]

Yule’'s paper is quite nodern in spirit, with two exceptions: he
did not rely on statistical significance, and he did not use a
graph. Figure 1 brings himup to date.

Figure 1. Yule's nodel for pauperism The figure represents
equation (1) in graphical form The asterisks denote a high
degree of statistical significance.

AQut APop AOQIld
*kk *kk
APaup
Notes: To determ ne the asterisks, | reconputed Yule's regression for the

netropolitan unions over the period 1871-81, using data in his Table X X
replicated his coefficients, as shown in the display, although roundoff error is
quite | arge:

APaup = 12.884 + 0.752xACQut - 0.311xAPop + 0.056xA0 d + resi dual
10.367 0.135 0. 067 0. 223
1.24 5. 57 -4.65 0.25

Under the coefficients are standard errors (SEs) and t-statistics. The SE
indicates the likely size of the difference between an estinmated coefficient and
its true value. The t-statistic is the ratio of an estinate to its SE

Generally, a t-statistic above 2 or 3 in absolute value indicates that the
corresponding paraneter is unlikely to be truly 0. The paraneters are features
of the npbdel, and the SEs are conmputed on the basis of the stochastic assunptions
in the nodel; for details, see the appendix. (O course, Yule' s nodel is open to
serious question.) In Figure 1, the explanatory variables are correl ated; such
correlations are often signaled by curved, doubl e-headed arrows; error terns are

not shown either.



3. Regr essi on estimates and condi ti onal expectations

In the regression nodel (2), Y is the dependent vari abl e,

i ke pauperism X represents the explanatory variables, |ike the
outrelief ratio, population, and age structure. If all goes
well, the regression equation will estinmate the "conditional

expectation” of Y given X = x, that is, the average value of Y
corresponding to given values for the explanatory vari abl es.

To clarify the definitions, consider two procedures:

Procedure #1. Select subjects with X = x; look at the
average of their Y s.

Procedure #2. Intervene and set X = x for sone subjects;
| ook at the average of their Y s.

These procedures are quite different. The first involves the
data set as you find it. The second involves an intervention.

Regressi on does seemto | et you nove fromselection to
intervention; that is why the technique is so popular. However,
regressi on approxi mates the sel ection procedure, rather than
intervention. Nor does the statistical analysis prove that the
two procedures give the sanme results: how could it? |Instead,
causal inferences are made by assuming that selection tells you
what woul d happen if you were to intervene.

The phrase "X is exogenous" is often taken to nmean that
selecting on X will produce the sane results as intervening to
set the value of X-- the basic assunption in many anal yses.
Exogeneity al so has weaker neanings, to be taken up later. The
anbiguity is unfortunate, because anal ysts may assune exogeneity
in a weak sense, and proceed as if they had established sonething
nore. It is only exogeneity in the strong sense defined above
t hat enables you to predict the results of interventions from
non- experi mental dat a.

The distinction between selection and intervention is
acknow edged even by the nodel ers:

Formal | y speaki ng, probabilistic analysis is indeed
sensitive only to covariations, so it can never distinguish
genui ne causal dependenci es from spurious correl ations...
(Pearl 1988, 396)
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Such adm ssions-- |like Yule's footnote 25-- are fatal to the
enterprise. O course, Pearl does not give up. For instance, he
goes on to say that experinents just provide the opportunity to
observe yet nore correlations, a nove he attributes to (Sinon
1980) .

Figure 2 is Pearl’s. On the left, it seens that X and Z
cause Y; manipulating X or Z will change Y. However, if only we
had neasured the variables U and V, we m ght have seen that they
were the joint causes of X, Y and Z, as in the right hand panel.

|f so, manipulating X and Z will not change Y at all. No anount
of statistical analysis on the observables-- on X, Y and Z-- can
tell us which panel expresses the right theory. |ndeed, matters

can be arranged so that both theories lead to the sane joint
di stribution for the observables.

Figure 2. After Judea Pearl (1988, 397). Causation cannot be
inferred from associati on by using causal nodels.

AVERVAWAN

Notes: In panel (a), X and Z are assuned to be independent. In
panel (b), U and V are assuned to be independent; it nmay be shown
i n consequence that X and Z are independent. Also see (Duncan
1975, 113-27).
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4. Two ideas of conditional probabilities

The di stinction between the two ideas of conditioning--
sel ecting subjects with X = x, or intervening to set X = x--
seens fundanental. A concrete exanple may hel p, and conditi onal
probabilities are easier to deal with than conditiona
expect ati ons.

Many studi es have denonstrated an associ ati on between
cervical cancer and exposure to two sexually transmtted
di seases-- herpes and chl anydia. Suppose we had data as shown in
Table 1. The incidence rate of cervical cancer is 200 per
100, 000 for wonen exposed to herpes and chlanydia (top left); 116
per 100, 000 for wonen exposed to herpes but not chlanydia; and
130 per 100,000 for those exposed to herpes, the two exposure
categories for chlanydia being conbined. Oher cells my be read
inasimlar way.

Table 1. Rate of cervical cancer cases per 100,000 wonen,
by exposure to chlanydia and herpes. Data are hypotheti cal .

Chl anydi a
Mar gi nal
Yes No
Yes 200 116 130
Her pes
No 180 80 87
Mar gi nal 190 90 100
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Wth sanple data, there is a role for technical statistics
in estimation and testing-- for instance to see if the rates
within a row are constant across col unms. However, the rea
guestion is not association but causation. Does herpes cause
cervical cancer? what about chlanmydia? Biotechnology m ght find
a way to elimnate Herpes sinplex as well as Chlanydi a
trachomatis. That would be a great relief, but would it reduce
the incidence rate of cervical cancer?

To consider the issue of causality nore directly, suppose
that we actually know the rates for the population of interest,
as shown in Table 1. Statistical testing must now fade into the

background. The overall incidence rate is 100 cervical cancers
per 100, 000 wonen (Table 1, bottomright); anobng wonen exposed
neither to herpes nor to chlanydia, the rate is Iower-- 80 per
100, 000. If cervical cancer is caused by herpes and chl anydi a,

elimnating the m croorgani snms responsi ble for those di seases
shoul d reduce the incidence rate of cervical cancer from 100 to
80 per 100,000. On the other hand, if the relationship is not
causal, elimnating those mcroorganisms will have little effect
on the incidence rate of the cancer.

To be nore explicit, 80/100,000 has been found by sel ecting
wonen who are exposed to neither herpes nor chlanydia, and
conputing the incidence rate of cervical cancer for that group
one interpretation of conditional probability. If we intervene
and elimnate the two di seases, we want to know the rate after
the intervention: that is another interpretation. The two
interpretations are different, because the underlying procedures
are different. Statistical analysis of the nunbers in the table,
however refined or conplex, cannot prove that a hypothetical
intervention will give the sane results as selection. This may
seem obvi ous, even banal; but if you grant the point, the causal
nodel i ng gane is |largely over

What is the situation for Table 1? The story is far from
certain. Current epidem ol ogical opinion favors the idea that
cervical cancer is caused by certain strains of human papill oma
virus (HPV); herpes and chl anydi a have no etiologic role, but
serve only as markers for exposure to HPV. If that opinion is
correct, w ping out herpes and chlamydia will have no inpact on
rates of cervical cancer
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Due in part to the rarity of cervical cancer, cohort studies
do not seemto be available. (The nunmbers in Table 1, although
hypot hetical, are not unreasonable.) M point is even stronger
for the real studies of the association between cervical cancer
and herpes or chlanydia. Problens created by inconplete data
cannot sinplify the task of inferring causation from
associ ati on.

5. Another regression exanpl e

Ri ndfuss et al. (1980) propose a nodel to explain the
process by which a woman deci des how nuch education to get, and
when to have her first child. The nodel illustrates many
features of contenporary technique.® Before we take up the
nodel, let the authors say what they were trying to do:

The interplay between education and fertility has a
significant influence on the roles wonen occupy, when in
their life cycle they occupy these roles, and the | ength of
time spent in these roles.... This paper explores the

t heoretical |inkages between education and fertility.... It
is found that the reciprocal relationship between education
and age at first birth is domnated by the effect from
education to age at first birth with only a trivial effect
in the other direction. [Abstract]

No factor has a greater inpact on the roles wonen occupy
than maternity. Wether a woman becones a nother, the age
at which she does so, and the tim ng and nunber of
subsequent births set the conditions under which other roles
are assuned.... Education is another prinme factor
conditioning female roles. [p. 431, footnote omtted]

8 For a discussion of the epideniology, see (Cairns 1978,
Peto and zur Hausen 1986, Sherman et al. 1991, Hakama et al.
1993) .

9 | use this exanple because it is discussed by SGS pp.
139-40; al so see CG pp. 14-15.
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The overall relationship between education and fertility has
its roots at some unspecified point in adol escence, or

per haps even earlier. At this point aspirations for
educational attainment as a goal in itself and for adult
roles that have inplications for educational attainnent
first emerge. The desire for education as a neasure of
status and ability in academ ¢ work may encourage wonen to
sel ect occupational goals that require a high |level of
educational attainnent. Conversely, particular occupational
or role aspirations may set standards of education that nust
be achi eved. The obverse is true for those with either |ow
educational or occupational goals. Also, occupational and
educational aspirations are affected by a nunber of prior
factors, such as nother’s education, father’s education,
famly inconme, intellectual ability, prior educational
experience, race, and nunber of siblings. [p. 432, citations
omtted]

The nodel used by Rindfuss et al. (1980) is shown in
Figure 3. The diagram corresponds to two |inear equations in two
unknowns, ED and AGE (variables are defined in Table 2):
(3) ED = a x AGE + A
(4) AGE = a’ xED + A’.
According to the nodel, a wonen chooses her educational |evel and

age at first birth as if by solving these two equations for the
two unknowns.
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Figure 3. The nodel in diagramform (R ndfuss et al. 1980; SGS
p. 140; CG p. 15). Variables are defined in Table 2 bel ow.

Expl anatory vari abl es (DADSOCC, RACE, etc.) are correlated; error
terns are not shown in the di agram

DADSOCC
RACE
NOSIB
ED

FARM
REGN
ADOLF

AGE
REL

YCIG

FEC

The coefficients a and a’ are "social constants,”" to be
estimated fromthe data. The terns A and A’ take background
factors into account:

(5) A=Ay + bxDADSOCCC + ¢y xRACE + ... + c;xYCG
+ random error drawn from a box,
(6) A" = Ay + b"xXFEC + ¢c;"XRACE + ... + c;" xYCG
+ anot her random error drawn from a box.
Again, the paraneters A;, b, c;, ... are social constants to be

estimated fromthe data. The randomerrors are assunmed to have
mean 0, to be statistically independent fromwonan to wonman, and
to be identically distributed. Correlations across equations (5)
and (6) are permtted.

16



Equations (3-6) are not quite regression equations, due to
the sinultaneity of (3) and (4); fitting by OLS (ordinary | east
squares) would create "sinmultaneity bias.” Thus, R ndfuss et al.
use an estimation procedure called "two-stage | east squares."10
FEC does not cone into equation (5), nor DADSCCC i nto equation
(6). Gaphically, there is no arrow from DADSOCC to ACGE in
Figure 3; likewise, there is no arrow fromFEC to ED. These
behavi oral assunptions are critical to the statistical
enterprise. Wthout them or sone simlar assunptions, two-stage
| east squares could not be used. Technically, the system would
not be "identifiable" (section 11.4).

The main enpirical finding: The estimted coefficient of
AGE in the first equation is not "statistically significant,"
i.e., the coefficient ain (3) could be zero. The sort of woman
who drops out of school to have a child would drop out anyway.
Table 2. Variables in the nodel (R ndfuss et al. 1980).

The endogenous vari abl es

ED Respondent’ s educati on
(Years of schooling conpleted at first marriage)
AGE Respondent’ s age at first birth

The exogenous vari abl es

DADSOCCC  Respondent’s father’s occupation

RACE Race of respondent (Black=1, other=0)

NCSI B Respondent’ s nunber of siblings

FARM Far m background (coded 1 if respondent grew up
on a farm else 0)

REGN Regi on where respondent grew up (South=1, other=0)

ADCLF Broken famly (coded O if both parents present at
age 14, else 1)

REL Rel i gi on (Cat holic=1, other=0)

YC G Smoking (coded 1 if respondent snoked before age 16,
el se coded 0)

FEC Fecundability (coded 1 if respondent had a

m scarriage before first birth; else coded 0)

Notes: The data are froma probability sanple of 1,766 wonen 35-44 years of age
residing in the continental United States; the sanple was restricted to ever-
married women with at |east one child. DADSOCC was measured on Duncan’s scal e,
conbi ning information on education and i ncone; mssing values were inputed at the
overall nean. SGS (p. 139) give the wong definitions for NOSIB and ADOLF.

10 sSee, e.g., (Maddala 1992); for discussion, see (Daggett
and Freedman 1985).
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| f | ooked at coldly, the argunment may seem i npl ausible. A
critique can be given along the follow ng |ines.

(1) Statistical assunptions. Just why are the errors independent
and identically distributed across the wonen? | ndependence nmay
be reasonabl e, but heterogeneity is nore plausible then
honogenei ty.

(1i) The assunption of constant coefficients. Rindfuss et al.
are assum ng that the sanme paraneters apply to all wonen alike,
from poor blacks in the cities of the Northeast to rich whites in
t he suburbs of the West. Wy?

(iiti) Omtted variables. Surely, inportant variables have been
omtted fromthe nodel, including two that were identified by
Ri ndf uss et al. thensel ves-- aspirations and ability. Malthus
t hought that wealth was an inportant factor. Social class
matters, and DADSOCC rmeasures only one of its aspects. 1l

(iv) What about the "no arrow' assunptions, from DADSOCC to AGE
and FEC to ED?

(v) Are FEC and DADSCCC exogenous?
(vi) Are the equations "structural"?

Questions (iv-vi) will be discussed in the next section, as wll
the idea of "structural" equations.

11 The solution to the "onitted variable" problemmy seem
easy-- just throw some nore variables into the nodel. The
difficulties are explored in (O ogg and Haritou 1994). Also see
(Freedman 1983).
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5.1 A thought experi nent

Figure 4. A sinpler version of the nodel.

DADSOCC —— > ED

*k*k

FEC — > AGE

A sinpler version of the nodel restricts attention to a nore
honmogenous group of wonen, where the only rel evant background
factors are DADSOCC and FEC. To make causal inferences fromthe
data using the nodel, we need to believe that the arrows are as
shown in Figure 4, that DADSOCC and FEC are exogenous, and that
t he equations are "structural."” The follow ng thought experi nment
may help to define the last term and the enpirical commtnents
behi nd t he words. 12

The gedanken experinment involves two groups of wonen. In
bot h groups, fathers are random zed to jobs, and sone of the
daughters are chosen at randomto have a m scarriage before their
first child. (The statistical term nology of random zation is
dry; the gedanken experinmentalist intervenes, for instance, to
make the fathers do one job rather than another: professors are
caused to work as plunbers, and taxi drivers are installed as
hospital anesthetists.)

Goup |I. Daughters are random zed to the various |evels of
ED, and ACE is observed as the response. (The gedanken
experinmentalist strikes again, forcing sone wonen stay in
school |onger than they wi sh, while preventing others from
continuing their education.)

Goup I'l. Daughters are random zed to the various |evels of
AGE, and ED is observed as the response. (Mre gedanken
intervention is needed.)

12 Al'so see (Pear!l 1994ab).
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The statistical nodel can now be translated. For the wonen in
Goup I, AGE should not depend on DADSOCC-- the "no arrow'
assunption; however, AGE should depend linearly on ED. For the
wonen in Goup Il, ED should not depend on FEC-- the other "no
arrow' assunption; however, ED should depend linearly on DADSCCC.
Ri ndfuss et al.’s discovery is that ED woul d not depend on AGE.

There is one final assunption: the equations and paraneters

that describe the responses of the wonen in the experinent nust
al so describe the natural situation. That is what "structural”
means. For instance, a woman who freely chooses her educati onal
| evel and her tine to bear children does so by using the sane

equations as a woman nmade to give birth at a certain age. In

short, with respect to the matters at issue, life in Des Mines
proceeds nore or less along the sane lines as life in the Gl ag.

The thought experinment provides the intellectual foundation
for the nodel, by articulating the background assunptions. These
assunptions have not been subjected-- cannot be subjected-- to
direct enpirical proof. Nor can assunptions be validated by
appeal ing to thought experinents that are al nost unthinkable. Do
t he nodel ers have sone other nethod in reserve? |If the
assunptions remain unvalidated, what is the |ogical status of
their inplications?
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5.2 Exogeneity

| denti fyi ng the exogenous variables is a major problem For
exanpl e, you can obtain results quite different fromthose of
Rindfuss et al., by using variables other than DADSOCC and FEC as
"instruments. "3

Ri ndfuss et al. respond that estinates nmade by

instrunmental variables... require strong theoretical
assunptions... and can give quite different results when
alternative assunptions are made... it is usually difficult

to argue that behavioral variables are truly exogenous and
that they affect only one of the endogenous vari abl es but
not the other. (Rindfuss et al. 1984, 981-82).

In short, results can depend quite strongly on assunptions of
exogeneity, and there is no good way to justify one set of
assunptions rather than another. Also see (Bartels 1991), who
comments on the inpact of exogeneity assunptions, and the
difficulty of verification

6. Autonmted searches for causality

SGS (Spirtes, dymour, and Schei nes 1992) have conputerized
algorithnms that search for path nodels. Using the algorithns,
SGS claimto nmake rigorous inferences of causation from
association. Their theory is sunmmarized in (G ynour 1993), cited
as CG For present purposes, a "path nodel” is a recursive
system of regression equations, in which the dependent vari abl es

13 See (Hofferth and Mbore 1979, More and Hofferth 1980).
An "instrument” is an exogenous variable, used as part of the
t wo- st age | east squares estimation procedure. Sone investigators
may draw a term nological distinction: an "instrunment” is
exogenous, but does not appear as an explanatory variable in the
equation being estimted. For purposes of estinmation, exogenous
vari abl es are assunmed to be independent of error terns; this does
not suffice for causal inference (section 11). Even the
i ndependence assunption is not to be made lightly (C ogg and
Haritou 1994).
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from some equations are used as explanatory variables in |ater
equati ons. 14

The basic idea in path nodels is this: putative causes
conbine with paraneters and randomerrors by multiplication and
addition in order to produce their effects. | have discussed
such nodel s el sewhere, and do not believe they offer much help in
deduci ng causation from associ ati on, because there is little
evi dence to support the basic assunptions (Freedman 1987). To
pursue the discussion here, a slightly nore explicit definition
of the nodels nmay be in order

Definition. A "path nodel" starts with variables at "l evel
0," which are exogenous in the mniml sense that they are not
explained within the nodel. Variables "at |level 1" are built up
as |inear conbinations of |level 0 variables, plus independent
randomerrors. Mre generally, variables "at |evel k" are built
up as linear conbinations of variables at previous |evels; again,
there are additive, independent randomerrors. Variables at

level 1, level 2, ... are "endogenous," in the sense that they
are explained within the system The path nodel nay be presented
as a "path diagram" like Figure 1, or Figure 5 bel ow. Nodes
represent variables in the nodel; if there are arrows from X
Y,... to Z, then X, Y,... are explanatory variables in the

regression equation for Z. Nodes are often called "vertices,"
and the diagrans are referred to as "graphs" or "causal
graphs. "1°

14 The nodel used by Rindfuss et al. would not fall into
this category, if ED and AGE really influenced each other. The
SGS framewor k excl udes reci procal causation, by assunption; so do
path nodels, as | define them However, sone authors extend the
definition of path nodels to include sinultaneous equation nodels
for reciprocal causation.

15 SGS seemto make the strong -- and quite unusual --
assunption that exogenous vari abl es are independent of each
other. That may be part of the reason why their algorithns
estimate such peculiar nodels in Figures 5 and 6 below. There is
anot her, even nore esoteric, point. To estimate an equation, its
error termneed only be assuned i ndependent of the explanatory
variables. If so, error terns fromdifferent equations may be
correl ated; then standard procedures for conputing the
correl ations anong the variables will not apply (Freedman 1987,
112-14; Seneta 1987, 199). SGS seemto interpret correl ated
errors as indicating the presence of "latent variables.” Such
variables will be nmentioned in notes to Figures 5 and 6, bel ow.

22



The path nodel may represent nere associ ation-- conditional
dependence and i ndependence relations. O the nodel may

represent causation. | wll take that up later. For now,
however, either interpretation suffices. Suppose the graph is
"sparse"-- each equation in the nodel involves relatively few

vari abl es. Suppose too there are no troubl esone al gebraic
identities anong the regression coefficients; in SGS term nol ogy,
the distributionis "faithful" to its graph (SGS p. 35; CGp. 9;
and see section 11.2 below). You have a sanple-- many

i ndependent realizations of variables X, Y, Z, .... You are
willing to assune the distribution conforms to a path nodel, but
do not know whi ch nodel. You do not even know whi ch vari abl es

are at level 0, which are at level 1, and so forth.

SGS claimtheir algorithms are likely to find the underlying
path nodel, or a rather simlar nodel, and in short order. Their
nost convi ncing evidence i s based on sinulation experinents,
where the conputer generates data froma path nodel and the SGS
algorithms try to infer the nodel fromthe data (SGS pp. 145ff,
152ff, 250ff, 320ff, 332ff); in these experinents, the algorithns
do very well. Roughly speaking, the SGS algorithns are variants
of "best subsets" regression, the search being over graphs rather
t han subsets. The data cone into the SGS algorithns only through
the covariance structure. The rest of the apparatus-- the
di agrans, the Markov property, faithful ness, etc.-- consists of
assunpti ons.

SGS seemto assert that their algorithns determ ne
causality, as a matter of mathematics. Such assertions are not
defensible. In the SGS formalism causation is obtained not by
mat hemati cal proof but by mathematical assunption. |If you assune
that the arrows in the underlying path diagramrepresent causes,
then the arrows found by the algorithns represent causes. |[|f you
assunme that the underlying arrows represent nmere associ ations,
then the arrows found by the algorithns represent associations.
Causation has to do with enpirical reality, not with mathemati cal
proofs based on axions. The issue is not one of theorens, but of
t he connection between theorens and reality.
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The SGS algorithms, |like many earlier statistical procedures
(factor analysis, LISREL, etc.), proceed by analyzing the
correlation matrix of a set of variables. | wll call such
nmet hods "correlational."” Sections 7-10 consi der applications of
the SGS algorithnms to real exanples. Sections 11-12 try to
explain the key ideas in the SGS formalism and indicate by
mat hemati cal exanple sone of the intrinsic limtations. Before
proceedi ng, however, | discuss the SGS statenent of assunptions.

6.1 The SGS statenment of assunptions

SGS di scuss the role of assunptions in their theory several
times (pp. 53-69, pp. 75-81, pp. 324-5, p. 351). However, the
cl earest statement can be found when SGS are trying to discredit
t he evidence that snoking causes |ung cancer:

effects **** cannot be predicted from**** sanpl e
conditional probabilities. [p. 302]

Readers may consult the original for context, to see whether the
omtted material affects the meaning. The advantage of the quote
is clarity. |If the statenent is generally applicable, then SGS--
i ke Yule and Pearl before them- have disavowed the ability to

i nfer causation from associ ati on.
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7. The SGS exampl es

SGS share ny pessimstic views about regression. They
claim however, that their algorithnms will succeed where
regression has fail ed:

In the absence of very strong prior causal know edge,
mul ti ple regression should not be used to select the
vari abl es that influence an outcone or criterion variable in

data fromuncontrolled studies. So far as we can tell, the
popul ar automati c regression search procedures [like
st epwi se regression] should not be used at all in contexts

where causal inferences are at stake. Such contexts require
i nproved versions of algorithnms |ike those described here to
sel ect those vari abl es whose influence on an outcone can be
reliably estimated by regression. |In applications, the
power of the specification searches agai nst reasonabl e
alternative explanations of the data is easy to determ ne by
simulation.... [p. 257]

At first reading, SGS seens to be filled with real exanples
showi ng the successful application of their algorithns. That is
an illusion. Nhng of the exanples are based on sinulation, and I
set those aside.1® The real exanples are nostly to be found on
pp. 132-52 and 243-256. 17

16 Sinulations tell us how well the SGS algorithnms do if
the underlying statistical assunptions hold good; the assunptions
are built into the conputer code that generates the simulated
data. Wen applying statistical algorithnms to real data, a
critical question is whether those assunptions hold. The
simul ati ons do not address such questions.

17 The parallel material in CGis on pp. 13-16 and 21-23.
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The main exanples given in SGS are path nodels. But these
cannot w thstand scrutiny-- section 5 above, sections 8-9 bel ow.
One exception is the stratification nodel of Blau and Duncan
(1964). SGS (pp. 142-5) and CG (pp. 21-22) seemto be quite
critical of this nodel; their current position is al nost
dianetrically opposite to the one in (G ynour et al. 1987, 33-9).
Like SGS, | do not believe that the Bl au-Duncan regressions are a
sati sfactory causal nodel. On the other hand, as descriptions of
the data, the equations can tell us sonething inportant about our
society (Freedman 1987, 122, 220). The discussion in SGS adds
little to our understanding either of the nodel or of
stratification.

SGS appear to use the health effects of snoking as a running

exanple to illustrate their theory.1® Again, thereis an
illusion. The causal diagrans are all hypotheticals, no contact
is made with data, and no substantive conclusions are drawn. |If

t he diagrans were proposed as real descriptions of causal
mechani snms, they woul d be open to devastating criticism

What about the substantive question: does snoking cause
| ung cancer, heart disease, and many other illnesses? SGS appear
not to believe the epidem ol ogi cal evidence. Wen they actually
get down to arguing their case, they use a rather ol d-fashioned
nmethod-- a literature review wth argunments in ordinary English
(pp. 291-302). Causal nodels and search al gorithns have
di sappear ed.

| approve of the nethod if not the inplenentation: the
summary is wong in sonme places and tendentious in others.
However, the review does show the conplexity of the issues. To
make judgnents about causation, you need to consider death
certificate data, necropsy data, case control and cohort studies,
twin studi es, dose response curves, as well as animal experinents
and human experinents. The force of the epi dem ol ogi cal
evi dence-- and the SGS critique-- depends on the conpl ex
i nterplay anong these various studies and data sets.

18 See, e.g., SGS p. 18 and pp. 216-37; also see CG pp. 19-
20 and 30- 31.
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In the end, SGS and CG do not really nake bottomline
judgments on the health effects of snoking, at |east so far as |
can see. Their principal conclusion is nethodol ogical: nobody
under stood the issues.

Nei t her side understood what uncontrolled studies could and
coul d not determ ne about causal relations and the effects
of interventions. The statisticians pretended to an

under standing of causality and correl ation they did not
have; the epidem ol ogists resorted to informal and often
irrelevant criteria, appeals to plausibility, and in the

worst case to ad homnem ... Wile the statisticians didn’t
get the connections between causality and probability right,
the .... "epidemiological criteria for causality’ were an
intell ectual disgrace, and the |level of argunent ... was
sonetines nore worthy of literary critics than scientists.

[ pp. 301-2]

Part of a sentence in SGS (p. 4) does seemto grant one of the
maj or cl aims made by the epidem ol ogi sts, "snoking does cause
lung cancer." But that only conplicates the puzzle. [If you
don’t believe the evidence, why accept the clainf

Despite SGS, the epidem ol ogists did have a good
under standi ng of the issues, and nade a strong case agai nst
snoki ng. The arguments were inperfect, and some reasonabl e
doubts may remain. But the data, taken all in all, are
conpelling. The epidemological literature on snoking is far
stronger than anything | have seen in the social sciences. For a
survey of the evidence, see (Cornfield et al. 1959); this paper
is still worth reading. Mre recent data are reviewed in
(I'nternational Agency for Research on Cancer 1986).

SGS el ected not to use their analytical machinery on the
snoki ng data-- a remarkabl e omi ssion. Wen applied to the
exanpl es that SGS actually chose, the algorithnms produce one
smal | disaster after another, as will now be seen. In sum SGS
claimto have devel oped techni ques for generating causal nodels;
but they do not have any success stories.
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8. Usi ng the SGS search procedure

The SGS search procedures are enbodied in a conmputer program
call ed TETRAD. Version 2.1 of this programwas kindly provided
by Richard Scheines and Peter Spirtes. The BU LD nodule is the
part of TETRAD used to di scover path nodels with no |atent
variables. | ran BU LD on two exanples-- R ndfuss et al. and
AFQT (to be discussed in section 9).

8.1 Rindfuss et al.

To explain AGE (age at first birth) in the R ndfuss et al.
exanple, the SGS al gorithns select the variables shown in
Table 3. Regression estimates for the coefficients, based on
summary data in SGS, are reported in the first three colums of
the table. The coefficients for ADOLF (the indicator for wonen
from broken homes) and YCI G (an indicator for snoking by age 16)
have positive signs. That is paradoxical: wonmen from broken
honmes and wonmen who snoke shoul d be having children earlier, not
|l ater.1® The signs should be negative, not positive. SGS do
not coment on this issue.

Ri ndf uss et al. (1980) give standard devi ati ons and
correlations for their data; SGS (p. 139) used these statistics
to conpute a covariance matrix, but reversed sone of the signs.
The |l ast three columms of Table 3 report regression estinmates
conmputed fromthe correct covariances. The problemw th YCIG
di sappears, but the sign for ADOLF stays positive. Anyone can
make a m stake entering data; ignoring paradoxical signs in a
causal nodel is quite another matter.

19 sSnoking, broken hones, and early chil dbearing seemto be
correl ates of social disadvantage, and indicators of personality
traits. DADSOCC and RACE are quite inperfect controls for famly
background; therefore, YCIG and ADOLF are likely to pick up
effects of background, as well as effects of omtted personality
vari ables. See note (iv) to Table 3. This sort of bias is
di scussed in section 12.2 below. Also see Cogg and Haritou
(1994) .
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Table 3. The SGS nodel for age at first birth, conputed using
the SGS covariance matrix or the R ndfuss et al. covariance
matrix. (lntercepts are not reported; OLS estimates.)

SGS covari ance Ri ndfuss et al. covari ance
RZ = Q.27 R2 = 0.24
Esti mat e SE t Esti mat e SE t
RACE -1.66 .30 -5.50 -1.66 .30 -5. 46
REGN -0.56 .19 -3.01 -0.63 .19 -3.35
ADOLF 1.89 .22 8. 60 2.01 .22 8.98
YCl G 2. 14 . 25 8. 63 -0. 89 . 25 -3.53
FEC 2.72 .28 9.70 2. 77 .28 9.72
ED 0. 67 .04 18. 00 0. 60 .04 15.72

Notes: (i) The first colum in Table 3 shows paraneter estinmates. The second
shows standard errors, or SEs, which indicate the likely size of the differences
bet ween the estimates and the true parameter values. The t-statistics in the
third colum are the ratios of estimates to SEs. Cenerally, a t-statistic above
2 or 3in absolute value indicates that the correspondi ng paraneter is unlikely
to be truly 0. For details, see the appendi x.

(ii) The paraneters are features of the nodel, and the SEs are conputed using the

nodel. If you do not believe in the existence of the paranmeters apart fromthe
data, or do not accept the statistical assunptions in the nodel, the SEs and t-
statistics are likely to be neaningless. |In any case, perfornmng multiple

tests-- as in a search algorithm- conplicates the interpretation of the t-
statistics (Freednan 1983; CG p. 45).

(iii) R is generally interpretable as a descriptive statistic, whether or not
the assunptions of the nodel hold true. An R% of 0.27 indicates that about 27%
of the variance in ACGE has been explained; that isn’t nuch, and nobdels in the
soci al science literature often have even | ess explanatory power. For a critica
di scussi on of R%, see (Freedman and Lane 1981, 78-81).

(iv) According to current epidemni ol ogi cal opinion, snoking does have sone

bi ol ogi cal effect, delaying conception by several weeks. However, the wonen who
choose to snoke are different fromthe non-snokers, and have their first child
al nost a year earlier. This effect remains even after controlling for the
neasur ed background factors in the regression: the coefficient of YCIGis -0.89
years.

SGS report only a graphical version of their nodel. They
say,

G ven the prior information that ED and AGE are not causes
of the other variables, the PC algorithm (using the .05
significance level for tests) directly finds the nodel [in
Figure 5(a)] where connections anong the regressors are not
pictured. (SGS p. 139; CG p.15)
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However, connections anong regressors can be of interest.
Al t hough TETRAD i s supposed to discover the causal ordering of
expl anatory variables, it produces the very strange nodel shown
in Figure 5(b). For exanple, the nodel says that race and
religion cause region of residence. Conmments on the soci ol ogy
may be out of place, but consider the statistics. The equation
is

(7) REGN = a + b xRACE + ¢ x REL + e.

REGN is a dummy variable, coded 1 for respondents who grew up in
the South, O for others; RACE is 1 for black respondents and O
for others; REL is 1 for Catholics, O for others; € is normally
di stri but ed. I n consequence, this equation forces inpossible
values on REGN: the left hand side is O or 1, the right hand
side varies from-e to +o. Now R2 is only 0.16, so & contributes
nost of the variance: equation (7) can hardly be defended as an
approxi mati on. Having dunmy variables in the mddle of path
diagrans is a blunder. (FARMcreates a simlar problem so does
NCSI B, al though less extrene.) 1In short, the SGS al gorithnms have
produced a nodel that fails the nost basic test-- interna
consi st ency.
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Figure 5. The left hand panel shows the nodel reported by SGS.
The right hand panel al so shows connections anbng the regressors,
as determ ned by the SGS search program TETRAD

@) (b)

DADSOCC FEC RACE REL YCIG
RACE *\\\\
NOSIB DADSOCC ADOLF
ED
FARM
REGN
NOSIB
ADOLF
AGE
REL
YCIG K\\\s ///
FEC ED
AGE
Notes: BULD indicates that |atent variables are present, i.e., errors are

correl ated across equations. BU LD asks whether it should assunme "causa
sufficiency"; without this assunption (SGS p. 45; CG p. 4), the program out put
uni nformative. Therefore, | told BULD to nmake the assunption; | believe that
what SGS did for the R ndfuss exanple. Also see (Spirtes et al. 1993, 13-15).
told BU LD that ED and AGE could not cause the renmining variables, follow ng
(SGS p. 139). However, SGS actually nade the stronger assunption that (i) FEC,
ED and AGE could not cause YCIG and (ii) FEC, ED, ACE and YCI G could not cause
the remai ning variables. Wth the assunption of causal sufficiency, BU LD seens
to use the PC algorithm w thout the assunption, the FCI al gorithmcones into
play. Mich of this information cones from Ri chard Schei nes (persona
comunication). Data are from (Rindfuss et al. 1980), not SGS; with the SGS
covari ance matrix, FARM causes REGN and YCI G causes ADOLF

S
S
[
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9. The Arned Forces Qualification Test

SGS di scuss an exanpl e based on the Arned Forces
Qual i fication Test (AFQT).29 The AFQT is a linear conbination
with fixed weights of scores on certain subtests. Sone of these
subtests, as well as subtests that are not part of the AFQT, are
listed in Table 4. The problemis to decide which subtests go
into the AFQT and which do not.

Table 4. Subtests anal yzed by SGS.
Sonme go into the AFQT and sone do not.

1. Nunmerical Operations NO
2. Word Know edge VWK
3. Arithnetical Reasoning AR
4. Mat hematical Know edge VK
5. Electronics Information E

6. Mechani cal Conprehension MC
7. General Science GS

The problem may be stated nore algebraically, as follows:

(8) AFQT score = a;xNO+ a,xW + ... + a;xG5
+ by xUN; + ... + b,y xUN,,
where UN;, ..., UN, are unobservable. Sone of the a's are zero,

and the challenge is to figure out which ones.

We have data on 6,224 subjects, summarized as a covari ance
matrix. SGS say:

a linear nmultiple regression of AFQT on the other seven

vari abl es gives significant regression coefficients to al
seven and thus fails to distinguish the tests that are in
fact linear conmponents of AFQI... G ven the prior
information that AFQT is not a cause of any of the other
vari ables, the PC algorithmin TETRAD Il correctly picks out
{AR, NO, WK} as the only ... variables that can be
conponents of AFQT.... (SGS pp. 243-4, also see CG p. 16)

20 SGS p. 243, also see CG p. 16. Institutional background
on the AFQT will be found in section 12.5.

32



Table 5. Regression of AFQT on al
t he observabl e subtests.

Estimate SE t
NO 0.24 . 022 10. 8
WK 1.17 . 029 40.5
AR 1.03 .028 36. 4
MK -0.24 .028 -8.7
El -0.03 . 024 -1.3
MC 0. 03 . 024 1.3
GS -0.13 . 029 -4.6

Note: Variables were centered at
their neans.

To test the clains about regression, | ran AFQT on all the
observabl e subtests. As Table 5 shows, EIl and MC are related to
AFQT only at the chance |evel. Moreover, MK and GS have negative
coefficients, but psychonetric practice frows on subtests that
are negatively related to overall test scores. It is a natural
conjecture that NO, WK and AR go into AFQT while the other four
subtests do not. Contrary to the clains of SGS, the AFQTI can be
handl ed by ordinary statistical nethods.

The AFQT problemis in some ways quite easy. By
definition, the "causes" or subtests conbine linearly with the
paranmeters to produce the AFQTl as an "effect."” Joint normality
of test scores seens to follow fromthe procedures used to
construct the tests: consequently, scores on any one subtest can
be presented as a linear conbination of other subtest scores,
with additive randomerrors. Thus, critical issues in nost
enpirical studies have di sappeared.?!

21 On the other hand, unobserved variables may create
serious problens (section 12.4).
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9.1 TETRAD

According to SGS, given the prior information that AFQT does
not cause the other variables, TETRAD correctly picks out AR, NO
and WK as the conponents of the AFQT.22 Wthout that prior
i nformati on, however, TETRAD declares AFQI to be the cause of
t hese subtests, rather than the effect. Wth the prior
i nformati on, TETRAD produces the strange results shown in
Figure 6.2 Now, for instance, the subtest NO may "cause" the
overall test score AFQI, but it can hardly cause the other
subtests AR or MK. Furthernore, there is a cycle in the figure:

MC —- AR —- VWK —- GS — M.

In principle, such cycles were excluded by prior assunption, as
wel | they m ght be. Subtests should not cause thensel ves, even
indirectly. To sum up:

(i) ordinary |east squares techni ques pick out NO AR, and
WK for the probable conponents of the AFQT, just as TETRAD
does;

(i1) TETRAD produces the curious nodel in Figure 6.

22 SGS p. 243, also see CG p. 16.

23

The programoutput is given in (Spirtes et al. 1993, 10-
11) .
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Figure 6. AFQTI and its subtests arranged in causal order by the
SGS search program TETRAD.

NO MC

N

AFQT G El MK

Notes. | believe SGS used BU LD, with the assunption of causal
sufficiency, on pp. 243-44 for the AFQT exanple. Also see
(Spirtes et al. 1993, 8-11). The programindicates there are

| atent variables, i.e., correlations in the errors.
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10. Forei gn i nvestnent and political oppression

As noted in section 7, SGS are quite pessimstic about
typi cal social-science applications of regression. Wile | agree
with the bottomline, their specific objections seem m spl aced.
One exanpl e is enough to nake the point. Tinberlake and WIIlians
(1984) offer a regression nodel to explain political exclusion
(PO in terns of foreign investnent (FlI), energy devel opnment (EN)

and civil liberties (CV). Hi gh values of PO correspond to
aut horitarian regines that exclude nost citizens frompolitical
participation; high values of CV indicate fewcivil liberties.

Data cone from 72 countries. Correlations anong the Tinberl ake-
Wl liams variables are shown in Table 6.

Table 6. The Tinberlake and WIIlians data.
Correlation matrix for political oppression (PO,
foreign investnment (Fl), energy devel opnent (EN)

and civil liberties (CV). Source: SGS p. 249.
PO Fl EN cv
PO 1.000 -.175 -.480 . 868
Fl -. 175 1. 000 . 330 -.391
EN -. 480 . 330 1.000 -.430
cv .868 -.391 -.430 1.000

The equation proposed by Tinberlake and Wllians is
(9) PO=a + bxFl + cxEN+ dxCV + error.

Enpirical results are shown in the first three colums of

Table 7. The estimated coefficient of FI is significantly
positive, and is interpreted as neasuring the effect of foreign
i nvestment on political exclusion (Tinberlake and WIlians 1984,
143) .
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Table 7. The Tinberlake and WIllianms nodel. Political
exclusion (PO is regressed on foreign investnment (Fl),
ener gy devel opnent (EN), and civil liberties (CV)

The first three colums show results for the observed
correlation matrix (Table 6). The last three col ums
show what happens when r (PO Fl) is set to O.

R2 = .81 RZ2 = .93
Esti mat e SE t Esti mat e SE t
Fi .23 . 059 3.9 .44 . 036 12
EN -.18 . 060 -2.9 -.22 . 037 -6
cv . 88 . 061 14. 4 . 95 . 038 25

Note: The coefficients reported by SGS on p. 249 are not
st andardi zed and therefore do not match the correlation
matri x. Coefficients in Table 7 are standardi zed, that is,
conputed from vari abl es standardi zed to have nean 0 and
vari ance 1.

SGS discuss this exanple (pp. 248-50), suggesting that
Ti nber| ake and WIIlians have confused cause and effect. The
alternative causal sequence is not spelled out. Presumably, the
idea is that dictators 'cause’ foreign investnment in the sense
that investors think dictatorial reginmes offer greater stability,
etc.

The main step in the SGS statistical argunent cones down to
this: the correlation of -.175 between political exclusion and
foreign investnent is at the chance level. The calculation rides
on two assunptions: (i) the 72 countries in the data set are a
random sanpl e from sone nmuch |arger set of countries, and (ii)
the variables follow a nmultivariate normal distribution. These
ti me- honored but nmadcap assunptions are not stated explicitly by
SGS, let alone justified. (O course, the assunptions behind the
statistics in Tinberlake-WIIlianms m ght seemequally antic.)
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However, for the sake of argunent, let us grant SGS their
assunptions. On that basis, the standard error for the

correlation in question is about 1/¢7§_z .12. | change the

suspect correlation coefficient fromits observed value of -.175
to the new value of 0, a difference of about 1.5 SEs. | then
reconpute the nodel (last three colums in Table 7). The results
are even better for Tinberlake and WIllians: the estimted
coefficients are bigger and nore significant; the signs stay the
same; and R? noves closer to 1.24

| will not defend the nodel any further. Measurenent
probl enms are extrene, and the list of omtted variables very
long. SGS may wel|l be right, that cause and effect have been
confused. But the denonstration is peculiar. The correlation
matri x cannot show that FI, EN and CV cause PO-- the fatal flaw
in the Tinberlake-WIlianms nodel. (O course, Tinberlake and
WIllians are not alone in this respect.) Nor can the matrix show
that FI, EN and CV do not cause PO-- the corresponding flaw in

SGS. Indeed, it is trivial to construct four vari ables | abelled
FI, EN, CV and PO, such that FI, EN and CV do cause PO but
sanple correlation matrices will look rather |ike the one in

Table 6. This only sharpens the basic question. Wat do any of
t hese cal culations tell us about the world outside the conputer?

24 The new matrix is still positive definite, soit is a
legitimate correlation matrix. Section 12.1 discusses the
connecti on between the Tinberlake-WIIianms nodel and the
faithful ness assunption. Also see (Cartwight 1989, 79-84).
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11. Sone mat hemmtical issues

Sections 11 and 12 address by mat hematical exanple two
guesti ons:

(i) To what extent can correlational nethods recover an
under|yi ng path di agranf

(ii1) When can the arrows in the diagrambe interpreted as
i ndi cating causation, rather than conditional independence
and dependence?

The exanples will indicate how SGS use the "faithful ness"
assunption to help them answer such questions. |ssues of
identifiability and consistency will be discussed, and

nmet hodol ogi cal contributions in SGS wll be delineated. Sections
11 and 12 are nore technical than previous material; readers can
skip to section 13 without losing the thread of the argunent.

The focus is on linear nodels. Suppose you have a
covariance matri x that describes certain variables. Assune these
variables are jointly normal, wth nmean O; that avoids al
gquestions of linearity, etc., and all problens created by having
only finite anbunts of data. However, the statistical procedures
| am considering-- like the SGS algorithnms-- will operate on that
covariance matri x, and on nothing el se. Such procedures may be
called "correlational .™

Path nodels were defined in section 6. Briefly, you start
with variables at level 0; variables at |level k are |inear
conbi nations of variables at |ower |evels, plus independent
randomerrors. In a path diagram nodes represent vari abl es.
There is an arrow fromX to Y if X is used as an expl anatory
variable in the equation for Y.

Exogeneity is a critical concept. As indicated before, the
termis used in at |least three senses. The weakest definition is
purely nechani cal: exogenous variables are not explained within
t he nodel, but are supplied to the nodel. Variables at level O
in a path nodel are exogenous in this mniml sense. A nore
restrictive definition: exogenous variables are statistically
i ndependent of the error terns in the equations. The third idea
is the one that is relevant to causal inference: X is exogenous
if selecting subjects wwth X = x gives the same results as
intervening to set X = x.
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There are tests for exogeneity in the literature, as well as
nodel specification tests. However, these have limted rel evance
to causal inference. For exanple, (Hausman 1978) assunes that
certain variables are known a priori to be exogenous, and then
tests whether other variables are exogenous; he interprets
exogeneity as orthogonality to disturbance terns. He also has a
test that detects correlation between errors fromequations in a
path nodel. Wite (1980 and 1982) focuses on simlar issues--
for instance, testing whether the variables have a jointly norma
di stribution.

Anot her reference in the econonetric literature is (Engle,
Hendry, and Richard 1983). These authors distinguish several
ki nds of exogeneity; "strict" exogeneity nmeans independence of
vari ables and error ternms, but only "super" exogeneity permts
estimating the effects of interventions. Exanples are given to
illustrate the definitions (Engle, Hendry, and Richard 1983,
287-94). There is further discussion in (Leaner 1985).
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11.1 The basic statistical problem

Suppose you have n randomvariables with a jointly norma
di stribution; all the variables have nean 0, and you know the
covariance matrix, which is positive definite. You wish to
present this covariance matrix as a path nodel. 1In a sense,
nothing is easier. Sinply order the variables, arbitrarily, as
X1, Xo, ..., X, By successively applying regression, we can
f|nd Coef ficients a;; and error terms g, such that X;, e,
e, are all |ndependent with nean 0, and equation (10) 'holds.

Xo = a1 X1 + &
X3 = agp Xy ragyXy + €3

Xn = ani Xy ... 78y n-1%0-1 7 €

Then X, is presented as exogenous and the "cause" of X, next, X;
and X, "cause" Xz, and so forth. In short, there are many ways
to present a covariance matrix as_a path diagram fewif any wll
be rel evant for causal inference.

25 For the construction in (10), sinply choose a,; so
E{ X5 X;} = as1X;; choose az; and ag, so E{ Xql X, X5} = a31X1+-a32XZ
and so forth. For details, see the appena be%

Since the ordering of the variables in (10) is arbitrary,
fitting such equations or draw ng path di agrans cannot determ ne
whi ch vari abl es are causes and which are effects. |In particular,
X, may be exogenous in the sense that it is statistically
i ndependent of disturbance terns; that by itself does not suffice
to estimate the results of manipul ating X;, since we cannot tel
whet her X; is a cause or an effect.
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11.2 The faithful ness assunption

How can you single out one path diagramfromthe many that
correspond to a given covariance matrix? At this point, SGS seem
to use the "faithful ness" assunption; this assunption is also
used to handl e confounding, as discussed in section 12.1 bel ow.
Basically, a covariance matrix is faithful to a diagram provided
condi tional dependenci es and i ndependencies are determ ned by the
presence or absence of arrows in the diagram rather than
speci fic nunerical val ues of paraneters.

Figure 7. If two path diagrans have the sanme covariance matri X,
correl ational nethods cannot tell them apart; the faithful ness
assunption is nmade to rule out such problens. The |ower case
letters on the arrows denote "path coefficients,” that is,

st andar di zed regression coefficients.

(@) (b)
X X

Y z Y z
W W
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By way of exanple, Figure 7 shows two path diagrans. On the
left, X causes Wthrough the intervening variables Y and Z; on
the right, the flow of causality is reversed.?® The |ower case
letters on the arrows stand for "path coefficients,” that is,
st andar di zed regression coefficients. How could SGS distinguish
between the two theories in the figure? Their idea seens to be
as foll ows:

In the left hand diagram Y and Z are conditionally
i ndependent given X; on the right, however, Y and Z are
conditional ly dependent given X

Anot her contrast:

In the left hand diagram Y and Z are conditionally
dependent given W on the right, however, Y and Z are
conditionally i ndependent given W

Therefore, the pattern of conditional dependence and i ndependence
identifies the diagram (In both diagrans, X and Ware
conditionally i ndependent given Y and Z.)

This idea works for many path diagrans, but fails for
others. Indeed, the path coefficients can be chosen so the
pattern of conditional dependence and i ndependence is the sane in
the two diagrans. Even worse, both diagrans can give rise to the
same covariance matri x-- so correlational nmethods cannot tel
which is right. SGS make the "faithful ness assunption” in order
to rule out such indeterm nacies. (The workings of the
assunption wll be explai ned bel ow.)

However, that only noves the difficulty to another place.
Faithfulness is hardly an enpirical fact; it is an assunption
about unobservables, made to rule out situations that cannot be
handl ed by correl ati onal nethods. The SGS anal ytical program can
now be stated rather sinply. |If the arrows in a path diagram
represent causation not association, and if the path diagram can
be estimated fromdata, then SGS can indeed infer causation from
associ ati on.

26 |n this section, | use "cause" in its ordinary (perhaps
undefi nabl e) sense. However, the technical point -- about the
possibility of estimating path diagranms from covari ance matrices
-- still holds if the arrows are interpreted as nerely
representing association. "Causation"” is then colorful shorthand
(perhaps too colorful) for a certain kind of covariation.
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The bal ance of section 11.2 provides technical backup;
readers can skip to section 11.3. The left hand panel in
Figure 7 is described by

(11) Y=aX+ 8, Z=bX+3, W=cY+dzZ+ 3s

In this equation, X, 8;, 0,, 03 are independent and normal, wth
mean 0; X, Y, Z, Wall have variance 1. The covariance natri x of
X, Y, Z, Wcan be conmputed fromthe four paraneters a, b, c, d as
shown in (12).

X Y Z w
X 1 a b ac+bd
(12) Y | a 1 ab c+abd
Z b ab 1 d+abc

W | ac+bd c+abd d+abc 1

It isalittle theorem which follows by a tedious
calculation from (48) in the appendi x bel ow, that

(13) cov(X,WY,2) = 0.
This is an exanple of a conditional independence relation forced
by a graph; (13) holds whatever the path coefficients in Figure 7
may be.

The diagramon the left in Figure 7 is reversible provided

(14) cov(Y,ZlW = 0.

By (48) below, equation (14) is equivalent to

(15) cov(Y,Z) = cov(Y,W x cov(Z W.

By (12), this neans

(16) ab = (c +abd) (d+ abc).

Rearrangi ng (16) gives the quadratic equation

(17) cd(ab)? - (1-c2-d?)ab + cd = 0.

44



One solution to (17) is

_1-c?-d?2-y/(1-c?-d?)?-4c?d?
(18) ab = — .

| chose a, ¢, d nore_or less at random getting .1925, .2873
and .1245, respectively.2’ | conmputed b from(18), getting
.2063. This choice forces the conditional independence relation
(14), and violates the faithful ness assunption: conditional
i ndependence conmes fromthe paraneter values, not the presence or
absence of arrows.

G ven the values for the four paraneters a, b, ¢, d, the
covariance matri x (12) can be eval uated as

1. 0000 0.1925 0.2063 0.0810
0.1925 1.0000 0.0397 0.2922
0.2063 0.0397 1.0000 O0.1359
0.0810 0.2922 0.1359 1.0000

(19)

The path coefficients in the right hand panel of Figure 7
are easily conputed from (19):

the path coefficient fromWto Yis c’ cov(Y,W . 2922;
the path coefficient fromWto Zis d’ cov(Z, W . 1359;
the path coefficients fromY and Z to X are obtai ned by
mul tiple regression, as a’” = .1846 and b’ = .1990.

Wth these choices, faithful ness does not hold, and (19) can be
represented by either diagramin Figure 7. (For details on
mul ti pl e regression, see the appendix.) In effect, the

faithful ness assunption precludes certain algebraic identities
anong the paraneters, like (16). Since paranmeters are not
observabl e, the faithful ness assunption is not subject to direct
enpirical tests based on finite anmounts of data.

21" There was a bit of luck here, because sone values for a,
c, d will not produce correlation matrices.
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11.3 Conpl ete gr aphs

Even if the covariance matrix is faithful to a graph,
however, problens of indeterm nacy remain-- particularly if the
graph is "conplete"” in the sense that every pair of vertices is
joined by an arrow. Figure 8 illustrates this indeterm nacy.
The sane covariance matrix (20) for the variables X, Y, Zis
represented either by the diagramin panel (a) or the one in
panel (b), where the flow of "causality"” is reversed.

X Y Z

(20) X 1 .46 .50
Y | .46 1 .42

Z | .50 .42 1

Figure 8. G aphs (a) and (b) have the same covariance matri x.
Both are conplete: there is an arrow fromevery variable to
every other variable. The nunbers on the arrows are path
coefficients, that is, standardi zed regression coefficients.

@ (b)

.50 .37
X—~>Z X<— ~Z
NN

Y Y

For a second exanpl e of indeterm nacy when the graph is
conpl ete, consider four variables X, Y, Z, Ww th covari ance
matrix X given by

1 3/4 3/4 3/4
3/4 1 3/4 3/4
3/4 3/4 1 3/4
3/4 3/4 314 1

(21) ==
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Figure 9. Two conplete path diagrans, and a factor anal ysis
nodel , all having the same covariance matri Xx.

@) (b) ©
X X

VARV /]
AN

Figure 9 shows two conplete path diagrans, both of which are
conpatible with the given covariance matrix. In the left hand
panel, X is exogenous, and "causes" Y; then X and Y "cause" Z;
finally X, Y, Z "cause" W In panel (b), the flow of "causality"
is reversed. The equations corresponding to the |eft hand panel
are given as (22); panel (b) is described in (23).

73|..X+61
3 3
5% 15 Y- 1o+ 93

(22) Y+ 8,

s N <

3

ZW+ €1
3

_ 3
(23) Y=3Z-3

3.3, 3
10" 104 oWt

N
"

W+ €9
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The covariance matrix X is also conpatible with the factor
anal ysi s nodel (24), where the unobservabl e exogenous variable U
causes all four observables (right hand panel of Figure 9).

(24) X=U+C1, Y:U"‘Cz, Z:U"‘C?’, W= U+C4

I n each system of equations (22-23-24), the error terns are
assunmed to be independent and normally distributed with nean O;
error terns are independent of the exogenous variable. As a
technical matter, the covariance matrix (20) is faithfully
represented by both graphs in Figure 8. Likew se, the covariance
matrix (21) is faithful to Figure 9(a) and to 9(b). Proofs may
be based on (48) bel ow

To sumup, if a covariance matrix is faithful to a conplete
graph (with all pairs of vertices joined by arrows), it is
faithful to many such graphs. Then correlational nethods cannot
tell the causes fromthe effects. SGS techniques work best when
the graph is sparse, that is, relatively few pairs of vertices
are joined by arrows (section 6).
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11.4 ldentifiability and consi stency

The focus continues to be on linear nodels. 1In statistical
term nol ogy, nodels are "identifiable" when they make different
predi cti ons about observables. For exanple, suppose you have two
nodel s for your data. |If, for all data sets,

P(dat a] nodel 1) = P(datal nodel 2),

there is an obvious problem- the data cannot distinguish between
the nodels. |If a path nodel is conplete, or the faithful ness
assunption is not inposed, then the graph underlying a covariance
matrix is not identifiable; that is the nessage of sections
11.1-3. By way of illustration, the nodels in Figure 7 are
identifiable only if faithful ness holds.

However, even if we assune that a covariance matrix is
faithful to a graph that is not conplete, there may be severa
such graphs (SGS p. 89). For exanple, the follow ng three graphs
can generate the sane covariance matri X:

X>Y->Z X«Y->Z XY« /Z
Thus, SGS do not seemto have succeeded in defining a class of
graphs and covariance matrices for which identifiability holds

(SGS p. 194).

In statistical term nology, estimators are "consistent”
provi ded that, as the sanple gets larger and | arger, these
estimators cone closer and closer to the popul ati on paraneters.
If the parameters are not identifiable, however, consistency is
probl emati c.

SGS seemto claimthat their algorithms will find all the
pat h di agrans conpatible with a given covariance matri Xx.
However, the theorens suggest that the algorithms will at best
find one such graph. SGS also seemto claimthat their
algorithns are consistent. However, without an identifiability
theory for linear nodels, they cannot really be tal ki ng about
consi st ency.

Statisticians do have the weaker notion of "Fisher

consi stency,"” naned after R A Fisher: when applied to data for
t he whol e popul ati on, an estimator shoul d reproduce the

popul ati on paranmeters exactly. Theorens like 5.1 in SGS (p. 405)
seemto denonstrate the anal og of Fisher consistency, rather than
anything stronger. Such theorens show that, given the popul ation
covariance matrix, the algorithms will produce one graph
consistent with that matri x.
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11.5 Methodol ogi cal contri buti ons

There is a connection between the theory of "D rected
Acyclic G aphs" (DAGs) and conditional independence of random
variables. (See Darroch et al. 1980, Kiiveri and Speed 1982,
Speed and Kiiveri 1986; Pearl 1986, Pearl 1988, Vernma and Pear
1990, Geiger 1990, Pearl and Verma 1991.) Much of this work is
reviewed in SGS and CG  However, the mathematics of nonli near
causal diagrans seens to be irrelevant to the big question: how
do we infer causation from associ ation?

Most the applications in SGS are |inear, i.e., based on path
nodel s. The "nonlinear causal diagrans” turn out to be
mul ti nom al nodels for categorical data; exanples are on pp. 147-
51. The issues about causation are quite simlar to those for
I i near nodel s, although the technical details are different. The
real applications in CG all seemto involve |inear nodels.

This section will focus on path nodels. To describe the
novelty in the SGS approach to estimation, suppose you have data

froma path nodel, and wish to estinmate the nodel. Consider two
cases:
Case |I. You know the classification of variables as to | evel:

that is, you know which variables are at |evel 0, which are at
| evel 1, and so forth.

Case Il. You do not know the classification of variables as to
| evel .

In Case I, SGS have little to tell us about estimation (as
to confounding, see section 12.1). Some of their algorithns seem
to be equivalent to regression, others may be less efficient. 1In
Case Il, SGStry to estimate the classification of variables as
well as the path coefficients. That is the nethodol ogical
contribution. To estimate the classification, SGS nmust inpose
t he faithful ness assunption (section 11.2). It is disappointing
that SGS do not pin down the sense in which their algorithnms are
successful (section 11.4).
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12. More exanpl es, and sone theory

Section 12.1 explains how the faithful ness assunption and
condi tional independence are supposed to elimnate confoundi ng.
Section 12.2 discusses omtted variables. Sections 12.3-5
revisit two exanples froma nore mathematical perspective; the
idea is to showthe Iimts of correlational nethods.

12.1 Faithful ness, conditional independence, and confoundi ng

The probl ens created by unobservabl e variables are well
known. As indicated above, SGS handl e such problens by inposing
the faithful ness assunption. Mre specifically, the assunption
is used to rule out confounding. |If confounding can be
elimnated, the goal is in sight -- association may soon be
converted into causation. This section, which is based on work
by Jam e Robins (personal communication), examnes the logic in
nore detail. Also see (Pearl and Verma 1991).

Wth sonme nodel s, exact conditional independence forces a
choi ce:

eeither there is no confounding by unneasured conmon causes,

eor the faithful ness assunption is violated.
Near - i ndependence i s not good enough; associations may then be
entirely spurious. Thus, causal inferences nmade by the SGS
t echni que need exact conditional independence as well as the
faithful ness assunpti on.

This use of the faithful ness assunption has sone theoretical
interest. However, in order to base enpirical work on such
mat hematical ideas, it would seem necessary to resolve the
foll ow ng questions, which SGS have not addressed:

*Can the basic nodels be validated?

«Can exact conditional independence be denonstrated?

«G ven exact independence, why is exact cancellation of

confounded effects overwhelmngly less likely than the total
absence of such effects?
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As a practical matter, exact independence seens quite
unusual . However, the theory is worth understandi ng, and an
exanple will make the position clearer. Figure 10 shows a
relatively sinple diagram where faithful ness and conditional
i ndependence woul d elimnate confounding. The arrows denote
causation, not nere association. Variables X, Y, Z are
observabl e; U is unobservable. Such unobservables are also
cal l ed "confounders” or "unneasured common causes." The joint
distribution is nornmal, and variables are standardi zed to have
mean O and variance 1.

Figure 10. The faithful ness assunption, conditional

i ndependence, and confounding. Variables X, Y, Z are observabl e;
U is unobservable. Arrows represent causation, not just

associ ation. The |ower-case letters on the arrows denote path
coefficients. |If a path coefficient vanishes, the correspondi ng
arrow nust be del et ed.

U
d e
X f Y
a b
Z
U X Y Z
U 1
(25) X d 1
Y e de 1
Z f +ad+be a+bde+fd b+ade+fe 1
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The _covariance matrix for all 4 variables is shown
in (25).28 Of course, only the covariance matrix (26) of the
observables (X Y,Z) can be estimated fromthe data. In
particular, de is determ ned fromthe observables, as cov(XY).

‘ X Y Z
X 1
(26) Y de 1
Z a+bde+f d b+ade+f e 1

It may help to review the idea of faithfulness, in the
context of our exanple. Faithfulness is an assunption about
unobservabl es; nore specifically, it is a constraint on the
rel ati onship between the full covariance matrix (25) and the
graph in Figure 10. The assunption anounts to this:

i ndependence rel ati onshi ps (conditional and unconditional) are
determ ned by the presence or absence of arrows in the diagram
not specific paraneter val ues.

In particular, if the covariance matrix (25) is faithful to
the diagramin Figure 10, you cannot set any of the path
coefficients to 0, except by deleting the correspondi ng arrow.
An arrow from X to Z, say, entails that X has sone causal effect
on Z, no matter how small that effect may turn out to be.

| return to nore conventional issues. In our exanple, the
paraneter of interest is b, the causal effect of Y on Z Due to
t he unneasured confounder U, a regression of Z on X and Y
produces a biased estimate of b. By a slightly tedious
calculation, the coefficient of Y in the regression equation is

(27) b + fe(1-d2)/(1-d%e?).

(For details on nultiple regression, see the appendi x.) The bias
in the regression estinmate is the second termin (27). Froma
slightly different perspective, cov(Y,Z) in (26) nmeasures the
total association between Y and Z. Part of this association is
real: b neasures the causal effect of Y on Z  Alas, part of the
association is spurious: ade + fe represents the effects of the
conf ounder U

28 Covariance matrices are synmetric; only the |ower
triangular part is shown. Entries are assuned to be positive but
less than 1. The matrix is assuned to be positive definite.
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The goal is to separate the real part of the association
fromthe spurious part. The famliar obstacle: we have only
(26), not (25). And (26) does not suffice to separate
b + ade + fe into its conponents. But, SGS m ght say, suppose
that X and Z are conditionally independent given Y:

(28) cov(X ZY) = 0.

By (48) below, this neans
(29) cov(X, Z) = cov(XY) xcov(Y,2Z).

A bit of al gebra based on (25) shows that (29) is equivalent to
(30) a(l- d%e?) + df = de?f.

Al though de is known and 0<de<1, there are nmany possible
ways to solve equation (30). At this point, SGS would invoke the
faithful ness assunption, concluding that

(31) a=0andf =0.

The inplication: we have to renove the arrow fromX to Z, as
well as the arrow fromU to Z.

Conf oundi ng has now been elim nated. On this basis,
cov(Y,Z) = b; the whole of the association is real, and
regression produces an unbi ased estimate for the causal effect of
Y on Z. At last, association has been converted into causation.
O course, quite a lot of causality was built into Figure 10 from
t he begi nning-- by assunpti on.

Those were the inplications of exact conditional
i ndependence. On the other hand, suppose we have approxi mate
condi tional independence: cov(X ZlY) = .00001. Now the
faithful ness assunption has no force. Gven the covariances in
(26), we can match them by SU|tabIe choi ce of the other
paraneters, even if a = b = 0.2

29 This matching assunes, for instance, that any two of the
vari abl es have positive covariance given the third. To avoid
violating the faithful ness assunption, if you set a and b to O,
erase the corresponding arrows; if that is distasteful, set a and
b to small but positive values. The SGS logic would apply to a
wi de variety of diagrans; however, an arrow fromY to X, no
matter how small the coefficient, spoils the show.
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Wth approxi mate conditional independence, observed
associ ations can be entirely spurious. Thus, even in the realm
of mat hematics, faithful ness and conditional independence
precl ude confoundi ng only when the independence is exact. To
make the contrast sharper, |et us assune faithful ness.

If cov(X,ZY) =0, then the association between Y and Z is
purely causal; the effects of the unnmeasured commopn cause U
do not confound the relationship between Y and Z.

I f cov(X ZY) = .00001, then confounding by unneasured
common causes may account for all of the observed
associ ati on between Y and Z.

Apparently, converting association into causation is still quite
a dicey affair.

A simlar problemnust be considered when estimating path
nodel s fromdata (section 11). Exact conditional independence,
together with the faithful ness assunption, often permts us to
identify the path diagramfromthe covariance matri x. However
approxi mate conditional independence is not enough: then, the
covariance matrix will be faithful to a variety of conplete
gr aphs.

A final exanple is the Tinberlake-WIlians nodel (section 10
above). This nodels explains political exclusion (PO in terns
of foreign investnment (Fl), energy devel opment (EN) and civil
liberties (CV); the sanple correlation matrix was shown in
Table 6. Consider three scenarios for the "true" correlation
matri x p.

(1) Suppose p happens to equal the sanple correl ation
matri x. Then, faithful ness obtains.

(ii1) Suppose the true correlation p(PO FlI) between foreign
i nvestnment and political exclusion happens to vani sh
exactly. Then, the Tinberlake-WIIlians nodel violates the
faithful ness condition; presumably, that is SGS s rea
conpl ai nt.

(iii) I'f p(PO FlI) = .00001, faithfulness is restored.
According to the SGS criteria, Tinberlake and WIllianms are
back in business.

Wthin the framework of path nodels, scenario (ii) cannot be
rejected at conventional significance |levels; neither can (iii);
and (i) represents our best estimate, subject to | arge
uncertainties. SGS seize on hypothesis (ii), the only one that
legitimates their critique. They are bal king at shadows.
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It may be possible to strengthen the faithful ness
assunption, to rule out near-cancellation of confounded effects.
However, devel oping such a theory will run into technical
difficulties. |In particular, stronger assunptions are likely to
reduce the stock of path nodels that can be identified, because
fewer covariance matrices would then be faithful to their graphs.

12.2 Onmtted vari abl es

The problem of omtted variables was raised by iff C ogg
at the Notre Dane conference, and this section paraphrases one of
his points. There is a response variable Y, with explanatory
vari ables X and Z; these may be construed as vectors. Suppose
the data are generated according to the "true" nodel (32T).

(32T) Y = XB+Zy+¢ (32R) Y = XPr~+ 5

The paraneter vectors [ and y are unknown, and to be
estimated fromdata by regression; it is B that is of primry
interest. Subjects are assuned to be independent and identically
distributed; (X, Z) and the error term e are independent and
jointly normal; all variables have expected value 0. Consider
too the "restricted" nodel (32R), where Bg is defined so that
E{Y| X} = XB&) The constituents of (32R) may be conputed fromthe
true nodel

In principle, the variables X, Y and Z are all observable; X
and Z may be correlated. However, investigators who do not know
that Zis relevant may fit the restricted nodel R rather than the
true nodel T. |If so, the estimate of P can be quite biased. In
t he vernacul ar, PBg includes the effect of X on Y through Z. The
covariance matrix of (X, Y) cannot distinguish between the two

30 I ndeed, Bg = B+ o where o is obtained by the regression
of Zy on X. In other terns, Zy = Xoo+mn, where n is normal with
nmean 0, independent of X. Then 6 = ¢+m. It may be seen that «
depends linearly on y.
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nodel s, because the matri x can be generated by either nodel.
Therefore, no statistical procedure based on that matrix can tel
you whether the restricted nodel is right or wong.3!

12.3 On the direction of causality

This section uses "cause" in its ordinary (perhaps
undefi nabl ) meani ng, not as shorthand for certain kinds of

covariation. | return to Judea Pearl’s exanple, shown in
Figure 2(a). Gven the covariance matrix for X, Y and Z, the SGS
algorithmw || produce the graph shown in panel (a). |If you tel

the algorithmthat omtted variables are a possibility, it wll
tell you that Y cannot cause X or Z.

In the exanple, X, Y and Z are the only observabl es, and
their covariance matrix is faithful to the graph in Figure 2(a).
| claimthat such information cannot by itself determ ne the
direction of the causal flow. To substantiate this claim | now
construct two theories. In both, the observables X, Y and Z will
have the sane covariance matrix, faithful to the graph in
Figure 2(a). However, the direction of the causal flow w Il be
different in the two theories.

Theory #1
| first generate X, Z, U as independent N(O,1) variables; U
is an unobservable error term (If you want to intervene and
change X or Z, now is your nonent.) Then
(33) Y=X+2Z+ U

According to theory #1, X and Z cause Y, as suggested by
Figure 2(a).

31 See (O ogg and Haritou 1994), who make the foll ow ng
very interesting point. Adding variables that are correl ated
with € can also bias the estimate of [; this "included variabl e"
bi as can be just as troublesone as the nore famliar "omtted
variabl e" bias: the latter problem cannot be sol ved by throw ng
variables into the nodel. The SGS treatnment of omtted vari ables
was di scussed in section 12.1 above.
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Theory #2

| first generate Y as N(0,3). (If you want to intervene and
change Y, now is your nonent.) After a suitable pause, so that
time’s arrow will delineate the flow of causality, | generate the
errors Vq, V, and V3 as independent N(O,1/3) variables, and then
produce X, Z and U according to

X=2Xv.v-v,

3
(34) Z= 2Y-Vo-Vs
U= 2Y-V3-Vy

In this theory, Y causes X and Z.

As far as the observables are concerned-- nanely, the joint
distribution of X, Y and Z-- theories #1 and #2 agree.
Furthernore, the joint distribution is faithful to the graph in
Figure 2(a). But the direction of causality is determ ned
neither by the data nor by the mathematics. Wth correl ational
nmet hods, causality follows fromthe assunptions about the
unobser vabl es.

12.3 The AFQT probl em

SGS seemto claimthat, as a denonstrabl e mat hemati cal fact,
their procedures will find the right answers:

Assumi ng the right variabl es have been neasured, there is a
straightforward solution to these problens: apply the PC
FCl, or other reliable algorithm and appropriate theorens
fromthe preceding chapters, to determ ne which X vari abl es
i nfluence the outcome Y, which do not, and for which the
guestion cannot be answered.... then estimte the
dependenci es by what ever nethods seem appropriate and apply
the results of the previous chapter to obtain predictions of
the effect of manipulating the X variables. No extra theory
is required. W wll give a nunber of illustrations...

(SGS p. 242)
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AFQT (section 9 above). To denobnstrate that SGS are exagger at
nore than a little, | pose a sharp mathematical question with
essential features of the AFQT problem Then, | show the
guestion to be undeci dable by correlational nethods. (O course,
when applied to the real exanple, both SGS and ordinary | east
squares made the right guess.)

The first exanple given by SGS to illustrate this claimis
i ng
t he

To set up the question, assune that X and Y are random
variables; X is a vector, Y is scalar.

(35) Y is alinear conbination of X' s, with fixed weights.
(36) The observables are Y and Vq, ..., V.

Some Vs are X's, sone Vs are ringers. (A "ringer" is a
variabl e that does not enter into the |inear conbination for Y.)
There are al so unobservables, including the X s that are not V s.
Assume too that

(37) The full joint distributionis nultivariate normal, with
nmean O.

You are given the covariance matrix for the observabl es, but
not the full covariance matrix. The problemis to say which of
the Vs are X's and which are ringers. | claimthis problemis
not sol vabl e, because | can produce two different theories
| eading to different classifications of the Vs, but having the
sanme joint distribution for the observables.

Theory #1

| use the covariance matrix for the 7 observabl e subtests
Vi =NO ... V;, = GStogether with the 3 unobservabl e subtests,
CS, AS and PC. (The subtests are listed in Table 8, section 12.5
below). The full distribution is defined to be jointly nornal
and all variables have nean 0. Let Y = .5 x NO+ AR + WK + PC,
where NO, AR and WK are observable but PC is unobservable. 1In
this theory, V;, V,, V3 are X's, the remaining V's are ringers.
This theory happens to have been nore or |ess correct, prior to
1989: see equation (42) in section 12.5.
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Theory #2

Again, | use the covariance matrix for the 7 observable
subtests V; = NO ... V;, = GS together with the other 3
unobservabﬂe subtests CS, AS, PC. | create an auxiliary variable
U which is independent of the 10 subtests and has snal
variance. The distribution of these 11 variables is defined to
be jointly normal, and all variables have nean 0. There are
t hree addi ti onal unobservables, defined as foll ows:

(38) T, = .25(AR+NO) + .5PC + U,
(39) T, = .25(WK+NO + .5PC + U,
(40) Ty = . 75(AR+WK) - 2U.

Let

(41) Y =T + Ty, + T3

In theory #2, T,, T,, Tz are the unobservables; all the V's are
ringers. The auxiliary variables U, CS, AS, PC serve only to
define the joint distribution.

Theory #1 and theory #2 provide the sanme joint distribution
for the observables. Therefore, no statistical procedure based
on the joint distribution-- Iike the SGS al gorithnms or any ot her
correl ati onal nethods-- can adjudi cate between the two theories.

This section and the previous one denonstrate the obvious:
you cannot infer cause and effect relationships by doing
arithmetic on a correlation matrix, because association is not
causation. The mathematical devel opnent in SGS avoi ds such
probl enms only by inposing nore or less arbitrary conditions (like
fai t hful ness) on unobservabl e variables, as discussed in sections
11.2 and 12.1.

In the present section, neither theory #1 nor theory #2 fits
into the SGS franework: Y is a determnistic function of the
expl anatory variables, with no stochastic error term see (35).
Furthernmore, if U and PC are treated as variabl es rather than
error ternms in (38-39-40), the joint distribution in theory #2
is, presumably, unfaithful to its causal graph. Simlar coments
apply to the previous section.
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12.5 Institutional background on the AFQT

The "Armed Services Vocational Aptitude Battery" (ASVAB) has
ten subtests, including the seven listed in Table 4, section 9
above. Al ten are shown in Table 8.

Table 8. The ten subtests in ASVAB
The first seven were anal yzed by SGS.

1. Nunmerical Operations NO
2. Word Know edge VWK
3. Arithnetical Reasoning AR
4. Mat hematical Know edge VK
5. Electronics Information E

6. Mechani cal Conprehension MC
7. Ceneral Science GS
8. Codi ng Speed CS
9. Auto & Shop Information AS
10. Par agraph Conprehension PC

Notes: ASVAB Form 17, July 1990.

Until January, 1989 the AFQT was conputed as foll ows:
(42) AFQT = .5xNO + AR + WK + PC.

After that date, NO was replaced by MK; a "verbal" score VE was
defined as VE = WK + PC, and terns were standardi zed to have nean
0 and variance 1 on sone calibration data-- the "NORC 1985
sanple.” AFQI was redefined as

(43)  AFQT = MK, + AR, + 2 x VEy,

where the subscript Z denotes standardi zation. Throughout the
period, raw scores were by Congressional requirenment converted to
percentil es based on the NORC sanple. One hopes the data used by
SGS cone from 1988 or before, since they pick up fornmula (42)
rather than (43); section 9 above. 32

32 SGS appear to be considering raw scores, and | follow
suit. The material in this section was reported by Larry Hanser,
personal conmmuni cation; he refers to (Wlsh et al. 1990, esp
Table 3 on p. 5), and (Eitel berg 1988, esp. p. 73).
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13. Responses

Formal statistical inference is, by its nature, conditional

| f assunptions A, B, C, ... hold, then H can be tested agai nst
the data. However, if A B, C, ... remain in doubt, so nust
i nferences about H Indeed, the statistical calculations may

prove to be quite m sl eading.

Many assunptions are nmade but only a few are tested. Those
made wi t hout testing are called "maintained hypot heses.” They
are usually statistical and often rather technical -- linearity,
i ndependence, exogeneity, etc. Careful scrutiny of such
assunptions would therefore seemto be a critical part of
enpirical work.

In the social sciences, however, statistical assunptions are
rarely made explicit, let alone validated. Questions provoke
reactions that cover the ganut fromindignation to obscurantism
We know all that. Nothing is perfect. Linearity has to be a
good first approximation. The assunptions are reasonable. The
assunptions don’'t matter. The assunptions are conservative. You
can’t prove the assunptions are wong. The biases will cancel.
We can nodel the biases. W’'re only doing what everybody el se
does. Now we use nore sophisticated techniques. Wat would you
do? The decision-maker has to be better off with us than w thout
us. W all have nental nodels, not using a nodel is still a
nodel .

Wth the SGS approach, responses are nore subtle but no nore
enpirical. Proponents often seemto take a Bayesi an stance:
faithfulness is justified on the grounds that the exceptional
cases have neasure 0, and nust therefore be viewed as negligible
a priori.3 However, the SGS approach is frequentist not
Bayesi an; the simulations, being done on finite-state conputers,
must concentrate in a set of neasure 0; and the SGS cl ass of
nodel s has neasure O within |larger classes of nodels. I|ndeed,
fromny perspective, the whole class of path nodels seens rather
unli kely-- given the intensity of the research effort and the
paucity of convincing exanples. The assunptions that diagrans
are sparse and faithful stretch credibility even further

33 The "nmeasure" here is the uniformdistribution in
Eucl i dean space, e.g., length, area, volune.... Mthematicians
call the uniformdistribution "Lebesgue neasure,” in honor of

Henri Lebesgue (1875-1941) who devel oped its mat hemati cal
foundati ons. The SGS argunent (p. 95) seens to be a variation on
Lapl ace’s "principle of insufficient reason" (Stigler 1986, 127).
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Attenpts have al so be nmade to justify the faithful ness
assunption by appeals to continuity. |If a covariance matrix is
unfaithful, small changes to paraneter values nmake it faithful
However, the sane argunent can be turned agai nst correl ationa
met hods. For exanple, if a covariance matrix is faithful to an
i nconpl ete graph, small changes to hidden paraneters nake the
graph conplete and vitiate the SGS search procedures.

Section 12.1 points to another kind of instability in the SGS
framewor k. The continuity defense (like the Bayesi an argunent)
reflects an aesthetic judgnent about nodeling styles. Taste is
no substitute for enpirical verification

The SGS criteria for causality may al so be defended as
follows-- it is unlikely that anything could produce the
patterns of intercorrelation identified by SGS, other than
causation; thus, correlational methods shift the burden of
argunent. Figures 5 and 6 should dispose of this idea. 1In real
exanples, the patterns identified by the SGS search al gorithns
can hardly represent cause-and-effect relationships. The burden
woul d seemto be on the nodelers: how can they reconmend an
al gorithmthat gives such results?

Proponents of nodeling can also be heard to argue that al
of us make assunptions about unobservables. However, what is
unobservable with one design nmay beconme observable wi th anot her.
And sone investigators still deal wth unobservables the hard
way-- by doing the right studies. For exanple, take Fisher’s
"constitutional hypothesis:" there may be a genetic factor that
predi sposes you to snoke and to get |ung cancer, heart disease,
etc.3 This putative genetic factor is the unobservabl e common
cause for snoking and ill ness.

The epi dem ol ogi sts did not deal with the constitutional
hypot hesi s by introduci ng special assunptions. |Instead, they
studied the matter enpirically, using data fromtw n studies.
For a recent report on the Swedish twin registry, see (Floderus
et al. 1988). On the Finnish twin registry, see (Kaprio and
Koskenvuo 1989). Data on the Danish twin registry are
fragmentary. There are forthcom ng data on the U S twn

registry, which are quite strong (Dorit Carnelli, personal
comuni cation). The nunbers on |ung cancer are suggestive, but
still small-- this is a rare di sease, even anong snokers. The

data on heart disease and total nortality, however, make the
constitutional hypothesis untenabl e.

34 See SGS pp. 298-9, CG p. 32.
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13.1 A comment from Judea Pear

Judea Pearl wites that

Correl ati on-based nodel -searchi ng schenes produce causa
inferences with only Iimted guarantees. Yet such schenes
have potential, if conducted under conditions that screen
out acci dental independencies while maintaining structural

i ndependenci es-- for exanple, |ongitudinal studies under
slightly varying conditions. Thi s assunes, of course, that
under such varying conditions the paraneters of the node
will be perturbed, while its structure remains stable.

Mai nt ai ni ng such delicate bal ance under changi ng conditions

may be hard in real-life studies. However, considering the
alternative of resorting to controlled, random zed
experinments, such longitudinal studies are still an exciting

opportunity.

Additionally, any investigator who is searching for a causal
nodel know ng that the paraneters m ght be tied together by
sonme hidden equation, |like (17) [section 11.2], is wasting
time (and public funds). Such a nodel, even if correct, is
bound to be usel ess, because w thout the assunption of
autonony (i.e., that each paraneter can be perturbed w t hout
altering the others), the nodel cannot predict the effect of
i nterventions or other changes.... [personal comunication]

Al so see (Pearl 1993; Pearl and Wernuth 1993).
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14. O her literature

There is an extensive literature on the eval uation of
nodel s, going back at |east to the Keynes-Ti nbergen exchange
(Keynes 1939 and 1940, Ti nbergen 1940). Also see (Liu 1960) and
(Lucas 1976). For nore recent discussions, with other citations
to the literature, see (Freedman 1987 and 1991). Many authors
have tried to explain the basis for inferring causation by using
regression. See, for exanple, (Pratt and Schlaifer 1984 and
1988), or (Holland 1986 and 1988). O enthusiastic views on
soci al -science nodeling, there is no shortage; see, for instance,
(Smel ser and Gerstein 1986) or (Bartels and Brady 1993). For a
recent discussion of causal nodeling, see (Cox and Wernmuth 1993).

15. Concl usi ons

SGS have not succeeded in clarifying the circunstances under
whi ch causal inferences can be drawn from observed associ ati ons,
nor have they invented a reliable engine for performng this
feat. Their algorithns have sonme technical interest, but wll
make causal inferences only when causation is assuned in the
first place. To be nore explicit: If we assune that the arrows
in a path diagramrepresent causation rather than association,
and we al so assune that the path diagram can be estimted from
data, then indeed SGS can infer causation from association. The
fai t hful ness assunption and exact conditional independence wll
together elimnate certain kinds of confounding. Even so,
causality is assuned into the picture at the begi nning, not
proved in at the end. As Nancy Cartwight says, "No causes in,
no causes out."3%

The | arger problemrenains. Can quantitative social
scientists infer causality by applying statistical technology to
correlation matrices? That is not a mathematical question,
because the answer turns on the way the world is put together.
As | read the record, correlational nmethods have not delivered
t he goods. W need to work on neasurenent, design, theory.
Fancier statistics are not likely to help nuch.

35 (Cartwight 1989, Chapters 2 and 3). Also see (Pear
and Verma 1991).
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Appendi x: Reqgr essi on and condi ti oni ng

For ease of reference, this appendi x presents the usual
formul as for conputing regressions, and conditional covariances.
| begin with regression. Suppose £ and n are random vari abl es; §
may be a row vector. W seek the colum vector [ of regression
coefficients for mon & Let C=EE£’E} and D= E{&'n}; the
prinme denotes matrix transposition. Assunme Cis positive
definite. Then

(44) g = clb

Nown = EB+u, where u is automatically orthogonal to &  The
mean square of u may be conputed as foll ows:

(45) E(u?) = E(n?) - B’CB.

If & and m have nean 0, then C = cov(§) and D = cov(§&,mn); also,
E(u) = 0. Likewise, if sone conponent of & is a non-zero
constant, E(u) = 0. |If nowthe variables are jointly normal, u
i s i ndependent of E.

| turn to estimation. Recall equation (2), repeated here
for ease of reference.

(2) Y = XB + e.

In this equation, X is the "design matrix," representing the

expl anatory variables. There is one row for each unit in the
study, and one colum for each variable; the entry in the ith row
and jth colum represents the jth variable, as observed on the
ith unit in the study; X may include a colum of 1's, if there is
to be an intercept in the equation. Y is a columm vector
representing the dependent variable, whose ith conponent
represents the value of Y for the ith unit in the study. ¢ is

al so a colum vector, with one conmponent for each unit in the
study, representing the inpact on Y of chance factors unrel ated
to X. Typically, there will be many fewer paraneters than data
points, so B has relatively few conponents.

The ordinary | east squares estimator for B is denoted by a
hat, and nmay be conputed as

(46) B = (XX IX'V.
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N
The covariance matrix for B, conditional on the design matrix,
is conputed as

(47) cov(BIX) = (X'X)-lvar(e|X).

O course, (46) is related to (44); this is seen by defining
(&, n) as a row chosen at randomfrom (X, Y).

The "predicted val ues” and "residual s" are defined as

N N\ N
follows: Y = XB and e =Y - Y. The residuals are automatically
orthogonal to X. The residual sun1of squares, mnimzed by the
choice of B, is RSS = |e]? = 3 e Then var (g | X) in (47) may be
estimated as RSS/ (n-p), mhere n'is the number of data poi nts and
p is the nunber of explanatory variables. Variances wll be
found al ong the di agonal of the covariance matrix, and the
standard error is conmputed as the square root of the variance.
In deriving these fornmulas, it is assuned that given X, the
conmponents of ¢ are conditionally independent and identically
di stributed, with nmean O.

Suppose the nodel has an intercept. Then RZ may be defined
N
as R2 = var{VY}/var{Y}, where, e.g.,

var{Y} = %zr_]:(Yi -Y)2 and \7=%_£21Yi.

If all variables have nean 0, then RZ may be conputed as
N N\
B’ X" XB/ (nxvar{VY}).

The usual formula for conputing conditional covariances nmay
be presented as follows. Let n > 2. Suppose X;, X5, ..., X, are
jointly normal. W seek the conditional covariance of X; and X,
given X3, X4,..., X,. Let X be the covariance matrix of X@, xq,
coey Xy Let K, be the covariance of X; with X3, X4 ..., | et
Ko, be the covariance of X, with X3, X, ..., X, W vieWK1 "and
K, as n-2 x 1 colum vectors The condi tional covariance is
gl ven by

(48) cov(Xy, Xo| X3, ..., X,) = cov(Xy, Xo) - k'3 Lk,
The prinme denotes matrix transposition. Details on the materi al

in this appendix may be found in standard texts, for instance,
(Rao 1973).
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