EE 102 spring 2001-2002 Handout #23

Lecture 11 The Fourier transform

- definition
- examples
- the Fourier transform of a unit step
- the Fourier transform of a periodic signal
- properties
- the inverse Fourier transform

The Fourier transform

we'll be interested in signals defined for all t

the Fourier transform of a signal f is the function

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

• F is a function of a *real* variable ω ; the function value $F(\omega)$ is (in general) a complex number

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt - j \int_{-\infty}^{\infty} f(t) \sin \omega t \, dt$$

- $|F(\omega)|$ is called the *amplitude spectrum* of f; $\angle F(\omega)$ is the *phase spectrum* of f
- notation: $F = \mathcal{F}(f)$ means F is the Fourier transform of f; as for Laplace transforms we usually use uppercase letters for the transforms (e.g., x(t)) and $X(\omega)$, h(t) and $H(\omega)$, etc.)

Fourier transform and Laplace transform

Laplace transform of f

$$F(s) = \int_0^\infty f(t)e^{-st} dt$$

Fourier transform of f

$$G(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

very similar definitions, with two differences:

- Laplace transform integral is over $0 \le t < \infty$; Fourier transform integral is over $-\infty < t < \infty$
- Laplace transform: s can be any complex number in the region of convergence (ROC); Fourier transform: $j\omega$ lies on the imaginary axis

therefore,

- if f(t) = 0 for t < 0,
 - if the imaginary axis lies in the ROC of $\mathcal{L}(f)$, then

$$G(\omega) = F(j\omega),$$

i.e., the Fourier transform is the Laplace transform evaluated on the imaginary axis

- if the imaginary axis is not in the ROC of $\mathcal{L}(f)$, then the Fourier transform doesn't exist, but the Laplace transform does (at least, for all s in the ROC)
- if $f(t) \neq 0$ for t < 0, then the Fourier and Laplace transforms can be very different

examples

one-sided decaying exponential

$$f(t) = \begin{cases} 0 & t < 0 \\ e^{-t} & t \ge 0 \end{cases}$$

Laplace transform: F(s) = 1/(s+1) with ROC $\{s \mid \Re s > -1\}$ Fourier transform is

$$\int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt = \frac{1}{j\omega + 1} = F(j\omega)$$

one-sided growing exponential

$$f(t) = \begin{cases} 0 & t < 0 \\ e^t & t \ge 0 \end{cases}$$

Laplace transform: F(s)=1/(s-1) with ROC $\{s\mid\Re s>1\}$ f doesn't have a Fourier transform

Examples

double-sided exponential: $f(t) = e^{-a|t|}$ (with a > 0)

$$F(\omega) = \int_{-\infty}^{\infty} e^{-a|t|} e^{-j\omega t} dt = \int_{-\infty}^{0} e^{at} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-j\omega t} dt$$
$$= \frac{1}{a - j\omega} + \frac{1}{a + j\omega}$$
$$= \frac{2a}{a^2 + \omega^2}$$

rectangular pulse:
$$f(t) = \left\{ \begin{array}{ll} 1 & -T \leq t \leq T \\ 0 & |t| > T \end{array} \right.$$

$$F(\omega) = \int_{-T}^{T} e^{-j\omega t} dt = \frac{-1}{j\omega} \left(e^{-j\omega T} - e^{j\omega T} \right) = \frac{2\sin \omega T}{\omega}$$

unit impulse: $f(t) = \delta(t)$

$$F(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t} dt = 1$$

shifted rectangular pulse:
$$f(t) = \left\{ \begin{array}{ll} 1 & 1-T \leq t \leq 1+T \\ 0 & t < 1-T \text{ or } t > 1+T \end{array} \right.$$

$$F(\omega) = \int_{1-T}^{1+T} e^{-j\omega t} dt = \frac{-1}{j\omega} \left(e^{-j\omega(1+T)} - e^{-j\omega(1-T)} \right)$$
$$= \frac{-e^{-j\omega}}{j\omega} \left(e^{-j\omega T} - e^{j\omega T} \right)$$
$$= \frac{2\sin \omega T}{\omega} e^{-j\omega}$$

Step functions and constant signals

by allowing impulses in $\mathcal{F}(f)$ we can define the Fourier transform of a step function or a constant signal

unit step

what is the Fourier transform of

$$f(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$
?

the Laplace transform is 1/s, but the imaginary axis is not in the ROC, and therefore the Fourier transform is $not \ 1/j\omega$

in fact, the integral

$$\int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt = \int_{0}^{\infty} e^{-j\omega t} dt = \int_{0}^{\infty} \cos \omega t dt - j \int_{0}^{\infty} \sin \omega t dt$$

is not defined

however, we can interpret f as the limit for $\alpha \to 0$ of a one-sided decaying exponential

$$g_{\alpha}(t) = \begin{cases} e^{-\alpha t} & t \ge 0\\ 0 & t < 0, \end{cases}$$

 $(\alpha > 0)$, which has Fourier transform

$$G_{\alpha}(\omega) = \frac{1}{a+j\omega} = \frac{a-j\omega}{a^2+\omega^2} = \frac{a}{a^2+\omega^2} - \frac{j\omega}{a^2+\omega^2}$$

as
$$\alpha \to 0$$
,

$$\frac{a}{a^2 + \omega^2} \to \pi \delta(\omega), \quad -\frac{j\omega}{a^2 + \omega^2} \to \frac{1}{j\omega}$$

let's therefore define the Fourier transform of the unit step as

$$F(\omega) = \int_0^\infty e^{-j\omega t} dt = \pi \delta(\omega) + \frac{1}{j\omega}$$

negative time unit step

$$f(t) = \begin{cases} 1 & t \le 0 \\ 0 & t > 0 \end{cases}$$

$$F(\omega) = \int_{-\infty}^{0} e^{-j\omega t} dt = \int_{0}^{\infty} e^{j\omega t} dt = \pi \delta(\omega) - \frac{1}{j\omega}$$

constant signals: f(t) = 1

f is the sum of a unit step and a negative time unit step:

$$F(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} dt = \int_{-\infty}^{0} e^{-j\omega t} dt + \int_{0}^{\infty} e^{-j\omega t} dt = 2\pi\delta(\omega)$$

Fourier transform of periodic signals

similarly, by allowing impulses in $\mathcal{F}(f)$, we can define the Fourier transform of a periodic signal

sinusoidal signals: Fourier transform of $f(t) = \cos \omega_0 t$

$$F(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) e^{-j\omega t} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} e^{-j(\omega - \omega_0)t} dt + \frac{1}{2} \int_{-\infty}^{\infty} e^{-j(\omega + \omega_0)t} dt$$

$$= \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

Fourier transform of $f(t) = \sin \omega_0 t$

$$F(\omega) = \frac{1}{2j} \int_{-\infty}^{\infty} \left(e^{j\omega_0 t} - e^{-j\omega_0 t} \right) e^{-j\omega t} dt$$

$$= \frac{1}{2j} \int_{-\infty}^{\infty} e^{-j(\omega - \omega_0)t} dt + -\frac{1}{2j} \int_{-\infty}^{\infty} e^{-j(\omega_0 + \omega)t} dt$$

$$= -j\pi \delta(\omega - \omega_0) + j\pi \delta(\omega + \omega_0)$$

periodic signal f(t) with fundamental frequency ω_0 express f as Fourier series

$$f(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$F(\omega) = \sum_{k=-\infty}^{\infty} a_k \int_{-\infty}^{\infty} e^{j(k\omega_0 - \omega)t} dt = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$$

Properties of the Fourier transform

linearity
$$af(t)+bg(t) \qquad aF(\omega)+bG(\omega)$$
 time scaling
$$f(at) \qquad \frac{1}{|a|}F(\frac{\omega}{a})$$
 time shift
$$f(t-T) \qquad e^{-j\omega T}F(\omega)$$
 differentiation
$$\frac{df(t)}{dt} \qquad j\omega F(\omega)$$

$$\frac{d^kf(t)}{dt^k} \qquad (j\omega)^kF(\omega)$$
 integration
$$\int_{-\infty}^t f(\tau)d\tau \qquad \frac{F(\omega)}{j\omega}+\pi F(0)\delta(\omega)$$
 multiplication with $t = t^kf(t) \qquad j^k\frac{d^kF(\omega)}{d\omega^k}$ convolution
$$\int_{-\infty}^\infty f(\tau)g(t-\tau)\ d\tau \qquad F(\omega)G(\omega)$$
 multiplication
$$f(t)g(t) \qquad \frac{1}{2\pi}\int_{-\infty}^\infty F(\widetilde{\omega})G(\omega-\widetilde{\omega})\ d\widetilde{\omega}$$

Examples

sign function:
$$f(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases}$$

write f as f(t)=-1+2g(t), where g is a unit step at t=0, and apply linearity

$$F(\omega) = -2\pi\delta(\omega) + 2\pi\delta(\omega) + \frac{2}{j\omega} = \frac{2}{j\omega}$$

sinusoidal signal: $f(t) = \cos(\omega_0 t + \phi)$

write f as

$$f(t) = \cos(\omega_0(t + \phi/\omega_0))$$

and apply time shift property:

$$F(\omega) = \pi e^{j\omega\phi/\omega_0} \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right)$$

pulsed cosine:
$$f(t) = \begin{cases} 0 & |t| > 10 \\ \cos t & -10 \le t \le 10 \end{cases}$$

write f as a product $f(t) = g(t) \cos t$ where g is a rectangular pulse of width 20 (see page 12-7)

$$\mathcal{F}(\cos t) = \pi \delta(\omega - 1) + \pi \delta(\omega + 1), \quad \mathcal{F}(g(t)) = \frac{2\sin 10\omega}{\omega}$$

now apply multiplication property

$$F(j\omega) = \int_{-\infty}^{\infty} \frac{\sin 10\widetilde{\omega}}{\widetilde{\omega}} \left(\delta(\omega - \widetilde{\omega} - 1) + \delta(\omega - \widetilde{\omega} + 1)\right) d\widetilde{\omega}$$
$$= \frac{\sin(10(\omega - 1))}{\omega - 1} + \frac{\sin(10(\omega + 1))}{\omega + 1}$$

The inverse Fourier transform

if $F(\omega)$ is the Fourier transform of f(t), *i.e.*,

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

then

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

let's check

$$\frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} \left(\int_{\tau=-\infty}^{\infty} f(\tau) e^{-j\omega \tau} \right) e^{j\omega t} d\omega
= \frac{1}{2\pi} \int_{\tau=-\infty}^{\infty} f(\tau) \left(\int_{\omega=-\infty}^{\infty} e^{-j\omega(\tau-t)} d\omega \right) d\tau
= \int_{-\infty}^{\infty} f(\tau) \delta(\tau - t) d\tau
= f(t)$$