EE107 Spring 2019
Lecture 2
MCUs and IO

Embedded Networked Systems

Sachin Katti

*slides adapted from Aaron Schulman’s CSE190

Reading for next week

e Posted on course website — Please skim.
— “ARM Cortex-M for Beginners”

WHITE PAPER ARM

Microcontroller

Cortex-MO0+ processor
Breakpoint
Debug Unit (BP)
Connector Processor Core
Data Watchpoint
I

Serial Wire debug Unit (DW)
OF]
JTAG

-

| Internal bus
, .

Trace I
bridge Information

- L

Eis

Peripherals

Introduction to Microcontrollers

MCU market in loT applications compared to markets outside of loT

18,000 - - 16%
16,000 L 14%
14,000 _
12,000
4 - 10%
§ 10,000 -
@ [8%
8,000
6,000
4,000
2,000
0 .
2011 2012 2013 2014 2015 2016 2017 2018 2019
Calendar Year
s (0T Applications s Non-loT Applications —— Penetration Rate

Source: IHS

© 2015 IHS

Introduction to Microcontrollers

* A microcontroller (MCU) is a small computer on
a single integrated circuit consisting of a
relatively simple central processing unit (CPU)
combined with peripheral devices such as
memories, |/O devices, and timers.

— By some accounts, more than half of all CPUs sold
worldwide are microcontrollers

Die shot of a microcontroller

STANDARD CELL AREA

* HCSO8 CORE
«IC

1 = KEBI
» SCI (2)
* SPI
= TIMER/PWM 1 (5 CH)
* TIMER/PWM 2 (3 CH)

Microcontroller VS Microprocessor

* A microcontroller is a small computer on a
single integrated circuit containing a processor
core, memory, and programmable
input/output peripherals.

* A microprocessor incorporates the functions
of a computer’s central processing unit (CPU)
on a single integrated circuit.

Microcontroller VS Microprocessor

==,
~\T /-

B

7 Microcontroller

-
-
-/

&
AN

Types of Processors

* |n general-purpose computing, the variety of
instruction set architectures today is limited, with

the Intel x86 architecture overwhelmingly
dominating all.
* There is no such dominance in embedded

computing. On the contrary, the variety of
processors can be daunting to a system designer.

* Things that matter

— Peripherals, Concurrency & Timing, Clock Rates,
Memory sizes (SRAM & flash), Package sizes

Types of Microcontrollers

Microcontrollers

Bits

8

rchitecture

Memory/devices Instruction set Memory a
16 32 Embedded External CISC RISC Princeton
Family
8051 Motorola PIC Texas National ARM others
Intel Atmel Dallas Phillips Siemens

Harvard

How to choose MCU for our project?

* What metrics we need to consider?
— Power consumption
— Clock frequency
— 1O pins
— Memory
— Internal functions

— Others

How to choose MCU for our project?

e What metrics we need to consider?

— Power consumption

* We cannot afford powerful MCU because the power budget of the
system is 0.2mA (assuming running for a month on 150mAh battery).

— Clock frequency
e kHz is too slow...
e 100MHz is over kill...

— 10 pins

 Lots of peripherals - Image sensor, UART debugger, SD card, DAC,
ADC, microphone, LED

How to choose MCU for our project?

 \WWhat metrics we need to consider?

— Memory

* We need to have sufficient memory for storing sensor
data

— Internal functions

* Migrating data from the sensor to the radio (DMA)

How to choose MCU for our project?

* Clock frequency

— kHz is too slow

* Image sensor clock rate is “4MHz

— 100MHz is too fast

* Power consumption is high

— Several MHz would be ideal

How to choose MCU for our project?

* |O pins

— Interfacing sensors, UART debugger, SD card, DAC,
ADC, LED

— We need a large number of IO pins

— We need various types of IO pins

* This is not a problem for FPGA. Why?

How to choose MCU for our project?

* Memory

— Store image sensor data
 360*%240*8=84.3kB = 675kbits

— What types of memory are available on an MCU?

* Internal memory: RAM, too small 0.5~32kB
* External memory — Flash: high power consumption, ~5mA for

read and ~10mA for erase

* External memory - Ferroelectric RAM: low power

consumption, ~¥1.5mA for read and write @40MHz, expensive

The MCU used in our projects

Core Processor

Core Size

Speed

Connectivity
Paripherals

Number of 1O
Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vee/Vdd)
Data Converters
Osclllator Type
Operating Tomperature
Package / Cane

Supplier Device Package

What operations does software
need to perform on peripherals?

1. Get and set parameters
2. Receive and transmit data
3. Enable and disable functions

How can we imagine providing
this interface to software?

1. Specialized CPU instructions (x86 in/out)

Port 1/O

Devices registers mapped onto “ports”; a
separate address space

memory I/0 ports

Use special I/O instructions to read/write ports

Protected by making I/O instructions available
only in kernel/supervisor mode

Used for example by IBM 360 and successors

How can we imagine providing
this interface to software?

1. Specialized CPU instructions (x86 in/out)
2. Accessing devices like they are memory

Memory Mapped 10

* Device registers mapped into regular address

space

memory
memory

* Use regular move (assignment) instructions to
read/ write registers

* Use memory protection mechanism to protect
device registers

Why MMIO for embedded systems?

e Ports I/O:
— special /O instructions are CPU dependent

* Memory mapped I/0O:

— memory protection mechanism allows greater
flexibility than protected instructions

— may use all memory reference instructions for I/0

Reading and writing with MMIO is not
like talking to RAM

MMIO reads and writes registers

Reads and write to registers can cause
peripherals to execute a function

By reading data, it may cause the hardware to do

something

— E.g., Clear the interrupt flags, get the next BYTE on
UART

By writing data, it may cause the hardware to do

something with it

— E.g., Send this data over the UART bus

GPIOs are important in our project

e GPIOs are not only used for blinking LEDs

* Passing messages

— Interrupt the radio for transmitting the data
— Read pin status to receive configuration messages

e Debugging
— Did | execute my interrupt service routine?
— Is the timer running as expected?

— Why using GPI10?
* GPIO ops are lightweight

Topology of a GPIO pin

Functional Description
Figure 23-2. Overview of the PORT

APB Bus

Synchronizer

Input to Other Modules Analog Input/Output

GPIO Configurations

23.6.3.1 Pin Configurations Summary
Table 23-2. Pin Configurations Summary

DIR INEN PULLEN ouT Configuration

0 0 0 X Reset or analog I/O: all digital disabled
0 0 1 0 Pull-down; input disabled

0 0 1 1 Pull-up; input disabled

0 1 0 X Input

0 1 1 0 Input with pull-down

0 1 1 1 Input with pull-up

1 0 X X Output; input disabled

1 1 X X Output; input enabled

A fun extra feature: Drive Strength

Conditions

Symbol Parameter
loL Output low-level
current

low Output high-level
current

Vpo=1.62V-3V,
PORT.PINCFG.DRVSTR=0

Vpo=3V-3.63V,
PORT.PINCFG.DRVSTR=0

Vpo=1.62V-3V,
PORT.PINCFG.DRVSTR=1

Vpo=3V-3.63V,
PORT.PINCFG.DRVSTR=1

Vpo=1.62V-3V,
PORT.PINCFG.DRVSTR=0

Vpo=3V-3.63V,
PORT.PINCFG.DRVSTR=0

Vpp=1.62V-3V,
PORT.PINCFG.DRVSTR=1

Vpo=3V-3.63V,
PORT.PINCFG.DRVSTR=1

10

0.70

