
Embedded Networked Systems
Sachin Katti

EE107 Spring 2019
Lecture 2

MCUs and IO

*slides adapted from Aaron Schulman’s CSE190



Reading for next week
• Posted on course website – Please skim.
– “ARM Cortex-M for Beginners”



Introduction to Microcontrollers



Introduction to Microcontrollers
• A microcontroller (MCU) is a small computer on 

a single integrated circuit consisting of a 
relatively simple central processing unit (CPU) 
combined with peripheral devices such as 
memories, I/O devices, and timers. 
– By some accounts, more than half of all CPUs sold 

worldwide are microcontrollers



Die shot of a microcontroller



Microcontroller VS Microprocessor
• A microcontroller is a small computer on a 

single integrated circuit containing a processor 
core, memory, and programmable 
input/output peripherals.

• A microprocessor incorporates the functions 
of a computer’s central processing unit (CPU) 
on a single integrated circuit.



Microcontroller VS Microprocessor



Types of Processors
• In general-purpose computing, the variety of 

instruction set architectures today is limited, with 
the Intel x86 architecture overwhelmingly 
dominating all. 

• There is no such dominance in embedded 
computing. On the contrary, the variety of 
processors can be daunting to a system designer. 

• Things that matter
– Peripherals, Concurrency & Timing, Clock Rates, 

Memory sizes (SRAM & flash), Package sizes



Types of Microcontrollers



How to choose MCU for our project?

• What metrics we need to consider?
– Power consumption

– Clock frequency

– IO pins

–Memory

– Internal functions

– Others



How to choose MCU for our project?

• What metrics we need to consider?

– Power consumption

• We cannot afford powerful MCU because the power budget of the 

system is 0.2mA (assuming running for a month on 150mAh battery). 

– Clock frequency

• kHz is too slow…

• 100MHz is over kill...

– IO pins

• Lots of peripherals - Image sensor, UART debugger, SD card, DAC, 

ADC, microphone, LED



How to choose MCU for our project?

• What metrics we need to consider?
–Memory
• We need to have sufficient memory for storing sensor 

data

– Internal functions
• Migrating data from the sensor to the radio (DMA)



How to choose MCU for our project?

• Clock frequency
– kHz is too slow
• Image sensor clock rate is ~4MHz

– 100MHz is too fast
• Power consumption is high

– Several MHz would be ideal



How to choose MCU for our project?

• IO pins
– Interfacing sensors, UART debugger, SD card, DAC, 

ADC, LED

–We need a large number of IO pins

–We need various types of IO pins
• This is not a problem for FPGA. Why?



How to choose MCU for our project?

• Memory

– Store image sensor data
• 360*240*8=84.3kB = 675kbits

– What types of memory are available on an MCU?
• Internal memory: RAM, too small 0.5~32kB

• External memory – Flash: high power consumption, ~5mA for 
read and ~10mA for erase

• External memory - Ferroelectric RAM: low power 
consumption, ~1.5mA for read and write @40MHz, expensive



The MCU used in our projects



What operations does software 
need to perform on peripherals?

1. Get and set parameters
2. Receive and transmit data

3. Enable and disable functions



How can we imagine providing 
this interface to software?

1. Specialized CPU instructions (x86 in/out)



Port I/O
• Devices registers mapped onto “ports”; a 

separate address space 

• Use special I/O instructions to read/write ports 
• Protected by making I/O instructions available 

only in kernel/supervisor mode 
• Used for example by IBM 360 and successors 

Accessing Device Controller Registers

• To communicate with the CPU, each controller have a few 
registers where operations are specified

• Additionally, some devices need a memory buffer

• Two alternatives: port I/O and memory mapped I/O

Port I /O

• Devices registers mapped onto “ports”; 
a separate address space

• Use special I/O instructions to read/write ports

• Protected by making I/O instructions available only 
in kernel/supervisor mode

• Used for example by IBM 360 and successors

memory I/O ports



How can we imagine providing 
this interface to software?

1. Specialized CPU instructions (x86 in/out)
2. Accessing devices like they are memory



Memory Mapped IO
• Device registers mapped into regular address 

space 

• Use regular move (assignment) instructions to 
read/ write registers 

• Use memory protection mechanism to protect 
device registers

Memory Mapped I/ O

• Device registers mapped into regular address space

• Use regular move (assignment) instructions to 
read/ write registers

• Use memory protection mechanism to protect 
device registers

• Used for example by PDP-11

memory 
mapped I/O

memory

Memory Mapped I/O vs. Port I/O

• Ports: 
– special I/O instructions are CPU dependent

• Memory mapped: 
+ memory protection mechanism allows greater flexibility than 

protected instructions
+ may use all memory reference instructions for I/O
– cannot cache device registers 

(must be able to selectively disable caching)
– I/O devices do not see the memory address - how to route only the 

right memory address onto slower peripheral buses (may initiate 
bridge at setup time to transfer required address areas)

• Intel Pentium use a hybrid
– address 640K to 1M is used for memory mapped I/O data buffers
– I/O ports 0 to 64K is used for device control registers



Why MMIO for embedded systems?

• Ports I/O:
– special I/O instructions are CPU dependent 

• Memory mapped I/O:
–memory protection mechanism allows greater 

flexibility than protected instructions 
–may use all memory reference instructions for I/O



Reading and writing with MMIO is not 
like talking to RAM

• MMIO reads and writes registers 
• Reads and write to registers can cause 

peripherals to execute a function
• By reading data, it may cause the hardware to do 

something
– E.g., Clear the interrupt flags, get the next BYTE on 

UART
• By writing data, it may cause the hardware to do 

something with it
– E.g., Send this data over the UART bus



GPIOs are important in our project
• GPIOs are not only used for blinking LEDs

• Passing messages
– Interrupt the radio for transmitting the data
– Read pin status to receive configuration messages

• Debugging
– Did I execute my interrupt service routine?
– Is the timer running as expected?
– Why using GPIO?

• GPIO ops are lightweight



Topology of a GPIO pin



GPIO Configurations



A fun extra feature: Drive Strength


