
Embedded Networked Systems
Sachin Katti

EE107 Spring 2019
Lecture 3

Time and Interrupts

*slides adapted from Aaron Schulman’s CSE190

What time is the Apple Watch tracking?

Clock (all the time | sec)
Alarm (all the time | sec)
Stopwatch (when open | msec)
Sync (all the time | sec)
UI (when open | msec)
Buzzer (when buzzing | msec)
WiFi (when communicating | usec)

How often | Granularity

Why do we need timers?

In this project, we need timers for
• Determining when to change the bits
– 20 Hz means change bits every 50 milliseconds
– How to measure 50 ms?
– Option 1: Use the timer hardware to let you know

when 50 ms has passed.
– Option 2: Count how many processor cycles it would

take to equal 50 ms.

Why do we need timers?

• In general, why do we need timers?
–What time is it now?
– How much time has elapsed since I last checked?
– Let me know when this much time passes.
–When did this external input occur?

What peripherals do we use to track time?

(all the time | sec) - [Alarm, Sync]
32-bit Real time clock (RTC) peripheral with interrupts

(when open/buzzing | msec) - [Stopwatch, UI, Buzzer]
Processor’s timer peripheral with interrupts

(when communicating | usec) - [WiFi]
WiFi chip’s internal timer peripheral with interrupts

What peripherals do we use to track time?

(all the time | sec) - [Alarm, Sync]
32-bit Real time clock (RTC) peripheral with interrupts

(when open/buzzing | msec) - [Stopwatch, UI, Buzzer]
Processor’s timer peripheral with interrupts

(when communicating | usec) - [WiFi]
WiFi chip’s internal timer peripheral with interrupts

The term is used to avoid confusion with ordinary hardware clocks which are only
signals that govern digital electronics, and do not count time in human units.

The internal structure of a timer peripheral

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Device Drivers
Software
Hardware

Internal
External

R/W R/W R/W

Figure adapted from Prabal Dutta’s EE373 slides

Timer Abstractions and Virtualization

Application Software

Frequency depends on the attached oscillator device

The purpose of the prescaler is to allow the timer to be clocked at the rate a user desires.

How does the number in the counter
register correspond to wall clock time?

Frequency (Hz) = Cycles / Second

1 / Frequency (Hz) = Seconds / Cycle

The counter is incremented
once per cycle.

You read 100 from the counter register which is clocked by a 1 MHz oscillator.
How much time has passed since the counter was reset?

How should we choose the OSC
frequency?

1MHz OSC: resolution = 1 / 1e6 second = 1us
10MHz OSC: resolution = 1/10e6 second = 0.1us

For timers, there will often be a tradeoff between resolution (high
resolution requires a high clock rate) and range (high clock rates
cause the timer to overflow more quickly).

16-bits timer:
1MHz OSC: max range = 1 / 1e6 * 2^16 = 65.536ms
10MHz OSC: max range = 1/10e6 * 2^16 = 6.5536ms

How does a firmware developer use the
compare register?

1. Stop the timer
2. Set the compare register with

the time it should fire
3. Reset the counter
4. Start the timer
5. Wait for the counter to reach

the compare
(via interrupt or check status
reg)

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Device Drivers
So#ware(
(

Hardware(

Internal(
(

External(

R/W(R/W(R/W(

Timer Abstractions and Virtualization

Application Software

How does a firmware developer use
the capture register?

1. Stop the timer
2. Setup the timer to capture when a

particular event occurs (e.g.,
change of GPIO pin)

3. Reset the counter
4. Start the timer
5. Wait for the counter to reach a

capture event
(via interrupt or check status reg)

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Device Drivers
So#ware(
(

Hardware(

Internal(
(

External(

R/W(R/W(R/W(

Timer Abstractions and Virtualization

Application Software

The internal structure of a
Real Time Clock (RTC)

Figure adapted from Prabal Dutta’s EE373 slides

Note: RTCs have their
own oscillator.

Why is it
32,768 kHz?

The internal structure of a
Real Time Clock (RTC)

Figure adapted from Prabal Dutta’s EE373 slides

Note: RTCs have their
own oscillator.

Why is it
32,768 kHz?

The reason the 32,768 Hz resonator has become so common is due to a
compromise between the large physical size of low frequency crystals and the
large current drain of high frequency crystals.

Interrupts
How peripherals notify the CPU that

their state just changed.

Example: A button just pressed

Interrupts
• Definition
– An event external to the currently executing process

that causes a change in the normal flow of instruction
execution; usually generated by hardware devices
external to the CPU.

– Key point is that interrupts are asynchronous w.r.t.
current process

– Typically indicate that some device needs service

Slides from Angela Demke Brown CSC 469H1F

Why interrupts?

• MCUs have many external peripherals
– Keyboard, mouse, screen, disk drives, scanner,

printer, sound card, camera, etc.
– These devices occasionally need CPU service
• But we can’t predict when

–We want to keep the CPU busy (or asleep)
between events

– Need a way for CPU to find out devices need
attention

Slides from Angela Demke Brown CSC 469H1F

Possible Solution: Polling
• CPU periodically checks each device to see if it

needs service
– “Polling is like picking up your phone every few

seconds to see if you have a call. …”

Slides from Angela Demke Brown CSC 469H1F

Possible Solution: Polling
• CPU periodically checks each device to see if it

needs service
– “Polling is like picking up your phone every few

seconds to see if you have a call. …”
– Cons: takes CPU time even when no requests pending
– Pros: can be efficient if events arrive rapidly

Slides from Angela Demke Brown CSC 469H1F

Alternative: Interrupts
• Give each device a wire (interrupt line) that it can

use to signal the processor

Peripheral)2)

Peripheral)3)

Peripheral)4)

Peripheral)1)

!  Interrupt(

!(Peripheral(P(sends(int(X(("(Execute(P’s(X(handler(

Interrupt)
controller) CPU)

Alternative: Interrupts
• Give each device a wire (interrupt line) that it can

use to signal the processor
–When interrupt signaled, processor executes a

routine called an interrupt handler to deal with the
interrupt

– No overhead when no requests pending

How do interrupts work?

Peripheral 2

Peripheral 3

Peripheral 4

Peripheral 1

è Interrupt
¢ Clear interrupt

è Peripheral P sends int X
ç ACK P’s int X

¢ Execute P’s X handler
ç ACK P’s int X

Interrupt
controller

What is the benefit of having
a separate controller for interrupts?

CPU

The Interrupt controller

Fun fact: Interrupt
controllers used to be

separate chips!

Intel 8259A IRQ chip
Image by Nixdorf - Own work

• Handles simultaneous interrupts
o Receives interrupts while the CPU

handles interrupts
• Maintains interrupt flags

o CPU can poll interrupt flags instead
of jumping to a interrupt handler

• Multiplexes many wires to few wires
• CPU doesn’t need a interrupt wire

to each peripheral

How to use interrupts

1. Tell the peripheral which interrupts you want it to output.

2. Tell the interrupt controller what your priority is for this interrupt.

3. Tell the processor where the interrupt handler is for that interrupt.

4. When the interrupt handler fires, do your business then clear the int.

CPU execution of interrupt handlers
INTERRUPT
1. Wait for instruction to end
2. Push the program counter to the stack
3. Push all active registers to the stack

4. Jump to the interrupt handler in the

interrupt vector
5. Pop the program counter off of the stack

