EE107 Spring 2019
Lecture 4 o
Serial Busses

Embedded Networked Systems

Sachin Katti

*slides adapted from Aaron Schulman’s CSE190

Serial Buses in our project

* UART serial bus for sending debug
messages to your development host

* |2C serial bus for communicating with
sensors (e.g., the accelerometer)

* SPI serial bus for communicating with
the Bluetooth Low Energy radio

Serial Interfaces

traps &
exceptions

C
Assembly

1d d .
op Software svch str (weite) achine Code
Hardware CPU
Internal
External

Parallel Bus VS Serial Bus

OUTO

OUT1—Ed-(IN1
OUT2[—€2-IN2
OUT3E-IN3 ouT
OUT4E)-(IN4 CLK
OUTSHE3-|INS
OUT6EHE9-(ING
OUTZ62-(IN7

CLK |)|CLK

S|m1pI|st|c View of Serial Port Operation
ransmltter

Interrupt raised when
Transmitter (Tx) is empty

Byte has been transmitted
and next byte ready for loading

Receiver

n Lttt 1
7L L L L L LT
n2l6171 1 1L L 1L 1
ne3l00el7L L1 1]
neal415160710 | L 1
n+5|3141516171 | |
n+6) 213141516171 | |
n+7L1121314]15]6]7]
n+8)0]1]2]3]4]5]6]7]

Interrupt raised when
Receiver (Rx) is full

Byte has been received
and is ready for reading

Serial Bus Interface Motivations

Motivation

— Without using a lot of I/0 lines
* |/Olines require 1/0 pads which cost $SS and size
* |/Olines require PCB area which costs $SS and size

— Connect different systems together

* Two embedded systems
* Adesktop and an embedded system

— Connect different chips together in the same embedded system
* MCU to peripheral
 MCU to MCU

— Often at relatively low data rates

— But sometimes at higher data rates

So, what are our options?
— Universal Synchronous/Asynchronous Receiver Transmitter
— Also known as USART (pronounced: “you-sart”)

Serial Bus Design Space

Number of wires required?
Asynchronous or synchronous?

How fast can it transfer data?
Can it support more than two endpoints?

Can it support more than one master (i.e. txn
initiator)?

How do we support flow control?
How does it handle errors/noise?
How far can signals travel?

Serial Bus Examples

Type #Devices | Speed Distance
(kbps) (ft)

RS232 Peer Full
RS422 A Multi-drop Half 10 10000 4000 1+
RS485 A Multi-point Half 32 10000 4000 2
12C S Multi-master Half ? 3400 <10 2
SPI S Multi-master Full ? >1000 <10 3+
Microwire S Master/slave Full ? >625 <10 3+

1-Wire A Master/slave half ? 16 1000 1+

UART Uses

e PCserial port is a UART!
e Serializes data to be sent over serial cable

— De-serializes received data

Serial
Serial Cable
Port

Serial

m g Cable
]

Device
Slides from BYU CS 224

UART Uses

* Used to be commonly used for internet access

Phone é
Line —=||

——

—="

]

Phone >

Serial Line
- Cable

Slides from BYU CS 224

UART

* Universal Asynchronous Receiver/Transmitter

* Hardware that translates between parallel and
serial forms

 Commonly used in conjunction with
communication standards such as EIA, RS-232,

RS-422 or RS-485

S -

c
__>
re
—

___Parallel
Serial

Protocol

e Each character is sent as
— a logic low start bit

— a configurable number of data bits (usually 7 or
8, sometimes 5)

— an optional parity bit
— one or more logic high stop bits
— with a particular bit timing (“baud”)

UART Example

e Send the ASCII letter ‘W’ (1010111)

T : Parity bit _
Lmelldlmg Start bit (odd parity) 70'3 bit
Mark }
1t 1 1 |lo|1]|o|1]O /‘
Space
s — — Line idling again

7 data bits - Least significant bit first

UART Hardware Connection

UART Character Reception

Start bit says a character is coming,
receiver resets its timers

Receiver should sample in middle of bits

Mark |

Space

Receiver uses a timer (counter) to tfime when it samples.

Transmission rate (i.e., bit width) must be known!
Slides from BYU CS 224

UART Character Reception

If receiver samples too quickly, see what happens...

Mark |

Space

Slides from BYU CS 224

UART Character Reception

If receiver samples too slowly, see what happens...

Mark

Space

Receiver resynchronizes on every start bit.
Only has to be accurate enough to read 9 bits.

Slides from BYU CS 224

UART Character Reception

* Receiver also verifies that stop bit is ‘1’
— If not, reports “framing error” to host system

* New start bit can appear immediately after
stop bit
— Receiver will resynchronize on each start bit

Let us design a UART transmitter

To host
system

A
[A

Send

[3usy

ParitySelect

Din -

UART
Transmitter

Dou’g

To serial
cable

Slides from BYU CS 224

Transmitter/System Handshaking

System asserts Send and holds it high when

it wants to send a byte

Send ~\\

Busy

UART asserts Busy signal in response

When UART has finished transfer, UART de-
asserts Busy signal

System de-asserts Send signal

K

Slides from BYU CS 224

Transmitter Block Diagram

To host
sysjlem NexiBit 300 HZ
N ResetTimer | Timer
Send
Transmitter B Count10 Mod10
State Increment | 0
Busy Machine ResetCounter, Counter
Shift
ParitySelect X Parity L oad . Dou’i
Generator R Shift
ParityBit Register To serial

Din - | cable

Slides from BYU CS 224

Discussion Questions

How fast can we run a UART?
What are the limitations?
Why do we need start/stop bits?

How many data bits can be sent?
— 19200 baud rate, no parity, 8 data bits, 1 stop bit

12C bus in our projects

e Communication with the accelerometer
— Read from the accelerometer
* Pros

— Simple wire connection

— Two wires bus that can connect multiple
peripherals with the MCU

* Cons
— Complexity is significantly higher

How to operate the accel?

Accel

register 1
register 2

https://www.youtube.com/watch?v=eqZgxR6eRjo

|12C Details

e Two lines

— Serial data line (SDA)
— Serial clock line (SCL)

* Only two wires for connecting multiple
devices

|12C Details

 Each I2C device recognized by a unique address
e Each I2C device can be either a transmitter or receiver

e |2C devices can be masters or slaves for a data transfer

— Master (usually a microcontroller): Initiates a data transfer
on the bus, generates the clock signals to permit that
transfer, and terminates the transfer

— Slave: Any device addressed by the master at that time

Bit Transfer on the I2C Bus

* |n normal data transfer, the data line only changes state
when the clock is low

SDA /

SCL \

Data line stable; Change
Data valid of data
allowed

Start and Stop Conditions

A transition of the data line while the clock line is high is

defined as either a start or a stop condition.

Both start and stop conditions are generated by the bus

master

The bus is considered busy after a start condition, until a

stop condition occurs

[\

ST

Start
Condition

|

| -

| / I SDA
| I

| I

| | _

: : sCL
| P

Stop

Condition

12C Addressing

Each node has a unique 7 (or 10) bit address

Peripherals often have fixed and programmable
address portions

Addresses starting with 0000 or 1111 have special
functions:-

— 0000000 Is a General Call Address
— 0000001 Is a Null (CBUS) Address
— 1111XXX Address Extension

— 1111111 Address Extension — Next Bytes are the Actual
Address

|2C-Connected System

MICRO- LCD STATIC
CONTROLLER DRIVER RAM OR
A EEPROM

SDA

SCL

—

MICRO-
CONTROLLER
ADC B

Example 12C-connected system with two microcontrollers
(Source: 12C Specification, Philips)

Master-Slave Relationships

Who is the master?
— master-transmitters

— master-receivers

Suppose microcontroller A wants to send information to microcontroller B
— A(master) addresses B (slave)
— A (master-transmitter), sends data to B (slave-receiver)

— Aterminates the transfer.

If microcontroller A wants to receive information from microcontroller B
— A(master) addresses microcontroller B (slave)

— A (master-receiver) receives data from B (slave-transmitter)
— Aterminates the transfer

In both cases, the master (microcontroller A) generates the timing and terminates
the transfer

Exercise: How fast can 12C run?

VDD

Master

_.A,__.?

y 1
i

Percent of supply voltage

SDA

SCL

o

Ro[] PD[T]

.

Capacitor charging in RC circuit

100.0%

90.0%

80,0%
70,0%
60,0%
50,0%
20.0%

30,0%

it

86,5%

Pl

95,0% 98.2%

« How fast can you run it?
e Assumptions
Slave (45x5D0) , ,
T - 0’s are driven
— - 1’s are “pulled up”
e : :
! « Some working figures
- Rp=10kQ
- Ccap = 100 pF
- Vobp=5YV
- Vin_high = 3.5V
99,3 « Recall for RC circuit

3t 4t

Charging time (t=RC)

- Vcap(t) = Vop(1 -e'”T)
- Where t=RC

Exercise: Bus bit rate vs Useful data rate

o An I2C “transactions” involves the following bits
- <S><A6:A0><R/W><A><D7:D0><A><F>
e Which of these actually carries useful data?
- <5><A6:A0><R/W><A><D7:D0><A><F>
e So, if a bus runs at 400 kHz
- What is the clock period?
- What is the data throughput (i.e. data-bits/second)?
- What is the bus “efficiency”?

Serial Peripheral Interconnect (SPI)

Another kind of serial protocol in embedded systems (proposed by
Motorola)

Four-wire protocol
— SCLK — Serial Clock
— MOSI/SIMO — Master Output, Slave Input
— MISO/SOMI — Master Input, Slave Output
— SS — Slave Select

Single master device and with one or more slave devices)
Higher throughput than 12C and can do “stream transfers

No arbitration required
But

— Requires more pins
— Has no hardware flow control

— No slave acknowledgment (master could be talking to thin air and not even
know it)

What is SPI?

* Serial Bus protocol
» Fast, Easy to use, Simple
* Everyone supports it

Integrated Controller

owerPs™

75H6051 03BM
1F11D00RPB KOREA
[BM39 STB02100 PBC 22C

SPI Basics

A communication protocol using 4 wires
— Also known as a 4 wire bus

Used to communicate across small distances

Multiple Slaves, Single Master

Synchronized

SPI Capabilities

Always Full Duplex

— Communicating in two directions at the same time
— Transmission need not be meaningful

Multiple Mbps transmission speed
Transfers data in 4 to 16 bit characters

Multiple slaves
— Daisy-chaining possible

38

SPI Protocol

Wires:

— Master Out Slave In (MOSI)
— Master In Slave Out (MISO) sl

— System Clock (SCLK) -

SCLK
MOSI
MISO
SS1
552
SS3

— Slave Select 1...N

Master Set Slave Select low

Master Generates Clock

Shift registers shift in and out data

SCLK
MOSI
MISO
55

SPI
Slave

SCLK
MOSI
MISO

SPI
Slave

ll v Yl y.vy

v

SCLK
MOSI
MISO
55

SPI
Slave

SPI Wires in Detail

MOSI — Carries data out of Master to Slave

MISO — Carries data from Slave to Master

— Both signals happen for every transmission

SS_BAR — Unique line to select a slave

SCLK — Master produced clock to synchronize
data transfer

_| mosI
MISO

» SCLK
»{ SS_BAR

Master r Slave

SPI uses a “shift register” model of

communications

Master Slave
Memor Memor
Y SCLK' Y
ol1|2|3]4]5]6]|7 Mosl W [olx]z]z]2[5]6]
* MISO

Master shifts out data to Slave, and shifts in data from Slave

http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png

40

41

SPI QOmmunLcation

SCK > SCK
MOSI > MOsI
MISO + MISO

SS SsS
Master to Slave Slave to Master
dle xt byt
sec (fILLLLALE LU
Clock from
-.‘m : : H : : ’ H H ’ . ’ ’ : ' H
01234567 01234567
MOSI I
Master-Out . N :
Savedn 11001010
Ox53 = ASCII 'S’
MISO 3 I 1
Master-in 1 Fn] 1. : By
Save-Out 01100010
Ox46 = ASCII 'F'
ss I ‘
Slave-Select i

SPI clocking: there is no “standard way”~

« Four clocking “modes”

— Two phases
— Two polarities

 Master and selected slave must be in the same mode

« During transfers with slaves A and B, Master must
— Configure clock to Slave A’ s clock mode

— Select Slave A

— Do transfer

— Deselect Slave A

— Configure clock to Slave B’ s clock mode

— Select Slave B
— Do transfer
— Deselect Slave B

* Master reconfigures clock mode on-the-fly!

42

SPI timing diagram

Iransfer Cycle
1 2 3 4 5 6 7 8

CKPHAD [I R e)

CKPOL=0 [mulB—] [mell | [memiS | (|

CKPHA~I

ﬁﬁ:ﬁ}{'\'i,', | | s [e | . | |
CKPOL~1 NSRS [~ (MSSINNN| [(WSS [(S | |

MosMISO—=CC Mse X X) B 18 M LSB
S) r
Sampling Points ’ f * * ’ ’ ’ ’

Timing Diagram — Showing Clock polarities and phases
http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif

43

SPI Pros and Cons

* Pros:

— Fast and easy
 Fast for point-to-point connections

* Easily allows streaming/Constant data inflow
* No addressing/Simple to implement
— Everyone supports it

e Cons:

— SS makes multiple slaves very complicated
— No acknowledgement ability

— No inherent arbitration
— No flow control

