
Embedded Networked Systems
Sachin Katti

EE107 Spring 2019
Lecture 4

Serial Busses

*slides adapted from Aaron Schulman’s CSE190

Serial Buses in our project

• UART serial bus for sending debug
messages to your development host

• I2C serial bus for communicating with
sensors (e.g., the accelerometer)

• SPI serial bus for communicating with
the Bluetooth Low Energy radio

2

Serial Interfaces

3

Timers

CPU

Software
Hardware

Internal
External

Input

System Buses
AHB/APB

ldr (read)
str (write)

ISA

USART DAC/ADC

Internal
&

External
Memory

GPIO/INT

Output

Interru
pt

Compare

Cap
ture I2C SPI

UART
ADC

DAC

C
Assembly

Machine Code

Interrupts

interrupts

EM
C

SVC#

fault

traps &
exceptions

INT#

Parallel Bus VS Serial Bus

Simplistic View of Serial Port Operation

7
6 7
5 6 7
4 5 6 7
3 4 5 6 7
2 3 4 5 6 7
1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

n
n+1
n+2
n+3
n+4
n+5
n+6
n+7
n+8

Transmitter Receiver
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
0 1 2 3 4 5

0 1 2 3 4
0 1 2 3

0 1 2
0 1

0

n
n+1
n+2
n+3
n+4
n+5
n+6
n+7
n+8

Interrupt raised when
Transmitter (Tx) is empty
a Byte has been transmitted
and next byte ready for loading

Interrupt raised when
Receiver (Rx) is full
a Byte has been received
and is ready for reading

Serial Bus Interface Motivations
• Motivation

– Without using a lot of I/O lines
• I/O lines require I/O pads which cost $$$ and size
• I/O lines require PCB area which costs $$$ and size

– Connect different systems together
• Two embedded systems
• A desktop and an embedded system

– Connect different chips together in the same embedded system
• MCU to peripheral
• MCU to MCU

– Often at relatively low data rates
– But sometimes at higher data rates

• So, what are our options?
– Universal Synchronous/Asynchronous Receiver Transmitter
– Also known as USART (pronounced: “you-sart”)

6

Serial Bus Design Space

• Number of wires required?
• Asynchronous or synchronous?
• How fast can it transfer data?
• Can it support more than two endpoints?
• Can it support more than one master (i.e. txn

initiator)?
• How do we support flow control?
• How does it handle errors/noise?
• How far can signals travel?

7

Serial Bus Examples
S/A Type Duplex #Devices Speed

(kbps)
Distance

(ft)
Wires

RS232 A Peer Full 2 20 30 2+

RS422 A Multi-drop Half 10 10000 4000 1+

RS485 A Multi-point Half 32 10000 4000 2

I2C S Multi-master Half ? 3400 <10 2

SPI S Multi-master Full ? >1000 <10 3+

Microwire S Master/slave Full ? >625 <10 3+

1-Wire A Master/slave half ? 16 1000 1+

UART Uses
• PC serial port is a UART!
• Serializes data to be sent over serial cable
– De-serializes received data

20 UART
Page 3

ECEn/CS 224 © 2003-2006
BYU

UART Uses

• PC serial port is a UART!
• Serializes data to be sent over serial cable

– De-serializes received data
Serial
Cable

Serial
Cable

Device

Serial
Port

Serial
Port

Slides from BYU CS 224

UART Uses
• Used to be commonly used for internet access

20 UART
Page 5

ECEn/CS 224 © 2003-2006
BYU

UART Uses

• Used to be commonly used for internet access

Serial
Cable

Phone
Line

Phone
Line

Modem

InternetInternet

Slides from BYU CS 224

UART
• Universal Asynchronous Receiver/Transmitter
• Hardware that translates between parallel and

serial forms
• Commonly used in conjunction with

communication standards such as EIA, RS-232,
RS-422 or RS-485

11

Protocol
• Each character is sent as
– a logic low start bit
– a configurable number of data bits (usually 7 or

8, sometimes 5)
– an optional parity bit
– one or more logic high stop bits
– with a particular bit timing (“baud”)

12

UART Example
• Send the ASCII letter ‘W’ (1010111)

20 UART
Page 16

ECEn/CS 224 © 2003-2006
BYU

UART Transmission Example

• Send the ASCII letter ‘W’ (1010111)

1

Line idling Start bit Parity bit
(odd parity) Stop bit

Line idling again

Mark

Space

7 data bits – Least significant bit first

1 1 0 1 0 1 0

UART Hardware Connection

UART Character Reception

20 UART
Page 17

ECEn/CS 224 © 2003-2006
BYU

Mark

Space

UART Character Reception

Receiver should sample in middle of bits

Start bit says a character is coming,
receiver resets its timers

Receiver uses a timer (counter) to time when it samples.
Transmission rate (i.e., bit width) must be known!

Slides from BYU CS 224

UART Character Reception

20 UART
Page 18

ECEn/CS 224 © 2003-2006
BYU

Mark

Space

UART Character Reception

If receiver samples too quickly, see what happens…

Slides from BYU CS 224

UART Character Reception

20 UART
Page 19

ECEn/CS 224 © 2003-2006
BYU

Mark

Space

UART Character Reception

If receiver samples too slowly, see what happens…

Receiver resynchronizes on every start bit.
Only has to be accurate enough to read 9 bits.

Slides from BYU CS 224

UART Character Reception
• Receiver also verifies that stop bit is ‘1’
– If not, reports “framing error” to host system

• New start bit can appear immediately after
stop bit
– Receiver will resynchronize on each start bit

Let us design a UART transmitter

Slides from BYU CS 22420 UART
Page 25

ECEn/CS 224 © 2003-2006
BYU

System Diagram

Send

ParitySelect

Din 7

Busy

To host
system

DoutUART
Transmitter

To serial
cable

Transmitter/System Handshaking

Slides from BYU CS 224

• System asserts Send and holds it high when
it wants to send a byte

• UART asserts Busy signal in response
• When UART has finished transfer, UART de-

asserts Busy signal
• System de-asserts Send signal

20 UART
Page 26

ECEn/CS 224 © 2003-2006
BYU

Send

Busy

Transmitter/System Handshaking

• System asserts Send and holds it high when it wants to
send a byte

• UART asserts Busy signal in response
• When UART has finished transfer, UART de-asserts

Busy signal
• System de-asserts Send signal

Transmitter Block Diagram

20 UART
Page 27

ECEn/CS 224 © 2003-2006
BYU

Transmitter
State

Machine

Parity
Generator

Mod10
Counter

Shift
Register

300 HZ
Timer

Send

ParitySelect

NextBit

Din
ParityBit

Load

Shift

Dout

ResetTimer

Count10
Increment

7

Busy

Transmitter Block Diagram

ResetCounter

To serial
cable

To host
system

Slides from BYU CS 224

Discussion Questions
• How fast can we run a UART?
• What are the limitations?
• Why do we need start/stop bits?
• How many data bits can be sent?
– 19200 baud rate, no parity, 8 data bits, 1 stop bit

22

I2C bus in our projects
• Communication with the accelerometer
– Read from the accelerometer

• Pros
– Simple wire connection
– Two wires bus that can connect multiple

peripherals with the MCU

• Cons
– Complexity is significantly higher

How to operate the accel?

MCU

Accel
I2C

I2C
register 1
register 2
….

Springs

https://www.youtube.com/watch?v=eqZgxR6eRjo

I2C Details
• Two lines
– Serial data line (SDA)
– Serial clock line (SCL)

• Only two wires for connecting multiple
devices

I2C Details
• Each I2C device recognized by a unique address

• Each I2C device can be either a transmitter or receiver

• I2C devices can be masters or slaves for a data transfer
– Master (usually a microcontroller): Initiates a data transfer

on the bus, generates the clock signals to permit that
transfer, and terminates the transfer

– Slave: Any device addressed by the master at that time

27 of 40

Bit Transfer on the I2C Bus
• In normal data transfer, the data line only changes state

when the clock is low

SDA

SCL
Data line stable;
Data valid

Change
of data
allowed

28 of 40

Start and Stop Conditions
• A transition of the data line while the clock line is high is

defined as either a start or a stop condition.
• Both start and stop conditions are generated by the bus

master
• The bus is considered busy after a start condition, until a

stop condition occurs

Start
Condition

Stop
Condition

SCL SCL

SDASDA

29 of 40

I2C Addressing
• Each node has a unique 7 (or 10) bit address

• Peripherals often have fixed and programmable
address portions

• Addresses starting with 0000 or 1111 have special
functions:-
– 0000000 Is a General Call Address
– 0000001 Is a Null (CBUS) Address
– 1111XXX Address Extension
– 1111111 Address Extension – Next Bytes are the Actual

Address

I2C-Connected System

Example I2C-connected system with two microcontrollers
(Source: I2C Specification, Philips)

Master-Slave Relationships
• Who is the master?

– master-transmitters
– master-receivers

• Suppose microcontroller A wants to send information to microcontroller B
– A (master) addresses B (slave)
– A (master-transmitter), sends data to B (slave-receiver)
– A terminates the transfer.

• If microcontroller A wants to receive information from microcontroller B
– A (master) addresses microcontroller B (slave)
– A (master-receiver) receives data from B (slave-transmitter)
– A terminates the transfer

• In both cases, the master (microcontroller A) generates the timing and terminates
the transfer

Exercise: How fast can I2C run?

32

• How fast can you run it?

• Assumptions

– 0’s are driven
– 1’s are “pulled up”

• Some working figures
– Rp = 10 kΩ

– Ccap = 100 pF

– VDD = 5 V

– Vin_high = 3.5 V

• Recall for RC circuit
– Vcap(t) = VDD(1-e-t/τ)

– Where τ = RC

Exercise: Bus bit rate vs Useful data rate

33

• An I2C “transactions” involves the following bits
– <S><A6:A0><R/W><A><D7:D0><A><F>

• Which of these actually carries useful data?
– <S><A6:A0><R/W><A><D7:D0><A><F>

• So, if a bus runs at 400 kHz
– What is the clock period?

– What is the data throughput (i.e. data-bits/second)?

– What is the bus “efficiency”?

Serial Peripheral Interconnect (SPI)
• Another kind of serial protocol in embedded systems (proposed by

Motorola)
• Four-wire protocol

– SCLK — Serial Clock
– MOSI/SIMO — Master Output, Slave Input
– MISO/SOMI — Master Input, Slave Output
– SS — Slave Select

• Single master device and with one or more slave devices
• Higher throughput than I2C and can do �stream transfers�
• No arbitration required
• But

– Requires more pins
– Has no hardware flow control
– No slave acknowledgment (master could be talking to thin air and not even

know it)

What is SPI?

• Serial Bus protocol

• Fast, Easy to use, Simple

• Everyone supports it

SPI Basics
• A communication protocol using 4 wires
– Also known as a 4 wire bus

• Used to communicate across small distances

• Multiple Slaves, Single Master

• Synchronized

36

SPI Capabilities
• Always Full Duplex
– Communicating in two directions at the same time
– Transmission need not be meaningful

• Multiple Mbps transmission speed

• Transfers data in 4 to 16 bit characters

• Multiple slaves
– Daisy-chaining possible

37

SPI Protocol
• Wires:
– Master Out Slave In (MOSI)
– Master In Slave Out (MISO)
– System Clock (SCLK)
– Slave Select 1…N

• Master Set Slave Select low

• Master Generates Clock

• Shift registers shift in and out data

38

SPI Wires in Detail
• MOSI – Carries data out of Master to Slave

• MISO – Carries data from Slave to Master
– Both signals happen for every transmission

• SS_BAR – Unique line to select a slave

• SCLK – Master produced clock to synchronize
data transfer

39

40

SPI uses a �shift register� model of

communications

Master shifts out data to Slave, and shifts in data from Slave
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png

SPI Communication

41

42

SPI clocking: there is no �standard way�
• Four clocking �modes�

– Two phases

– Two polarities

• Master and selected slave must be in the same mode

• During transfers with slaves A and B, Master must

– Configure clock to Slave A�s clock mode

– Select Slave A

– Do transfer

– Deselect Slave A

– Configure clock to Slave B�s clock mode

– Select Slave B

– Do transfer

– Deselect Slave B

• Master reconfigures clock mode on-the-fly!

43

SPI timing diagram

Timing Diagram – Showing Clock polarities and phases
http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif

SPI Pros and Cons
• Pros:
– Fast and easy

• Fast for point-to-point connections
• Easily allows streaming/Constant data inflow
• No addressing/Simple to implement

– Everyone supports it

• Cons:
– SS makes multiple slaves very complicated
– No acknowledgement ability
– No inherent arbitration
– No flow control

44

