EE107 Spring 2019
Lecture 5

Direct Memory
Access

Embedded Networked Systems

Sachin Katti

*slides adapted from Aaron Schulman’s CSE190

Why do we need DMA?

CPU Usage

Without DMA

With DMA

Communication Rate

Why do we need DMA?

e Polling and Interrupt driven I/O concentrates on data
transfer between the processor and I/O devices.

* Processor determines that the I/O device is ready

— Either by polling a status flag in the device interface or
— Waits for the device to send an interrupt request.

 Considerable overhead is incurred, because several

program instructions must be executed for each data
word transferred.

Why do we need DMA?

* Instructions are needed to increment memory
address and keeping track of work count.

* With interrupts, additional overhead associated
with saving and restoring the program counter and

other state information.

Direct Memory Access (DMA)

* To transfer large blocks of data at high speed, an
alternative approach is used.

* Blocks of data are transferred between an external
device and the main memory, without continuous
intervention by the processor.

Transfor
Triggers

DMA Controllers

M

- o
S M
AHB/APS
Brdge
DMAC
MASTER
- Fetch
DMA Channels Engine
Channel n
— | Channel 1 l
\ Active
n® | Channel 0 ' | Arbiter { Channel ! 'n:vomn?:,
3 ‘
CRC

Engine

» Interrupls

» Events

Arduino DMA with demo

« Data Transfer From:
— Peripheral-to-peripheral
— Peripheral-to-memory
— Memory-to-peripheral
— Memory-to-memory
« Transfer Trigger Sources:
— Software
— Events from Event System
— Dedicated requests from peripherals
« SRAM-based Transfer Descriptors:
— Single transfer using one descriptor
— Multi-buffer or Circular Buffer modes by linking multiple descriptors

Arduino DMA with demo

Up to 12 Channels:

— Enable 12 independent transfers

— Automatic descriptor fetch for each channel

— Suspend/resume operation support for each channel
Flexible Arbitration Scheme:

— 4 configurable priority levels for each channel

— Fixed or round-robin priority scheme within each priority level
From 1 to 256KB Data Transfer in a Single Block Transfer
Multiple Addressing Modes:

— Static

— Configurable increment scheme
Optional Interrupt Generation:

— On block transfer complete

— On error detection

— On channel suspend

Cache coherency problems

* Imagine a CPU equipped with a cache and an external memory that
can be accessed directly by devices using DMA. When the CPU
accesses location X in the memory, the current value will be stored in
the cache. Subsequent operations on X will update the cached copy

of X, but not the external memory version of X, assuming a write-
back cache. If the cache is not flushed to the memory before the next

time a device tries to access X, the device will receive a stale value of
X.

X X) G S Y
X old valtlJe v
$hew valle Cache External Memory

Arbitration

Figure 20-5. Static Priority Scheduling

Lowest Channel | Channel 0 - Highest Priority
A
Channel x
Channel x+1

Highest Channel | Channel N ' Lowest Priority

Arbitration

Figure 20-6. Dynamic (Round-Robin) Priority Scheduling

Channel x last acknowledge request Channel (x+1) last acknowledge request
Channel 0 | | Channel 0 |
Ch‘nm’ X ‘ Lowest Prion'y Channel X
Channel x+1] Highest Priority Channel x+1 . Lowest Priority
A Channel x+2 Highest Priority
' A

Channel N | | Channel N

