EE178: Probabilistic Systems AnalysisDavid Tse (dntse@stanford.edu) Autumn 20162017
Course DescriptionThe goal of the course is to introduce probabilistic modeling and its role in solving engineering problems. The course is divided into two parts. The first part introduces the basic concepts of probability: random variables , sample space, events, probability, conditional probability, independence, probability mass functions and density functions, expectation, law of large numbers. Using the language acquired in the first part, the second part discusses several applications chosen from data storage, ranking of webpages, network multiplexing, digital communication, positioning, speech recognition and computational biology. This is a course about “probability in action”: probabilistic concepts are taught through many nontrivial examples, engineering applications and Python labs. Lectures
ExamAdditional Office Hours
