Probabilistic Systems Analysis

* An example of Joint pmf
* Conditional pmf and independence

I have a box with 3 types of balls

<table>
<thead>
<tr>
<th>Blue</th>
<th>Red</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

I draw 3 balls with replacement at random.

\[\Omega = \{ (w_1, w_2, w_3): w_i \in \{B, R, G\} \} \]

\[P(\{w\}) = \frac{1}{27} \quad (= \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}) \]

\[\omega = (w_1, w_2, w_3) \in \Omega \]

We are interested in the two random variables

\[X(\omega) = \text{"number of blue balls among the ones drawn.} \]

\[Y(\omega) = \text{"number of red balls.} \]

eg if \(\omega = (BGB) \)

then \(X(\omega) = 2 \), \(Y(\omega) = 0 \)

What is the pmf of \(X \)? \(X(\omega) \in \{0, 1, 2, 3\} \)

\[p_X(k) = P(\{ \omega : X(\omega) = k \}) \]

\[p_X(0) = \frac{1}{27} \cdot 3^3 = \frac{8}{27} \]

\[p_X(1) = \frac{1}{27} \cdot 3 \cdot 2^2 = \frac{12}{27} \]

\[p_X(2) = \frac{1}{27} \cdot 3 \cdot 1 = \frac{6}{27} \]

\[p_X(3) = \frac{1}{27} \]
by symmetry

$P_X(0) = \frac{8}{27}$, $P_X(1) = \frac{12}{27}$, $P_X(2) = \frac{6}{27}$, $P_X(3) = \frac{1}{27}$

These numbers do not allow to answer the question

$P(\{\omega : X(\omega) \geq 1, Y(\omega) \leq 2\}) = ?$

joint pmf

$P_{XY}(k, e) = P(\{\omega : X(\omega) = k, Y(\omega) = e\})$

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{27}$</td>
<td>$\frac{3}{27}$</td>
<td>$\frac{3}{27}$</td>
<td>$\frac{1}{27}$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{3}{27}$</td>
<td>$\frac{6}{27}$</td>
<td>$\frac{3}{27}$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{3}{27}$</td>
<td>$\frac{3}{27}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{27}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

General formula

$P_{XY}(k, e) = \binom{3}{k, e, 3-k-e} \frac{1}{3^3} \frac{1}{3^e} \frac{1}{3^{3-k-e}}$

binomial coefficient

$\binom{m}{k_1, k_2, k_3} = \frac{m!}{k_1! k_2! k_3!}$

- gives the number of sequences

BRB... GR

with k_1 B's, k_2 R's and k_3 G's

-
For m balls with n colors, this formula generalizes to
\[
\binom{m}{k_1, k_2, \ldots, k_n} = \frac{m!}{k_1! \cdot k_2! \cdot \ldots \cdot k_n!}
\]

For instance, suppose that I have a box, and the fraction of balls of type 1 is p_1, \ldots, fraction of type n is $p_n\; p_1 + \ldots + p_n = 1$.

I extract m balls with replacement.

$X_1 =$ "number of balls of type 1 among the m", $X_n =$ "number of type n".

Joint pmf
\[
P_{X_1 X_2 \ldots X_n}(k_1, k_2, \ldots, k_n)
\]
- if $k_1 + \ldots + k_n \neq m \Rightarrow p_{X_1 \ldots X_n}(k_1 \ldots k_n) = 0$
- otherwise
\[
P_{X_1 X_2 \ldots X_n}(k_1, k_2, \ldots, k_n) = \binom{m}{k_1, k_2, \ldots, k_n} \prod_{i=1}^{n} p_i^{k_i}
\]

(multinomial distribution, pmf).

Conditional pmf: X, Y two r.v.'s
\[
P_{X|Y}(k|\omega) = P(\{\omega : X(\omega) = k \mid \{\omega : Y(\omega) = \omega \})
\]
By definition of conditional probability, we have

\[P_{X|Y}(k|e) = \frac{P(\{\omega : X(\omega) = k, Y(\omega) = e\})}{P(\{\omega : Y(\omega) = e\})} \]

\[P_{X|Y}(k|e) = \frac{P_{X,Y}(k,e)}{P_Y(e)} \]

Consider for instance the box with RGB balls.

\[P_{X,Y}(k,e=0) = \frac{1}{27}, \frac{3}{27}, \frac{3}{27}, \frac{1}{27} \]

\[P_Y(e=0) = \frac{8}{27} \]

Hence

\[P_{X|Y}(k|e) = \begin{array}{cccc}
 k=0 & k=1 & k=2 & k=3 \\
 1/8 & 3/8 & 3/8 & 1/8 \\
\end{array} \]

\[\mathbb{E} P_{X|Y}(k|e) = \left(\begin{array}{c}
 k=0 \\
 \binom{3}{k} \frac{1}{2^k} \frac{1}{2^{3-k}} \end{array} \right) \text{ why?} \]

We saw that two random variables \(X, Y \) are independent if \(\forall k, e \)

\[P_{X,Y}(k,e) = P_X(k) P_Y(e) \]

By the definition of conditional pmf, this is equivalent to

\[P_{X|Y}(k|e) = P_X(k) \]
Some standard calculation with joint pmfs.

- What is the probability that $X = Y$?

$$
P(\{\omega : X(\omega) = Y(\omega)\}) = \sum_k P(\{\omega : X(\omega) = k, Y(\omega) = k\})$$

$$= \sum_k p_{XY}(k,k)$$

If X and Y are independent

$$P(\{\omega : X = Y\}) = \sum_k p_X(k)p_Y(k).$$

- What is the probability that $\min(X,Y) = k$?

(assume X,Y take integer values)

$$P(\{\omega : \min(X(\omega), Y(\omega)) = k\}) =$$

$$= \sum_{\ell, m > k} p_{XY}(\ell, m) - \sum_{\ell, m > k+1} p_{XY}(\ell, m)$$

Example: I throw two dice. What is the probability that the smallest is 3? X,Y outcomes

$$p_{XY}(\ell, m) = \frac{1}{36} \text{ for } \ell, m \in \{1, \ldots, 6\}$$

$$P(\min(X,Y) = k) = \frac{1}{36} \cdot (6-k+1)^2 - \frac{1}{36} (6-k)^2$$

$$= \frac{12 - 2k + 1}{36}$$

pmf of $Z = \min(X,Y)$

<table>
<thead>
<tr>
<th>k</th>
<th>p_{Z_k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{3}{36}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{5}{36}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{7}{36}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{9}{36}$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{11}{36}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{13}{36}$</td>
</tr>
</tbody>
</table>