Homework #10 Solutions

Submission is not required for this problem set.

1. Chernoff bound.
 a. Show that the inequality
 \[P(X \geq a) \leq e^{-sa}M(s) \]
 holds for every \(a \) and every \(s \geq 0 \), where \(M(s) = E[e^{sX}] \) is the moment generating function of \(X \).
 Hint: \(P(X \geq a) = P(e^{sX} \geq e^{sa}) \).
 b. Let \(U_1, U_2, \ldots, U_n \) be i.i.d. such that \(U_i \sim \text{Bern}(p) \) and \(X_n = \sum_{i=1}^{n} U_i \). Show that
 \[P(X_n \geq (1 + \epsilon)np) \leq e^{-np(1 + \epsilon)} \]
 Hint:
 • Use the result of part (a) to bound \(P(X_n > (1 + \epsilon)np) \).
 • Bound the moment generating function of \(U \) by \(M_U(s) \leq e^{p(e^s - 1)} \).
 • Find \(s \) that gives the most tight bound (i.e., minimize the bound term).
 • You can use the following inequality.
 \[\frac{e^\epsilon}{(1 + \epsilon)^{1+\epsilon}} \leq e^{-\frac{\epsilon^2}{3}} \]

Solution

a. We have

\[
P(X \geq a) = P(e^{sX} \geq e^{sa}) \\
\leq E[e^{sX}] \\
e^{-sa}E[e^{sX}].
\]

b. For all \(s > 0 \),

\[
P(X_n \geq (1 + \epsilon)np) = P(e^{sX_n} \geq e^{s(1+\epsilon)np}) \\
\leq E[e^{sX_n}]e^{-s(1+\epsilon)np} \\
= \left(E[e^{sU}]e^{-s(1+\epsilon)p}\right)^n \\
= \left((1 - p + pe^s)e^{-s(1+\epsilon)p}\right)^n \\
\leq \left(e^{p(e^s - 1)}e^{-s(1+\epsilon)p}\right)^n \\
= \exp(np(e^s - 1 - s(1 + \epsilon))) .
\]

Note that the minimum of \(e^s - 1 - s(1 + \epsilon) \) is achieved at \(s = \log(1 + \epsilon) \). If we use this value,
we have
\[
P \left(X_n \geq (1 + \epsilon)np \right) \leq \exp \left(np (\epsilon^4 - 1 - s(1 + \epsilon)) \right)
\leq \exp \left(np (\epsilon - (1 + \epsilon) \log(1 + \epsilon)) \right)
\leq \left(\frac{e^\epsilon}{(1 + \epsilon)^{1+\epsilon}} \right)^{np}
\leq e^{-\frac{np^2}{2}}.
\]

2. Confidence intervals. A population of 10^8 voters choose between two candidates A and B. A fraction $p = 0.55$ of them plan to vote for candidate A and the rest for candidate B. A fair poll with sample size n is performed, i.e., the n samples are i.i.d. and done with replacement (same person may be polled more than once). We want to find a value of n that will guarantee that the majority of those sampled vote for candidate A, with probability at least 0.99. More precisely and equivalently, let U_1, U_2, \ldots, U_n be i.i.d. \sim Bernoulli(0.55). The fraction of 1s in this sequence is thus $X_n = \frac{1}{n} \sum_{i=1}^{n} U_i$ and we want n sufficiently large to guarantee that $P\{X_n > 0.5\} > 0.99$.

a. Use the Chebyshev inequality to find such an n.

b. Use the Chernoff inequality to find such an n.

Hint: Similar to part (b) of Problem 1, we can show that
\[
P \left(\frac{1}{n} \sum_{i=1}^{n} U_i \leq (1 - \epsilon)p \right) \leq e^{-\frac{np^2}{2}}
\]

c. Use the central limit theorem to approximate such an n.

Solution

a. By Chebyshev’s inequality,
\[
P\{X_n - p < -0.05\} \leq P\{|X_n - p| > 0.05\} \leq \frac{\sigma_x^2}{(0.05^2)n}
\]

since $X_i \sim$ Bern(0.1), $\sigma_x^2 = 0.2475$. We need $\frac{\sigma_x^2}{(0.05^2)n} < 0.01$, which implies $n > 9900$.

b. We have
\[
P \left(X_n \leq (1 - \epsilon)p \right) \leq e^{-\frac{np^2}{2}}.
\]

Let $\epsilon = \frac{0.05}{0.55}$ and $p = 0.55$. Then,
\[
P \left(X_n \leq 0.5 \right) \leq e^{-\frac{np^2}{2}}.
\]

We want $\exp \left(-\frac{0.05^2}{2} \right) < 0.01$, which implies $n > 2026$.

c. We have
\[\sum_{i=1}^{n} \frac{U_i - p}{\sqrt{np(1-p)}} \sim \mathcal{N}(0,1) \]

Therefore,
\[
P(X_n \leq 0.5) = P\left(\sqrt{\frac{n}{p(1-p)}} (X_n - p) \leq \sqrt{\frac{n}{p(1-p)}} (0.5 - 0.55) \right)
\]
\[
= P\left(\sum_{i=1}^{n} \frac{U_i - p}{\sqrt{np(1-p)}} \leq -\sqrt{\frac{n}{p(1-p)}} \times 0.05 \right)
\]
\[
\approx Q\left(\sqrt{\frac{n}{p(1-p)}} \times 0.05 \right).
\]

We want \(Q\left(\sqrt{\frac{n}{p(1-p)}} \times 0.05 \right) \leq 0.01 \), which implies
\[
n \geq \left(Q^{-1}(0.01)/0.05 \right)^2 \times p(1-p) \approx 535.78.
\]

3. Sharpness of Chebyshev inequality. Let \(X \) be an \(\text{Exp}(1) \) random variable. For \(\alpha > 1 \),
 a. Use Chebyshev inequality to derive a bound on
 \[P(|X - 1| > \alpha) \]
 b. Compute directly \(P(|X - 1| > \alpha) \).

Solution

a. Since
 \[E[X] = 1, \ Var(X) = 1, \]
 \[P(|X - 1| > \alpha) \leq \frac{1}{\alpha^2} Var(X) = \frac{1}{\alpha^2}. \]
 b. \(P(|X - 1| > \alpha) = 1 - F_X(\alpha + 1) = e^{-1-\alpha}. \)

4. Gambling. Let \(X_n \) be the amount you win on the \(n \)th round of a game of chance. Assume that \(X_1, X_2, \ldots, X_n \) are i.i.d. with finite mean \(E(X) \) and variance \(\sigma^2 \). Make the realistic assumption that \(E[X] < 0 \). Show that \(P\{((X_1 + X_2 + \ldots + X_n)/n < E[X]/2) \to 1 \). What is the moral of this result?

Solution

We know \(\frac{1}{n} \sum_{i=1}^{n} X_i \to E[X] \) by the weak law of large numbers, which means \(P(|S_n - E[X]| > \epsilon) \to 0 \) as \(n \to \infty \). The limiting value of \(P(S_n < \frac{E[X]}{2}) \) depends on \(E[X] \). When \(E[X] < 0 \),
$P(S_n < \frac{E[X]}{2})$ approaches 1. This is because $P(|S_n - E[X]| > \epsilon) \to 0$ as $n \to \infty$ for all finite ϵ. But this means $P(|S_n - E[X]| < \epsilon) \to 1$ as $n \to \infty$. Since this requires $E[X]$ negative and $S_n \to E[X]$, then we know $P(S_n < \frac{E[X]}{2}) \to 1$.