EE178: Midterm Solutions

1. Rolling Dice (50 points)
 You roll a fair die two times. Consider the following events:

 \[A = \text{the sum of the first and second roll is 5} \]
 \[B = \text{the sum of the first and second roll is 7} \]
 \[C = \text{the first roll is different from the second roll} \]

 Let \(X \) be the random variable representing the outcome of the first roll.

 (a) Is event \(A \) independent of the event \(C \)? (7 points)
 (b) Is event \(B \) independent of the event \(C \)? (7 points)
 (c) Find the conditional pmf of \(X \) given \(A \), i.e., find \(P(X = k | A) \) for \(1 \leq k \leq 6 \). (6 points)
 (d) Find the conditional pmf of \(X \) given \(C \). (6 points)

Now, you roll a fair die four times. Let \(Y \) be a random variable corresponding to the sum of the four rolls.

 (e) Find the size of the set \(\{ \omega : Y(\omega) = 6 \} \). In other words, how many possible ways to get \(Y = 6 \)? (6 points)
 (f) What is the probability of \(Y = 6 \)? (6 points)

Now, you roll a fair twenty-sided die 10 times. Let \(Z \) be a random variable corresponding to the sum of the ten rolls.

 (g) Find the size of the set \(\{ \omega : Z(\omega) = 23 \} \). In other words, how many possible ways to get \(Z = 23 \)? (6 points)
 (h) What is the probability of \(Z = 23 \)? (6 points)

Solution:

(a) \(P(A) = \frac{4}{36} \) and \(P(C) = \frac{30}{36} \) where \(P(A \cap C) = \frac{4}{36} \). They are not independent.
(b) \(P(B) = \frac{6}{36} \) and \(P(C) = \frac{30}{36} \) where \(P(A \cap C) = \frac{6}{36} \). They are not independent.
(c) For \(1 \leq k \leq 4 \),

 \[P(X = k | A) = \frac{P(\{X = k\} \cap A)}{P(A)} \]
\[
\frac{P(\{(k, 5 - k)\})}{P(A)} = \frac{1}{4}
\]

For \(k = 5, 6 \), it is not hard to show that \(P(X = k|A) = 0 \).

(d) For \(1 \leq k \leq 6 \),

\[
P(X = k|A) = \frac{P(\{X = k\} \cap A)}{P(A)}
= \frac{P(\{((k, 7 - k)\})}{P(A)}
= \frac{1}{6}
\]

(e) The size of the set \(\{\omega : Y(\omega) = 6\} \) is equal to the number of positive integer solutions of \(x_1 + x_2 + x_3 + x_4 = 6 \). We have seen that the number of solutions are \(\binom{5}{3} = 10 \).

(f) Since \(P(\omega) = \frac{1}{6^4} \) for all \(\omega \in \Omega \), the probability is \(P(Y = 9) = \frac{10}{6^4} \).

(g) The size of the set \(\{\omega : Z(\omega) = 23\} \) is equal to the number of positive integer solutions of \(x_1 + x_2 + \cdots + x_{10} = 23 \). We have seen that the number of solutions are \(\binom{22}{9} \).

(h) Since \(P(\omega) = \frac{1}{20^5} \) for all \(\omega \in \Omega \), the probability is \(P(Z = 9) = \frac{\binom{22}{9}}{20^5} \).
2. Batteries. (50 points)
There are two types of batteries in a bin: type 1 and type 2. When in use, type \(i \) batteries last (in hours) an exponentially distributed time with rate \(\lambda_i \), where \(\lambda_1 > \lambda_2 > 0 \). A battery that is randomly chosen from the bin will be a type \(i \) battery with positive probability \(p_i \), where \(p_1 + p_2 = 1 \). Let \(X \) be a random variable indicating the life time of a randomly chosen battery.

(a) Find the probability of the chosen battery having life time smaller than 5 given that the type 1 battery is chosen. I.e., what is \(P(X \leq 5|\text{type 1 battery is chosen}) \)? (8 points)

(b) Find the probability of the chosen battery having life time smaller than 5. I.e., what is \(P(X \leq 5) \)? (7 points)

(c) Find the cdf of \(X \). (7 points)

(d) Find the pdf of \(X \). Is \(X \) an exponential random variable? (7 points)

(e) Find the expected value of \(X \). (7 points)

(f) Find the variance of \(X \). (7 points)

(g) If a randomly chosen battery is still operating after \(t \) hours of use, what is the probability that it will still be operating after an additional \(s \) hours? (7 points)

Hint: You can use the following results without proof.

\[
\int_0^\infty x \cdot e^{-ax} \, dx = \frac{1}{a^2} \\
\int_0^\infty x^2 \cdot e^{-ax} \, dx = \frac{2}{a^3}.
\]

Solution:

(a) \[
P(X \leq 5|\text{type 1 battery is chosen}) = \int_0^5 \lambda_1 e^{-\lambda_1 x} \, dx = 1 - e^{-5\lambda_1}.
\]

(b) \[
P(X \leq 5) = p_1 \int_0^5 \lambda_1 e^{-\lambda_1 x} \, dx + p_2 \int_0^5 \lambda_2 e^{-\lambda_2 x} \, dx \\
= p_1 (1 - e^{-5\lambda_1}) + p_2 (1 - e^{-5\lambda_2}).
\]
(c)
\[P(X \leq x) = P(\text{type 1 is chosen})P(X \leq x|\text{type 1 is chosen}) \]
\[+ P(\text{type 2 is chosen})P(X \leq x|\text{type 2 is chosen}) \]
\[= p_1 (1 - e^{-\lambda_1 x}) + p_2 (1 - e^{-\lambda_2 x}) \]
\[= 1 - p_1 e^{-\lambda_1 x} - p_2 e^{-\lambda_2 x}. \]

(d)
\[f_X(x) = \frac{d}{dx} \{ p_1 (1 - e^{-\lambda_1 x}) + p_2 (1 - e^{-\lambda_2 x}) \} \]
\[= p_1 \lambda_1 e^{-\lambda_1 x} + p_2 \lambda_2 e^{-\lambda_2 x} \]

It is NOT an exponential random variable.

(e)
\[\mathbb{E}[X] = \int_0^\infty x \left(p_1 \lambda_1 e^{-\lambda_1 x} + p_2 \lambda_2 e^{-\lambda_2 x} \right) dx \]
\[= p_1 \int_0^\infty x \lambda_1 e^{-\lambda_1 x} dx + p_2 \int_0^\infty x \lambda_2 e^{-\lambda_2 x} dx \]
\[= \frac{p_1}{\lambda_1} + \frac{p_2}{\lambda_2}. \]

(f)
\[\mathbb{E}[X^2] = \int_0^\infty x^2 \left(p_1 \lambda_1 e^{-\lambda_1 x} + p_2 \lambda_2 e^{-\lambda_2 x} \right) dx \]
\[= p_1 \int_0^\infty x^2 \lambda_1 e^{-\lambda_1 x} dx + p_2 \int_0^\infty x^2 \lambda_2 e^{-\lambda_2 x} dx \]
\[= \frac{2p_1}{\lambda_1^2} + \frac{2p_2}{\lambda_2^2}. \]

Therefore,
\[\text{Var}[X] = \frac{2p_1}{\lambda_1^2} + \frac{2p_2}{\lambda_2^2} - \left(\frac{p_1}{\lambda_1} + \frac{p_2}{\lambda_2} \right)^2. \]

(g)
\[P(X > t + s|X > t) = \frac{P(X > t + s)}{P(X > t)} \]
\[= \frac{P(X > t + s)}{P(X > t)} \]
\[= \frac{p_1 e^{-\lambda_1(t+s)} + p_2 e^{-\lambda_2(t+s)}}{p_1 e^{-\lambda_1 t} + p_2 e^{-\lambda_2 t}}. \]

Note that \(X \) does not have a memoryless property.
3. **M&M. (20 points)**

The blue M&M was introduced in 1995. Before then, the color mix in a bag of plain M&Ms was (30% Brown, 20% Yellow, 20% Red, 10% Green, 10% Orange, 10% Tan). Afterward it was (24% Blue, 20% Green, 16% Orange, 14% Yellow, 13% Red, 13% Brown). A friend of mine has two bags of M&Ms, and he tells me that one is from 1994 and one from 1996. He won’t tell me which is which, but he gives me one M&M from each bag. One is yellow and one is green. What is the probability that the yellow M&M came from the 1994 bag?

Solution:

Let A be an event that Bag #1 from 1994 and Bag #2 from 1996, and B be an event that Bag #1 from 1996 and Bag #2 from 1994. We have $P(A) = P(B) = \frac{1}{2}$. What you observed is the event E that yellow from Bag #1 and green from Bag #2. Therefore,

\[
P(A|E) = \frac{P(E|A)P(A)}{P(E)} = \frac{0.2 \times 0.2 \times \frac{1}{2}}{0.2 \times 0.2 \times \frac{1}{2} + 0.1 \times 0.14 \times \frac{1}{2}} \approx 0.74.
\]