Digital Carrier Modulation

Lecture topics

- Eye diagrams
- Pulse amplitude modulation (PAM)
- Binary digital modulation
 - Amplitude shift keying (ASK)
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)
- Quadrature PSK and QAM
Polar Signaling with Raised Cosine Transform \((r = 0.5)\)

\[
P(f) = \begin{cases}
1 & |f| < \frac{1}{4}R_b \\
\frac{1}{2} \left(1 - \sin \pi \left(\frac{f - \frac{1}{2}R_b}{R_b}\right)\right) & \|f - \frac{1}{2}R_b\| < \frac{1}{2}R_b \\
0 & |f| > \frac{3}{4}R_b
\end{cases}
\]
Polar Signaling with Raised Cosine Transform \((r = 0.5)\)

The pulse corresponding to \(P(f)\) is

\[
p(t) = \text{sinc}(\pi R_b t) \frac{\cos(\pi r R_b t)}{1 - 4r^2 R_b^2 t^2}
\]
Eye Diagram Measurements

- Maximum opening affects noise margin
- Slope of signal determines sensitivity to timing jitter
- Level crossing timing jitter affects clock extraction
- Area of opening is also related to noise margin
PAM: M-ary Baseband Signaling

We can generalize polar signaling to

$$y(t) = \sum_{k} a_k p(t - kT_b)$$

where a_k is chosen from a set of more than two values (i.e., not just ± 1).

Example: we can encode two bits into four levels.

$$a_k = \begin{cases}
-3 & \text{message bits 00} \\
-1 & \text{message bits 01} \\
+1 & \text{message bits 10} \\
+3 & \text{message bits 11}
\end{cases}$$
PAM: M-ary Baseband Signaling (cont.)

Power of 4-ary signaling:

$$R_0 = \frac{1}{4}((-3)^2 + (-1)^2 + 1^2 + 3^2) = \frac{1}{4} \cdot 20 = 5.$$

If digital values are independent, $R_n = 0$ for $n \neq 0$. Thus PSD is

$$S_y(f) = \frac{5}{T_s} |P_x(f)|^2,$$

The PSD is the same as binary signaling. More bits use more power.
On-Off Keying (OOK) = Amplitude Shift Keying (ASK)

Modulated signal is $m(t) \cos 2\pi f_c t$.

Baseband signal may use shaped pulses, so cosine amplitude varies.
OOK Example

Digital input: 1 0 0 1 1 0 1 0 0. Square wave and shaped pulses.
PSK and FSK

Binary PSK is the same as polar ASK.

Phase shift keying can use more than two phases (4 and 8 are common). (FSK usually uses only two frequencies.)
PSD of binary ASK, PSK, FSK

ASK

PSK (same as ASK)

FSK
Demodulation of ASK and PSK

- ASK demodulation
 - envelope detector (signal vs. not signal)
 - coherent detector (requires PLL)
- Binary PSK is equivalent to binary PAM with

\[y(t) = \pm A \cos \omega_c t \]

Constant amplitude means envelope detection is not possible.

Coherent binary PSK detector is similar to DSB-SC demodulator.
Demodulation of FSK

FSK can also use envelope or coherent detector. In both cases, these are parallel ASK detectors.

Example: Bell 103 modem (V.21, 300 bps) uses 1270 Hz and 1070 Hz for originating station, only 3 or 4 cycles per bit
FSK Example: \(f_0 = 8, \ f_1 = 12 \)
Differential PSK (DPSK)

Encode 1 by change of phase, $0 \rightarrow \pi$ or $\pi \rightarrow 0$

- Advantage: local carrier not needed
- Disadvantage: less noise immunity than PSK, more bandwidth, errors occur in pairs
- More than two different phases can be used.
M-ary Digital Carrier Modulation

- M-ary ASK

$$\varphi(t) = 0, A \cos \omega_c t, 2A \cos \omega_c t, \ldots, (M - 1)A \cos \omega_c t$$

One symbol contains $\log_2 M$ bits of information.

Example: $M = 3$, $\log_2 M = 1.584$: 2 trits (ternits) > 3 bits

- M-ary FSK

$$\varphi(t) = A \cos \omega_1 t, A \cos \omega_2 t, \ldots, A \cos \omega_M t$$

Ideally, the possible signals are orthogonal over a bit period. Then

$$\omega_m = \omega_1 + (m - 1)\delta f$$

where smallest δf is $1/2T_b$. Bandwidth is (Carson’s rule)

$$2(\Delta f + B) = \frac{M - 3}{2T_b}$$

Not bandwidth efficient.
M-ary PSK

- In general,

$$\varphi_{PSK}(t) = a_m \sqrt{\frac{2}{T_b}} \cos \omega_c t + b_m \sqrt{\frac{2}{T_b}} \sin \omega_c t$$

Binary PSK: $a_m = A \cos \theta_m$, $b_m = -A \cos \theta_m$. (Ideally, $\theta_m = 0$.)

- In orthogonal signal space, we use more values a_m, b_m where $a^2 + b^2 = A^2$.

- Bell 212A (1200 bps) uses 4-PSK = 4-QAM
M-ary QAM

QAM, like M-PSK, uses linear combination of orthogonal sinusoids:

\[\varphi_{QAM}(t) = a_m \sqrt{\frac{2}{T_b}} \cos \omega_c t + b_m \sqrt{\frac{2}{T_b}} \sin \omega_c t \]

However, amplitude \(A = \sqrt{a^2 + b^2} \) can have more than one value.

V.22bis (2400-bps) uses 16-QAM (3 amplitudes, 12 phases)
QAM (cont.)

- Modulation and demodulation are combination of PSK and AM.

- V.32 9600 bps uses 32-QAM with trellis coding.

- All modern digital electronic communication uses QAM.
Constellation Examples

- baud = symbol per second
- baud “rate” is proportional to bandwidth

V.22
600 baud 1200 bps
PSK

V.22bis
600 baud 2400 bps
QAM

V.32
2400 baud 9600 bps
TCM