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Lecture #7: Intro to Synchronous 
Sequential State Machine Design

Paul Hartke
Phartke@stanford.edu

Stanford EE121
January 29, 2002

Administrivia

• Midterm #1 is next Tuesday (February 5th) in 
class.
– Will not include state machines.

• Lab 3 Design Post-Mortem
– Comments/Issues?

• Lab 4 handout
– Due next week as normal.

• HW3 handout
– Due Next Thursday February 7th

– Read it over and I’ll answer any questions on Thursday. 
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Two Types of Logic Circuits

• Combinational
– A circuit whose outputs depend only on its 

current inputs

• Sequential
– A circuit whose outputs depend not only on its 

current inputs, but also on the past sequence of 
inputs, possibly arbitrarily far back in time.

Readings

• In DDPP, Chapter 7 Intro, 7.3 (not 7.3.5), 
7.4 (not 7.4.5), 7.5, 7.7 

• We’ll do 7.8 next time
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States and State Variables

• “The state of a sequential circuit is a collection of 
state variables whose values at any one time 
contain all the information about the past 
necessary to account for the circuit’s future 
behavior.”  

• The states are normally encoded as binary 
numbers so for n state variables, there are 2n

possible states. 
– Since there is a finite number of states, these circuits 

are also called finite-state machines (FSM). 

Basic Sequential Element

• Need an element that remembers: D Flip 
Flop (DFF)

• Lots of way of building this element (or an 
analogous one)—we’ll talk about ways 
later.
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Simultaneous Input Changes

• Q: What if D and CLK change at the same time? 
– A: Bad things so do not change the input near the clock 

transition

• Setup Time: the amount of time the synchronous 
input (D) must be stable before the active edge of 
the clock. 

• Hold Time: the amount of time the synchronous 
input (D) must be stable after the active edge of 
the clock. 

Setup and Hold Time Diagram
• If changes on D input violate either setup or 

hold time, then correct FF operation is notnot
guaranteed. 

• If they are violated, metastability results. 
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Mealy State Machine

• A Mealy state machine’s output depends on 
both the state variables and the current 
input. 

Moore State Machine

• A Moore state machines outputs only 
depend on the state variables. 
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Mealy vs. Moore

• Moore machine guarantees the outputs are 
steady for a full clock cycle.

• However, a change at the input takes at least 
one clock cycle to affect the output.  

• Moore machine might require more states 
since not dependent on the input. 

• Most of the time, I use a Moore machine.

State Machine Design Process

1. Determination of inputs and outputs. 
2. Determination of machine states. 
3. Create State/Bubble Diagram—should this be a Mealy or 

Moore machine?
4. State Assignment—assign each state a particular value.  
5. Create Transition/Output Table 
6. Derive Next State Logic for each state element—using 

K-maps as necessary.
7. Derive Output logic.  
8. Implement in Xilinx. 
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1’s Counting Machine

• Design a clocked synchronous state 
machine with two inputs, X and Y, and one 
output, Z.  The output should be 1 if the 
number of 1 inputs on X and Y since reset 
is a multiple of 4, and 0 otherwise.  
– Section 7.4.6 in DDPP

Machine States

• S0 à Got zero 1s (modulo 4)
• S1 à Got one 1 (modulo 4)
• S2 à Got two 1s (modulo 4)
• S3 à Got three 1s (modulo 4)
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Bubble Diagram

State and Output Table

• S* is the next state given the current state 
and the inputs.
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State Assignment

• Use Binary Encoding but in K-map order.
– Requires two state elements/DFFs.
– Semi-Arbitrary decision. 

• S0 à 00
• S1 à 01
• S2 à 11
• S3 à 10

Transition/Excitation Table

• Since we will only use D-flip flops, the 
transition and excitation tables are the same.
– For a DFF, Q* = D
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Derive Next State Logic

• Use a K-Map for each state register input

Logic Equations

• AKA “Next-State” Logic
• D1 = Q2*X’*Y + Q1’*X*Y + Q1*X’*Y’ + 

Q2*X*Y’
• D2 = Q1’*X’*Y + Q1’*X*Y’ + Q2*X’*Y’ 

+ Q2’*X*Y
• Z = Q1’*Q2’
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One-Hot Encoding

• Alternative encoding of state variables.
• Use one state element for each state variable
• S0 à 0001
• S1 à 0010
• S2 à 0100
• S3 à 1000

One-Hot Transition Table

• Same as before…

ZXY=10XY=11XY=01XY=00Q1Q2Q3Q4

000010010000110001000

010000001100001000100

001001000010000100010

100100100001000010001
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Logic Equations

• D1 = Q1*X’*Y’ + Q2*X’*Y + Q2*X*Y’ + 
Q3*X*Y

• D2 = Q2*X’*Y’ + Q3*X’*Y + Q3*X*Y’ + 
Q4*X*Y

• D3 = Q3*X’*Y’ + Q4*X’*Y + Q4*X*Y’ + 
Q1*X*Y

• D4 = Q4*X’*Y’ + Q1*X’*Y + Q1*X*Y’ + 
Q2*X*Y

• Z = Q4

One-Hot Value?

• One-Hot decreases the decode depth 
required for next state logic at the expense 
of more DFFs and logic.  
– Decode depth of next state logic largely 

determines speed of state machine.
– Why didn’t this help on this example?

• Lab 4 will have a state machine that should 
show the tradeoffs better.
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Modified One-Hot

• In modified one-hot, the reset sequence is 
all zeros which transitions to the first state 
at the first clock edge.

• Needed for FPGAs whose FF’s powerup as 
zeros.

Don’t Forget SynchronousSynchronous Resets!!

• The Xilinx FPGAs are designed so that on 
powerup, the DFFs initialize to logic 0.
– We do not want to depend on that!!

• If your library supports it, use one that has a 
synchronous reset and tie it to the global reset pin.  

• Else, explicitly design reset signal into your FSM.
• Can gate the reset signal to parts of the design on 

other events. 


