
1

Lecture #7: Intro to Synchronous
Sequential State Machine Design

Paul Hartke
Phartke@stanford.edu

Stanford EE121
January 29, 2002

Administrivia

• Midterm #1 is next Tuesday (February 5th) in
class.
– Will not include state machines.

• Lab 3 Design Post-Mortem
– Comments/Issues?

• Lab 4 handout
– Due next week as normal.

• HW3 handout
– Due Next Thursday February 7th

– Read it over and I’ll answer any questions on Thursday.

2

Two Types of Logic Circuits

• Combinational
– A circuit whose outputs depend only on its

current inputs

• Sequential
– A circuit whose outputs depend not only on its

current inputs, but also on the past sequence of
inputs, possibly arbitrarily far back in time.

Readings

• In DDPP, Chapter 7 Intro, 7.3 (not 7.3.5),
7.4 (not 7.4.5), 7.5, 7.7

• We’ll do 7.8 next time

3

States and State Variables

• “The state of a sequential circuit is a collection of
state variables whose values at any one time
contain all the information about the past
necessary to account for the circuit’s future
behavior.”

• The states are normally encoded as binary
numbers so for n state variables, there are 2n

possible states.
– Since there is a finite number of states, these circuits

are also called finite-state machines (FSM).

Basic Sequential Element

• Need an element that remembers: D Flip
Flop (DFF)

• Lots of way of building this element (or an
analogous one)—we’ll talk about ways
later.

4

Simultaneous Input Changes

• Q: What if D and CLK change at the same time?
– A: Bad things so do not change the input near the clock

transition

• Setup Time: the amount of time the synchronous
input (D) must be stable before the active edge of
the clock.

• Hold Time: the amount of time the synchronous
input (D) must be stable after the active edge of
the clock.

Setup and Hold Time Diagram
• If changes on D input violate either setup or

hold time, then correct FF operation is notnot
guaranteed.

• If they are violated, metastability results.

5

Mealy State Machine

• A Mealy state machine’s output depends on
both the state variables and the current
input.

Moore State Machine

• A Moore state machines outputs only
depend on the state variables.

6

Mealy vs. Moore

• Moore machine guarantees the outputs are
steady for a full clock cycle.

• However, a change at the input takes at least
one clock cycle to affect the output.

• Moore machine might require more states
since not dependent on the input.

• Most of the time, I use a Moore machine.

State Machine Design Process

1. Determination of inputs and outputs.
2. Determination of machine states.
3. Create State/Bubble Diagram—should this be a Mealy or

Moore machine?
4. State Assignment—assign each state a particular value.
5. Create Transition/Output Table
6. Derive Next State Logic for each state element—using

K-maps as necessary.
7. Derive Output logic.
8. Implement in Xilinx.

7

1’s Counting Machine

• Design a clocked synchronous state
machine with two inputs, X and Y, and one
output, Z. The output should be 1 if the
number of 1 inputs on X and Y since reset
is a multiple of 4, and 0 otherwise.
– Section 7.4.6 in DDPP

Machine States

• S0 à Got zero 1s (modulo 4)
• S1 à Got one 1 (modulo 4)
• S2 à Got two 1s (modulo 4)
• S3 à Got three 1s (modulo 4)

8

Bubble Diagram

State and Output Table

• S* is the next state given the current state
and the inputs.

9

State Assignment

• Use Binary Encoding but in K-map order.
– Requires two state elements/DFFs.
– Semi-Arbitrary decision.

• S0 à 00
• S1 à 01
• S2 à 11
• S3 à 10

Transition/Excitation Table

• Since we will only use D-flip flops, the
transition and excitation tables are the same.
– For a DFF, Q* = D

10

Derive Next State Logic

• Use a K-Map for each state register input

Logic Equations

• AKA “Next-State” Logic
• D1 = Q2*X’*Y + Q1’*X*Y + Q1*X’*Y’ +

Q2*X*Y’
• D2 = Q1’*X’*Y + Q1’*X*Y’ + Q2*X’*Y’

+ Q2’*X*Y
• Z = Q1’*Q2’

11

One-Hot Encoding

• Alternative encoding of state variables.
• Use one state element for each state variable
• S0 à 0001
• S1 à 0010
• S2 à 0100
• S3 à 1000

One-Hot Transition Table

• Same as before…

ZXY=10XY=11XY=01XY=00Q1Q2Q3Q4

000010010000110001000

010000001100001000100

001001000010000100010

100100100001000010001

12

Logic Equations

• D1 = Q1*X’*Y’ + Q2*X’*Y + Q2*X*Y’ +
Q3*X*Y

• D2 = Q2*X’*Y’ + Q3*X’*Y + Q3*X*Y’ +
Q4*X*Y

• D3 = Q3*X’*Y’ + Q4*X’*Y + Q4*X*Y’ +
Q1*X*Y

• D4 = Q4*X’*Y’ + Q1*X’*Y + Q1*X*Y’ +
Q2*X*Y

• Z = Q4

One-Hot Value?

• One-Hot decreases the decode depth
required for next state logic at the expense
of more DFFs and logic.
– Decode depth of next state logic largely

determines speed of state machine.
– Why didn’t this help on this example?

• Lab 4 will have a state machine that should
show the tradeoffs better.

13

Modified One-Hot

• In modified one-hot, the reset sequence is
all zeros which transitions to the first state
at the first clock edge.

• Needed for FPGAs whose FF’s powerup as
zeros.

Don’t Forget SynchronousSynchronous Resets!!

• The Xilinx FPGAs are designed so that on
powerup, the DFFs initialize to logic 0.
– We do not want to depend on that!!

• If your library supports it, use one that has a
synchronous reset and tie it to the global reset pin.

• Else, explicitly design reset signal into your FSM.
• Can gate the reset signal to parts of the design on

other events.

