
1

Rincon Research Corporation - FPGA Development 2

Why Custom Hardware?

ß Size – Area constraints may force us to use a
specific item rather than a general solution
ß Smart Card

ß Cost – mass production of specific item may be
cheaper than utilizing a general solution
ß Coke Machine???
ß Most of these apps are generally done by low-cost

microprocessors.
ß Power – A general solution might require more

power than we have available on our system
ß Cell Phone

ß Or …

Rincon Research Corporation - FPGA Development 3

Performance

Rincon Research Corporation - FPGA Development 4

Some Challenges

ß How do we take something running in
software and make it fast?
ß Algorithmic changes
ß By FAR, the most significant

ß Architecture choices

ß Implementation choices

ß Synthesis Optimizations

ß Place and Route Optimizations

2

Rincon Research Corporation - FPGA Development 5

Algorithmic Changes

ß Algorithms are generally developed to function on a
general-purpose computer
ß Sequential algorithms
ß Floating point precision
ß Memory access is either un-optimized or optimized for cache

accesses – but still sequentially
ß A sequential algorithm sees no difference between interacting with 1

or 1000 arrays of data

ß In order to work effectively in hardware:
ß Parallel algorithms

ß Stream of concurrent processes
ß Many identical components doing different solutions

ß Integer precision
ß Optimized for finite memory sizes and ports
ß Removal of processing “walls” where all processing is forced to

wait for the completion of an event before proceeding

Rincon Research Corporation - FPGA Development 6

LFSR Example

ß Fibonacci vs.
Galois Linear
Feedback
Shift Register
(LFSR)

Rincon Research Corporation - FPGA Development 7

Turbo Decoder Example

Rincon Research Corporation - FPGA Development 8

Architecture Choices

ß A Brief survey of Verilog blocking vs.
nonblocking assignments

ß Pipelining
ß Register Retiming

ß State Machine Implementations
ß Structure

ß Encoding

ß FPGA Details

3

Rincon Research Corporation - FPGA Development 9

Blocking vs. Nonblocking Assignments

ß Verilog has 2 types of assignments to a
register datatype
ß Blocking (a = b)

ß Nonblocking (a <= b)

ß Blocking Assignments
ß Performed immediately (simulation blocks)

ß Nonblocking Assignments
ß Performed after all active events in the event

queue

Rincon Research Corporation - FPGA Development 10

Simplified Verilog Simulation Reference
Model

In all the examples that follow, T refers to the current simulation time,
and all events are held in the event queue, ordered by simulation time.

while (there are events) {
 if (there are active events) {
 E = any active event;
 if (E is an update event) {
 update the modified object;
 add evaluation events for sensitive processes to event queue;
 }
 else { // this is an evaluation event, so ...
 evaluate the process;
 add update events to the event queue;
 }
 }
 else if (there are nonblocking update events) {
 activate all nonblocking update events;
 }
 else {
 advance T to the next event time;
 activate all inactive events for time T;
 }
}

Rincon Research Corporation - FPGA Development 11

References

ß Cliff Cummings - http://www.sunburst-
design.com/papers/
ß Nonblocking Assignments in Verilog

Synthesis, Coding Styles That Kill!

ß Verilog Nonblocking Assignments With Delays,
Myths & Mysteries

Rincon Research Corporation - FPGA Development 12

Difference between blocking and
nonblocking

always @ (posedge clk)
begin
 b = a;
 c = b;
end

always @ (posedge clk)
begin
 b <= a;
 c <= b;
end

b

c

a b ca

4

Rincon Research Corporation - FPGA Development 13

Pipelining via Register Retiming

ß Pipelining
ß explicitly by the designer

ß automatically by the synthesis tool

ß Consider a population counter

+

Rincon Research Corporation - FPGA Development 14

Population Count Example

module test (a, pop, clk, rst);
input [32:0] a;
input clk, rst;
output [6:0] pop;
reg [6:0] pop;

always @ (posedge clk or posedge rst) begin
 if (rst) begin
 pop <= 0;
 end
 else begin
 pop <= a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6] + a[7] +
 a[8] + a[9] + a[10] + a[11] + a[12] + a[13] + a[14] + a[15] +
 a[16] + a[17] + a[18] + a[19] + a[20] + a[21] + a[22] + a[23] +
 a[24] + a[25] + a[26] + a[27] + a[28] + a[29] + a[31] + a[31];

 end
end
endmodule

Rincon Research Corporation - FPGA Development 15

Population Count Pipelined (1)

 else begin
 p1 <= a[0] + a[1] + a[2];
 p2 <= a[3] + a[4] + a[5];
 p3 <= a[6] + a[7] + a[8];
 p4 <= a[9] + a[10] + a[11];
 p5 <= a[12] + a[13] + a[14];
 p6 <= a[15] + a[16] + a[17];
 p7 <= a[18] + a[19] + a[20];
 p8 <= a[21] + a[22] + a[23];
 p9 <= a[24] + a[25] + a[26];
 p10 <= a[27] + a[28] + a[29];
 p11 <= a[31] + a[31];
 q1 <= p1 + p2 + p3;
 q2 <= p4 + p5 + p6;
 q3 <= p7 + p8 + p9;
 q4 <= p10 + p11;
 r1 <= q1 + q2;
 r2 <= q3 + q4;
 pop <= r1 + r2;
 end
end
endmodule

module test (a, pop, clk, rst);

input [32:0] a;
input clk, rst;
output [6:0] pop;

reg [2:0]
p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11;
reg [4:0] q1,q2,q3,q4;
reg [5:0] r1,r2;
reg [6:0] pop;

always @ (posedge clk or posedge
rst) begin
 if (rst) begin
 pop <= 0;
 end

Rincon Research Corporation - FPGA Development 16

Population Count Pipelined (2)

 else begin
 p1 <= a[0] + a[1] + a[2] + a[3];
 p2 <= a[4] + a[5] + a[6] + a[7];
 p3 <= a[8] + a[9] + a[10] +

a[11];
 p4 <= a[12] + a[13] + a[14] + a[15];
 p5 <= a[16] + a[17] + a[18] + a[19];
 p6 <= a[20] + a[21] + a[22] + a[23];
 p7 <= a[24] + a[25] + a[26] + a[27];
 p8 <= a[28] + a[29] + a[30] + a[31];
 q1 <= p1 + p2 + p3 + p4;
 q2 <= p5 + p6 + p7 + p8;
 pop <= q1 + q2
 end
end
endmodule

module test (a, pop, clk, rst);

input [32:0] a;
input clk, rst;
output [6:0] pop;

reg [2:0] p1,p2,p3,p4,p5,p6,p7,p8;
reg [4:0] q1,q2;
reg [6:0] pop;

always @ (posedge clk or posedge rst)
begin
 if (rst) begin
 pop <= 0;
 end

5

Rincon Research Corporation - FPGA Development 17

Population Count Retimed

module test (a, pop, clk, rst);
input [32:0] a;
input clk, rst;
output [6:0] pop;
reg [6:0] pop;
reg [6:0] p1, p2, p3, p4;

always @ (posedge clk or posedge rst) begin
 if (rst) begin
 pop <= 0;
 p1 <= 0;
 p2 <= 0;
 p3 <= 0;
 end
 else begin
 p1 <= a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6] + a[7] +
 a[8] + a[9] + a[10] + a[11] + a[12] + a[13] + a[14] + a[15] +
 a[16] + a[17] + a[18] + a[19] + a[20] + a[21] + a[22] + a[23] +
 a[24] + a[25] + a[26] + a[27] + a[28] + a[29] + a[31] + a[31];
 p2 <= p1;
 p3 <= p2;
 p4 <= p3;
 pop <= p4; // pop <= p3; pop <= p2; pop <= p1;
 end
end
endmodule

Rincon Research Corporation - FPGA Development 18

Population Count Example Times

ß Solo pop count => 148 MHz

ß Pipelined version 1 => 296 MHz

ß Pipelined version 2 => 279 MHz

ß Retimed pop <= p4; => 308 MHz

ß Retimed pop <= p3; => 316 MHz

ß Retimed pop <= p2; => 328 MHz

ß Retimed pop <= p1; => 293 MHz

Rincon Research Corporation - FPGA Development 19

State Machines

ß Use one sequential always block for
next state assignment:
ß Typically 3 lines of code

always @ (posedge clk or negedge rst_n)
 if (!rst_n) state <= IDLE;
 else state <= next;

ß Put the state machine outputs in a
separate combinational always block

ß This 2-block style is efficient because
output assignments are only required to
be listed once for each state in the case
statement

ß Avoid Verilog race conditions
ß Code all sequential always blocks using

non-blocking assignments
ß Code all combinational blocks using

blocking assignments

Rincon Research Corporation - FPGA Development 20

State Machine Encoding

ß In Verilog, use parameters as state assignments rather than ‘defines
ß ‘defines are global
ß This avoids redefinition warnings when multiple state machines exist in

a compilation

ß Use one-hot encoding for high-performance state machines
ß This technique uses more registers, but simplifies next-state logic
ß That said, the number of excess registers is typically trivial when

compared to the controlled datapath

ß In Verilog, using reverse case statement ensures inference of
efficient comparison logic that only does 1-bit comparisons
against the onehot bits of the state and next vectors.

ß http://www.sunburst-design.com/papers/CummingsSNUG2003SJ_SystemVerilogFSM_rev1_1.pdf

6

Rincon Research Corporation - FPGA Development 21

Verilog one-hot encoding

module fsm_cc1_3oh (output reg rd, ds,input
go, ws, clk, rst_n);

parameter
 IDLE = 0,
 READ = 1,
 DLY = 2,
 DONE = 3;
reg [3:0] state, next;
always @(state or go or ws) begin
next = 4'b0;
case (1'b1)
 state[IDLE] : if (go) next[READ] = 1'b1;
 else next[IDLE] = 1'b1;
 state[READ] : next[DLY] = 1'b1;
 state[DLY] : if (!ws) next[DONE] = 1'b1;
 else next[READ] = 1'b1;
 state[DONE] : next[IDLE] = 1'b1;
endcase
end

always @(posedge clk or negedge
rst_n)

 if (!rst_n) begin
 rd <= 1'b0;
 ds <= 1'b0;
 end
 else begin
 rd <= 1'b0;
 ds <= 1'b0;
 case (1'b1)
 next[READ] : rd <= 1'b1;
 . . .

Rincon Research Corporation - FPGA Development 22

FPGA Details

ß 4-input LUT’s
ß Attempt to architect logic into a pipeline of 4-bit inputs

ß SRL/FIFO
ß Building shift registers or FIFO’s from LUT’s can be much

cheaper than “simpler” solutions using registers
ß An 8-bit shift register can be done in one LUT, but requires 8 flip-

flops + routing resources.

ß Carry-chains
ß Ripple carry adders are typically much faster in an FPGA than

an “faster” adder such as a carry lookahead as the carry chains
are built into the fabric of the FPGA

ß Block Rams
ß Multipliers
ß Power PC
ß ????

Rincon Research Corporation - FPGA Development 23

Implementation Choices

ß Duplicating Flip-Flops

ß Coding styles for speed

ß Selection instead of Evaluation
ß throw silicon at it

ß Instantiate Target Technology primitives

Rincon Research Corporation - FPGA Development 24

Duplicating Flip-Flops

ß High-fanout nets can be
slow and hard to route

ß Duplicating flip-flops can
fix both problems
ß Reduced fanout shortens

net delays
ß Each flip-flop can fanout to

a different physical region
of the chip to help with
routing

ß Design tradeoffs
ß Gain routability and

performance
ß Design area increases

7

Rincon Research Corporation - FPGA Development 25

Tips on Duplicating Flip-Flops (Xilinx)

ß Name duplicated flip-flops _a, _b: NOT _1, _
ß Numbered flip-flops are mapped by default into the same slice
ß You generally want duplicated flip-flops to be separated

ß Especially if the loads are spread across the chip

ß Explicitly create duplicate flip-flops in your HDL code
ß Most synthesis tools have automatic fanout-control features

ß However, they do not always pick the best division of loads
ß Also, duplicated flip-flops will be named _1, _2

ß Many synthesis tools will optimize-out duplicated flip-flops

ß Do not duplicate flip-flops that are sourced by
asynchronous signals
ß Synchronize the signal first
ß Feed synchronized signal to multiple flip-flops

Rincon Research Corporation - FPGA Development 26

Duplicating Flip-Flops Example

Rincon Research Corporation - FPGA Development 27

Duplicating Flip-Flops Example

Rincon Research Corporation - FPGA Development 28

Duplicating Logic

ß Similar to the above example, but rather than
simply duplicating flip-flops, sometimes it is
necessary to duplicate entire sections of logic

8

Rincon Research Corporation - FPGA Development 29

Coding Styles for speed

ß Avoid Nested IF and CASE Statements
ß Nested IF or CASE statements infer cascaded

logic

ß More levels of logic _lower performance

ß Evaluate late-arriving signals last
ß When nested IFs are necessary, put critical

input signals on the first (outer) IF statement
ß The critical signal ends up in the last logic stage

Rincon Research Corporation - FPGA Development 30

Select rather than Evaluate

ß Sometimes it is faster to select from all possible
outcomes than it is to compute the correct
outcome
ß Rather than wait for this 2-bit signal to arrive

acc <= acc + 2bit_signal ;

ß Compute all possibilities and use the control as an
output selector
o1 <= acc + 00;
o2 <= acc + 01;
o3 <= acc + 10;
o4 <= acc + 11;
case (2bit_signal) begin
 00: acc <= o1;
 01: acc <= o2;
 …

Rincon Research Corporation - FPGA Development 31

Instantiate when speed needed

ß Xilinx says …
ß Use instantiation only when it is necessary to access

device feather or increase performance or decrease
area

ß Limit the location of instantiated components to a few
source files to make it easier to locate these
components when porting the code

ß So, we use instantiation frequently
ß It is almost always necessary to increase

performance

ß Reusable code is a bit of a myth

Rincon Research Corporation - FPGA Development 32

Synthesis Optimizations

ß Pipelining
ß Certain tools allow automatic pipelining of

Xilinx multipliers and ROM’s

ß Retiming
ß We have discussed this

ß Overconstraining
ß Always overconstrain the synthesis tool as

they are never correct. Period.
ß Do not pass these constraints on to the layout

tools – use the correct constraints in layout

9

Rincon Research Corporation - FPGA Development 33

Place and Route Optimizations

ß Floorplanning
ß ENIAC example

ß RPM’s (relationally placed macros)

ß Custom Placement

ß Multi-Pass Place and Route

Rincon Research Corporation - FPGA Development 34

RPM’s

Rincon Research Corporation - FPGA Development 35

Summary

ß Algorithmic changes
ß By FAR, the most significant

ß Architecture choices

ß Implementation choices

ß Synthesis Optimizations

ß Place and Route Optimizations

