PROBLEM SET #5 Due Friday, May 6, 2005

Problems:

- 1. Consider a wire carrying the current $I(z) = I_0 e^{-jk_z z}$ for $\frac{-l}{2} \le z \le \frac{l}{2}$
 - (a) (7 points)For $k_z = k_0 \cos\theta_0$, determine the radiated field.
 - (b) (4 points)For $l = 10\lambda$, plot the ϕ -cut patterns (E-plane) with $\theta_0 = 0, 20, 45$. What is the role of θ_0 ?
 - (c) (4 points)Give the beamwidth for each of the patterns in part (b). Give a formula of the beamwidth of $\frac{1}{l}$ for $\theta_0 = 0$.
 - (d) (5 points)Give the directivity D_0 for $\theta_0 = 0, 20, 45$ and $l = 10\lambda$.
 - (e) (10 points)Consider the case of $l = 10\lambda$. Break the wire into 20 segments so that the entire wire can be thought of as a 20-element array. Give: (1) the progressive phase associated with this array in terms of θ_0 (2) the element pattern (3) the array factor (4) compare the array pattern with that from (b) with $\theta_0 = 0$, any difference? (5) Consider the number of full lobes and nulls in the pattern from (b), how do they compare with the usual array factor full lobes and nulls?
- 2. (10 points) Design a linear array of isotropic elements placed along the z-axis such that the zeros of the array factor occure at $\theta = 0, 60, 120$. Assume that the elements are spaced $\lambda/4$ apart and that the progressive phase shift between them is 0.
 - (a) Find the required number of elements
 - (b) Determine their excitation coefficient
 - (c) Write the array factor and plot it to verfiy your design.

hint: think in complex plane

3. (5 points) Stutzman & Thiele, Problem 5.4-8.