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Toward the Development of a Three-Dimensional
Unconditionally Stable Finite-Difference
Time-Domain Method

Fenghua Zhengstudent Member, IEEEZhizhang ChenSenior Member, IEEEand Jiazong Zhang

~ Abstract—in this paper, an unconditionally stable three-dimen-  |utions. As a result, computation efficiency becomes the bottle-
sional (3-D) finite-difference time-method (FDTD) is presented neck for the further applications of the FDTD method.
where the time step used is no longer restricted by stability but by Theoretical studies on the FDTD show that the intensive

accuracy. The principle of the alternating direction implicit (ADI) : . .
technigue that has been used in formulating an unconditionally memory and CPU time requirements mainly come from the

stable two-dimensional FDTD is applied. Unlike the conventional following two modeling constraints ([2] and references therein).
ADI algorithms, however, the alternation is performed in respect 1) The spatial increment step must be small enough in com-

to mixed coordinates rather than to each respective coordinate di-
rection. Consequently, only two alternations in solution marching
are required in the 3-D formulations. Theoretical proof of the un-

conditional stability is shown and numerical results are presented

to demonstrate the effectiveness and efficiency of the method. It is

found that the number of iterations with the proposed FDTD can

parison with the smallest wavelength (usually 10-20 steps
per smallest wavelength) in order to make the numerical
dispersion error negligible.

2) The time step must be small enough so that it satisfies the
following Courant stability condition:

be at least four times less than that with the conventional FDTD at

the same level of accuracy. 1 1 1 1-v2
U’HlaXAt S +

Ax?  Ay? + Az?

1)

Index Terms—Alternating direct implicit (ADI) technique,
FDTD method, instability, unconditional stable.
with u,,,,, being the maximum wave phase velocity in
the media being modeled. If the time step is not within
the bound, the FDTD scheme will become numerically

HE finite-difference time-domain (FDTD) method [1] has unstable, leading to an unbounded numerical error as a
been proven to be an effective means that provides accu- EpTD solution marches.

rate predictions of field behaviors for varieties of electromag- 1o circumvent or relax the above constraints, various
netic interaction problems. The FDTD is formulated by directhyme-domain techniques have been developed [3]-[8], resulting
finite-differencing Maxwell's equations, which leads to a rey the improvement of the computation efficiency. Along the
cursive time-marching algorithm where the field solution at thgye of relaxing the first constraint, multiresolution time-do-
current time step are deduced from the field values at the pgain (MRTD) method was proposed by Krumpholz and Katehi
vious time steps. The basic theory and applications of the FD'[Q_ Through the applications of orthonormal wavelet spatial
method are well described and can be found in [2]. expansions to Maxwell’'s equations, MRTD scheme can reduce

In general, FDTD is simple and flexible. It can be usegymerical dispersion significantly. The spatial discretization
to solve various types of electromagnetic problems, such @sgjution can be made as low as two grid points per wave-
a_misotropic_ and nonlinear problems. M(_)reovgr, since it is_lé‘ngth, leading to a large saving in computation memory.
time-domain method, one single run of simulation can providgmilarly, another technique, the pseudospectral time-domain
information over a large bandwidth when the excitation iGPSTD) method, was also developed recently [6]. By using the
chosen to be of large bandwidth. fast Fourier transform (FFT) to represent spatial derivatives, the

Despite its simplicity and flexibility, the FDTD applicationSpsTp method can also achieve a spatial grid of two points per
have been limited to solving electrically small structure prOt?/vavelength while maintaining a high accuracy. Nevertheless,
lems. The main reason is that the FDTD is not yet a COMPUi@- poth cases, the Courant stability conditions remains. For
tionally efficient technique. For an electrically larger problemyrTD, the stability condition becomes even more stringent.
it requires large memory and CPU time to obtain accurate Spne time-to-spatial step ratio becomes five times less than that

with the conventional FDTD.
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three coordinate directions (namely,y, or ). The scheme re- In the same way, the second curl vector equation for an isotropic
quired three implicit substep computations for each FDTD reaedium with the medium permeabiligy

cursive cycle and it was never found to be completely stable

without adding significant dielectric loss. In 1990, a specially 9H

designed two-dimensional (2-D) FDTD algorithm, which em- VXE=—p—_o- (4)
ploys time steps larger than those allowed by methods with ex-

plicit time advancement, was presented in [8]. Nevertheless gn be split into three scalar equations
is based on a new staggered grid different from Yee’s and tﬁe P q

grid points and field components are twice of the Yee's on a

body surface. Consequently, the method consumes more com- OH, 1 <3Ey _ 3Ez> (52)
puter memory and computation resources. Very recently, a new ot p\ 9z ay
2-D FDTD algorithm free of the Courant stability conditions 0OH, 1 /(0E. OF,
was proposed for a 2D-TE wave [9]. The ADI method [11] was ot o < or Oz ) (50)
again applied [7]. The resulting FDTD formulation was found to OH. 1 [OE, OE
be unconditionally stable. Consequently, the second constraint 8t~ = " < oy a—;) . (5¢)

of the FDTD modeling is completely removed. The selection of
the FDTD time step is now only dependent on the model accu-
racy. Denote any component of the field, (¢, x, y, z) in a discrete

In this paper, the ADI principle as applied in [8] is extende8Pace as
to three dimensions, andlaree-dimensiond[3-D) finite-differ-
ence time-domain (FDTD) method that is free of the Courant Fo|?in = Fa(nAt iz, jAy, kAZ)
stability condition is consequently developed. Different from -
the conventional ADI application as appeared in [7] and [9], the
ADI here is applied in respect to the sequence of the terms WRere« = z,y, or z,n, ¢, j, k are time and space indexes¢
the right-hand sides (RHSs) of the Maxwell's equations. It théfthe time step, andz, Ay, Az are the spatial increment steps
leads to onlytwo alternations in the computing direction rathe@long thez, y, z directions, respectively.
than three alternations with the conventional ADI [7]. More- Consider (3a). By applying the ADI principle that is widely
over, analytical proof of the unconditional stability is providedised in solving parabolic equations [11], the computation of
and numerical experiments that verify the proof are shown. Thga) for the FDTD solution marching from theth time step
time step in the proposed FDTD can now be much larger thighthe(n + 1)th time step is broken up into two computational
that with the conventional EDTD. subadvancements: the advancement from the nth time step to the

The paper is organized in the following manners. In Se€z+1/2)thtime step and the advancement from(the-1/2)th
tion 11, the formulations of the proposed FDTD are described. fine step to thén + 1)th time step. More specifically, the two
Section Ill, the unconditional stability of the proposed schenfalbsteps are as follows.
is shown. In Section IV, the numerical results are presented. Fi-1) For the first half-step (i.e., at the + 1/2)th time step),
nally, in Section V, discussions and conclusions are made inre-  thefirst partial derivative on the RHS of (3a)H. /9y, is
spect to the future directions of the research in the area. replaced with an implicit difference approximation of its
unknown pivotal values &t + 1/2)th time step; while
the secondpartial derivatives on the RH®,H, /0%, is
replaced with an explicit finite difference approximation

For simplicity, let's consider an isotropic medium with in its known values at the previoush time step. In other

Il. PROPOSED3-D UNCONDITIONALLY STABLE FDTD SCHEME

the medium permittivitye. The first curl vector equation of words
Maxwell’'s equations
"+% n
Eo |i+§,j,k — ks |i+§,j,k
OE At/2
_1 Helipfepn = Helind oy
can be cast into three scalar partial differential equations in the € Ay
Cartesian coordinates
ey T H ey ©
0FE, 1(0H. &H, (33) Az
ot e\ 9y dz
OB, _ 1 <3Hw _ aHz) 3b)  2) For the second half time step (i.e., @t + 1)th time
gt e\ Oz dz step), the second term on the RHB, /9=, is replaced
OE. 1 (0H, OH, 3c with an implicit finite-difference approximation of its un-
ot e\ odx oy )’ (3¢) known pivotal values gt + 1)th time step; while the first
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term,dH . /dy, is replaced with an explicit finite-differ- grid positions being the same as those with the conventional
ence approximation in its known values at the previodsDTD of the Yee's scheme.

(n + 1/2)th time step. In other words Note that the above ADI procedure is different from the

. conventional ADI procedure in [7] and [9]. In the conven-

L, |;fj in— Ea |?:fj X tional ADI procedure, the alternations in the computation di-
= 7At/2 = rections are made in respect to the three spatial coordinate
L L directions. In the 2-D case, there are two spatial coordinates,

1 | H- I?:;H%’k —ny2Hz IZEJ_%’,C e.g.,z and y. Therefore, the computations are broken into
=z Ay two substep computations for each temporal cycle (or each
time step) (e.g., [9]). The first substep computation is per-

L _ g |t formed in respect to the direction, while the second com-
_ Vlidgakty Ylitgdkog | (7) putation is performed in respect with thedirection. In the

Az 3-D case, the computations are broken up into three substeps

for each cycle since there are three spatial coordinates,

Note that the above two substeps represent the alternationanial » (e.g., [7]). In the proposed method, however, the ADI
the FDTD recursive computation directions in the sequenceigfapplied in terms of the sequence of the terms on the RHS
the terms, thdirst and theseconderm. They result in the im- of the equations (thdirst and thesecondterms), rather than
plicit formulations as the RHSs of the equations contain the field terms of the coordinate directions. It then leads to only
values unknown and to be updated. The technique is then terra@d alternations in the computation directions in three dimen-
“the alternating direction implicit” technique. Attention shouldsions. As a result, at each substep, the computations are per-
also be paid to the fact that no time-step difference (or laggin@rmed in respect to all the three coordinate directions but
between electric and magnetic field components is presentwith different terms or components. For instance, in (8), one
the formulations. can see that{ z, Hx, and Hy are implicitly computed in re-

Applying the same procedure to all the other five scalar digpect to thez,y, and =z directions, respectively, while in (9)
ferential equations as described in (3) and (5), one can obtgiey are explicit for those directions.
the complete set of the implicit unconditionally stable FDTD Equations (8) and (9) can be further simplified for efficient
formulas. computations. For instance, consider (8a) where both sides con-

For the advancement from theth time step, the FDTD tain the unknown field components. By substituting the expres-
equations are listed at the bottom of this page as (8a)—(&fons forH. |7:(11/22)),+ /2y @NAH. |7:(11/22)>J (1/2).1 TEPTE-

For the advancement from the + 1/2)th to the (n + 1)th  sented by (8f) into (SaS one can obtain
time step, the FDTD equations are listed at the bottom of
the following page as (9a)—(9f). The notatios, |?'; , and < At? ) |n+% n < n At? ) |n+%

H, | Fik with « = z, %, » are the field components with their — 4pe Ay Zlitg,i+1k 241 Ay Zlitd 5k

E |”’+% —E, " [ H |”’+% _H |"+% H, —H, "
“livg gk TP likg gk 1Pl p e T R i gLk Vit ggkty — Y litg k=1 8
At/2 T Ay - Az (8a)
nty n i n+3 _ nt3 n n
Byligfon = Boliman 1 [Heligfiags —Heli iy By ipan —H:ly ji1a o
At/2 T e Az B Az (8b)
n+g n n+y _ n+z n _ n
E. |i,j,k+% E- 13y, k3 1|7y |i+%,j,k+§ Y |z——,1 k+g A |i,j+%,k+§ He |m’—%,k+§ (8¢)
At/2 T e Az Ay
H |"+% —H,|" E |"+% _E |"+% B |n _E |n
Flijtg.kts “ligrg ks 1| TV lijg e Y0tk Fli g+l ktg Ykt ad
At/2 Iy Az B Ay (8d)
Hy [ s = Hul? (B~ B lTEy Belyan B
Ylitggkts Y0idggkts 1| T lingeay T F ikt Plitgog kel TP it gk 8
At/2 = Az B A~ (8e)
|"+% —H.|? _E |"+% _ |"+% E |n - E |n
#lit g g+4 .k Alivd g4t 1 7o lipd 0 ™ T lipl ik Ylitr+5.0 — TV Iii4dk af
At/2 T Ay B Az ' (8
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(AP gt Here, vectoiX™ is a one-column vector containing all the field
4pe Agy? Firdii-vk components at theth time stepM, M-, P, andP- are the
" At " " coefficient matrices with their elements related to values of spa-
:Ea;|‘l,"+—(Hz|‘l,'lA_HZ|‘l,',l ) i
i+3.0k T 2e Ay i+5.i+g.k itz.J—g.k tial and temporal steps. They are all sparse matribés.and
At M, are associated with the LHS of (10) whi, andP, are
——HIM,»J—HIM,»‘_& i i i
26Ny \Y litL gkt ylipl k-1 associated with the RHS of the equations. As can be seen from
A#2 N N (10), each row oM ; andM- contains only three nonzero ele-
- m (Ey |i+1,j+%,k - By |i,j+%,k ments at maximum. Maxtrix operations on them can be fast, in

particular, the inverse d¥1; and M.
Recursive (11) and (12) can be solved either implicitly or ex-
plicitly. Since the inverse of the sparse mafik, andM; can

) ) be found relatively easily, an explicit method is used in our case.
In it, all the field components on the RHS are of known valuegnat is

at the previous time steps, while the field components on the

- Ey |?+17j7%7k + Ey |?;—%k) : (10)

left-hand side (LHS) are of the same field componét, but Xn% =M['P,; X" (13)

at three adjacent grid points. . _ X, 1 = M;PQX”JF%' (14).
The same procedures can be applied to (8b)—(9f) and sim-

ilar equations can be obtained for the other field componengembination of the above two equations reads

Another easy way is to permute the indexes of the (10). The

resulting equations form a linear system of equations that can X"t = M;'PoMT P X (15)

be solved with available numerical packages. In the following
paragraphs, we will describe the approach to the solutions i®&a

matrix form.

Xn+l — AX"

In general, (10) and the other similar equations for other field

components can be summarized a matrix form

M, X"t = P, X"

(for advancement fromth to (n + 1/2)th time step  (11)
M, X"+ = PyX"t2

(for advancement frorfn + 1/2)th to (n + 1)th time step.

with A = M, 'P,M['P;.

In an actual simulation, (13) and (14) are computed succes-
sively to each other. HoweveV/;* or M; ! may not be needed
for calculating all the field values. They may be used only to
calculate the field values at the two left-most grid points. For
example, consider (10}, * can be used only to calculate, via
(13), the left-most values of,., say atj = 0 andj = 1 at
the (n + (1/2))th time step. The rest of thE,’s can then be

(12) calculated by applying (10) with a sequence of ascengifgt
n+1 _ "+% B "+% _ "+% n+1 _ n+1
Eo iy jo = Belig L0 _ 1 Bl Ly = Helig o _ Hylivs jars ~ Halids jues (9a)
At/2 € Ay Az
n+1 - n—l—% r Tl-l—% _ Tl+% n+1 _ n+1
By lijzn — B |m’+§,k _ Ll |z‘,j+§,k+§ - |m’+§,k—§ _ AT i1 #lil 41k (9b)
At/2 € Az Az
n+1 _ "+% "+% _ "+% n+1 _ n+1
E: igkty — mH3TE |i,j,k+§ I |i+%,j,k+% Hy |z‘f%,j,k+% TPl kg He |i,jf%,k+% (9c)
At/2 € Az Ay
n+l _ |n+% |n+% _ |n+% n+l _ g |ntl
i 43 k5 lij+iets 1 Y44, k41 Y0lig+gk  TFlij+Lk+5 # gkt (9d)
At/2 7 Az Ay
n+1 _ n—l—% B Tl+% _ n—l—% n+1 _ n+1
H,y i+l g+l H,y |i+§,j,k+§ _1 B, |z‘+1,j,k+§ z |z‘,j,k+§ _ By itd 5kt By itk (9e)
At/2 i Az Az
H. n+1 _ 3 |"+% _E |"+% _ |"+% n+1 _ n+1
livdgrd ke TAlirdged e L | TE i gtk T TP i gk Y ikl kT Y ik of)
At/2 7 Ay Az
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allows us to findF,, atj + 1 from E,s atj andj — 1. In such where
a way, for most of the computations, we avoid the application

¢ : W, W e
qf Mfll t.hat is not necgssanly very sparse. Thus, the computa- Q% e 0 7 0 f:g; ;Tyy
tion efficiency can be improved. In addition, after all the elec- 0 1 We Wy  —jWe 0 iWe
tric field components are obtained, magnetic field components W, W %” ”f‘ ;va_”; —jW, ng
can be calculated directly from (8d)—(8f) and (9d)—(9f) with the, | — | #<@Q- _w ]% 6% w‘?Q.I/,
electic field components already updated. ’3 nQ. H%i 2P peQ.
FALE 0 —iW, Ve Wy 1 0
HQo HQo HeQy Qo
[ll. STABILITY ANALYSIS OF THE PROPOSEDFDTD SCHEME —iWy iWe 0 0 W.-Wy 1
L HQy HQy HEQy Qy -
Generally, for a recursive scheme or system At . (kAo
Wa:A—-Sln > , a=ux,,7
X"t = A X" (16) “ 2
Qa:]-"’__av X =2x,Y,%
its numerical stability can then be determined with the so-called e
Fourier method as described in [10]. In it, instantaneous valugﬁd
of electric and magnetic fields distributed in space across a grid
are firstFourier-transformed into the waves in the spatial spec- Xrtl — A, . XPt3 (19)
tral domain to represent a spectrum of spatial sinusoidal modes.
Then, by checking the eigenvalues of thavith the spectral-do- where
main waves in the system, one can determine the stability condi- o w W )
tions of the system. If magnitudes of all the eigenvalues are less & 0 VLCS OQQ/;‘ ;Q;”
than or equal to unity, the scheme is stable. If one of them is Wo W, 1 0 —iW. 0 iWe
larger than one, the scheme is potentially unstable Foueier ”fﬂ W?%: 1 ;5%3 W, °§w
method is applied in this paper and the analysis is presentedyin— neQy @y cQy cQy
he following paragraphs 0 =i L & = 0
the ing paragraphs. _ nQy 1Qy Q  neQy o
Assuming the.spa.ual freque_nmes tobg k,, aqdkz along . % 0 —ag’m 0 QL W;-Wy
the z,y, and z directions, the field components in the spatial f}w?y JWe “0‘ 0 W, W, ”"_‘
spectral domain can be writen as L 1Qa 1Qx 1eQy Q. A
B, _ g ilke (i 1) Anthyj Ayt kA2) (17a) Substitution of (18) into (19) reads
Tlitz.5k T
T N ) X" = AF" = A ;X" (20)
Ez n - E™ —j(inAJ;—l—kyjAy-i—k;(k-i—%)Az) 17 ] )
|w,k+% =¢ o o ) (17c) With the use of Maple V5.2, we can obtain (21), shown at the
Hy |71 gy = Hpe /eisethUha)duthe(bt3)a2) bottom of the next page, where
N Tt
(17d)
Hy |y o0y = Hie 30D A0H, Atk (k1) A2) W =W, W,W,
RS w7e) Ay = 1P e (WEWGWE) + WIWS W2
Ho|P 1, = HP om0 (D) Avt, (i) Ay+k-kiz) Ap =y’ + e (WiW2IWT) + WIWIW?
it35.0+35.k z ’ _ 3.3 2.2 274721472 290721472
its 70 Ag = % + pPe® (W2W2IWT) + WIW W,

Substitution of these equations into (8) and (9), respectively,
can lead to (16) in the spatial spectral domain in terms of
ka, ky, k-, At, Az, Ay, andAz.

Denote the field vector in the spatial spectral domain as

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48,

By = e (WiW, — W.W2 — W2W32)
By = pe (WyW2 — WZW2 — W2W,)
By = pe (W2W2 - WiW? - W2W?)
Dy =W, (W2W?2 - i2e?)
Dy =W, (WiW7 — i*e?)

NO. 9, SEPTEMBER 2000

E™ 27772 2 2
o Dy =W, (W2W; — pe%) .
ZTJL
X" = ffn The eigenvalues oA can then be found, again with the help of
x MAPLE, as
HY
H A=A =1
Then the time-marching relation can be written in a matrix form Ag = As = VR2 — 5%+ 585
as ° R
X ., VR2-52_;S
X"t = Ay - X7 (18) A== =—""7—"— (22)

R
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with R and .S shown at the bottom of this page. The first two
eigenvalues obviously have magnitude of unity. The other fou
eigenvalues have also magnitudes of unity. This is becBuse
S and the square roots in the numerator of the expressions ft
Az, A4, A5, and Ag become real numbers. Therefore, we con-
clude that the proposed FDTD scheme is unconditionally stabl
regardless of the time steft. The Courant stability condition
is then removed.

For reference, the eigenvalue expressions output directly b
the MAPLEV5.2 we used is listed in Appendix. They are basi-
cally the long forms of (22).

IV. NUMERICAL RESULTS

To demonstrate the validity of the proposed FDTD method
an inhomogeneous rectangular cavity used in [5] was compute
with both the prOpOSE.!d FDTD ?‘nd th.e Co.nventlonal FDTD. ThF(?g. 1. Cavity half filled with air and the other half filled with dielectric
geometry of the cavity is depicted in Fig. 1. One half of thg jicrial.

cavity is filled with air and the other half with the dielectric

material of a relative permittivity of,. = 64. The cavity has the \ypjle the proposed FDTD remains with the stable solution [see
dimension ofl m x 2m x 1.5 m. For both the proposed FDTD iy 2(1)]. We also extended the simulation time to a much long

and the conventional FDTD, a uniform mesh willi = 0.1 M period with the proposed scheme. No instability was observed.
was used, leading to a mesh of £®0 x 15 grid points.

B. Numerical Accuracy Versus Time Step

A. Numerical Verification of the Stability Since the proposed US-FDTD is now proved to be always

Although we have theoretically proved that the proposedable, the selection of the time step is then no longer restricted
FDTD is unconditionally stable regardless of time step, numdry stability but by modeling accuracy. As a result, it is inter-
ical verification is necessary to confirm the theoretical resuksting and meaningful to investigate how the large time step will
Simulations were run for the inhomogeneous cavity with botiffect accuracy.
the conventional FDTD and the proposed FDTD having a time For the comparison purpose, both the conventional FDTD and
step that exceeds the limit defined by the Courant conditigmoposed US-FDTD were used to simulate the cavity again. This
(1), Atpprpmax = (Al/ev3) = 1.92 x 1071° s in our case. time, the time ste@\tppp = 1.5 x 1071° s was chosen and
Fig. 2 shows the electric field recorded at the center of tHizked with the conventional FDTD, while the different values
cavity. Atpprp = 2 x 10'° s was used with the conventionalof time stepAt; were used with the proposed FDTD to check
FDTD while a 100 times larger time stey¥; = 200 x 10~1° ps  for the accuracy. Table | presents the simulation results for the
was used with the proposed FDTD scheme. As can be seen,dbeinant mode in the cavity. As can be been, the relative er-
conventional FDTD quickly becomes unstable [see Fig. 2(ajprs of the proposed FDTD increase with the time step. These

rA1+B; 2ueW, W,  2usW,W. —2juW 2jpleW, 2ipuD1
QR QyQ: QaQy QyQ: QaQy QyQ: QRaQy Q=
2peW, Wa As+Bs 2peW, We 2jpW 2jp’eW,
Q:Qu QReQyQ: QyQ: Qy Q= Q:Qu
QW W, 2ueW. W, As+Bg 2j =W, 2juDs —2juW
A — Q:an Qnto Qn:QyQ: Qn:Qy anQyQ: Q:Qn‘, (21)
—2jeW 2jeDs 2j e W, A +Bs 2ueWL, W, 2usW, W,
Q:Q: QReQyQ: QyQ- QReQy Q= QyQ- Q:Qx
2jpu? W, —2jeW 2jeDs 2ueW, W, As+By 2peW, W,
Q:Qx QyQa QR2QyQ:x QaQy QR2Qy Q- Q:Qa
2je D, 2jue’ W, —2jeW 2ueW. W, 2usW, W, Az+By
- Qa:QyQ: Qa.Qy Q:Qy Qa.Qy QyQ: Qa:QyQ: =

R = (ue+ W) (ne + W) (pe + W2)
8 = \fAe (W2 + peWg + peW2 + W2WE + WEW2 + W2W2) (u3e*W2W2IW2)
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TABLE I
COMPARISONS OFRESULTS WITH CONVENTIONAL FDTD AND
PROPOSEDUS-FDTD

Analytic | Conventional FDTD scheme Proposed US-FDTD scheme
Results Simulation Relative Simulation Relative
(GHz) results (GHz) error results (GHz) error
18.627 18.587 021% 18.610 0.11%
27.172 27.046 0.46% 27.12 0.19%
29.374 29.155 0.88% 29.225 0.51%
32.881 32.626 0.77% 32.671 0.64%
35.069 34.832 0.67% 34.946 0.35%

errors are completely due to modeling accuracy of the numer-
ical algorithm, such as the numerical dispersion. The tradeoff
to the increased errors is, however, the reduction in the number
of the iterations and therefore the shortening of the CPU time.
In our experiments, for an error of 0.38%, the CPU time with
the proposed FDTD is about half of that with the conventional
FDTD, and for an error of 0.62%, the CPU time is cut to one
third of the conventional FDTD time. Note that the increase in
the time step or the reduction in the number of the iterations is
not linearly proportional to the shortening of the CPU time. The
reason is that the CPU time required for each time-step compu-
tation with the proposed FDTD is more than that with the con-
ventional FDTD since the more components are involved in the
computations [as seen from (10)].

Fig. 3 illustrates the relative errors for the dominant mode
of the cavity computed using the conventional FDTD and the

Fig. 2. Time-domain electric fields at the center of the cavity recorded wifgroposed FDTD with variable time steps. For clarity, relative
the conventional FDTD and the proposed US-FDTD. (a) Conventional FDT@me'StepAt/AtFDTDl\mx is used. As can be seen, at low

solutions that become unstable witht; = 2 x 10-'° s. (b) Proposed
US-FDTD solution withA¢; = 200 x 10719 s.

TABLE |
PROPOSEDUS-FDTD SMULATION RESULTS WITH DIFFERENT At

Analyt The proposed US-FDTD scheme

fcal Aty =4ty Aty = 6ALpy, Aty =8,
R;s:[lt Result Relative Result Relative Result Relative
MHZ) | (Mg error (MHz) error (MHz) error
18.627 18.587 021% 18.556 0.38% 18.511 0.62%

Unstable point
of FDTD

-
»

—e—US-FDTD
——FDTD

Relative Error (%)

0 1 2 3 4 5 6 7

Relative time-step (At ] Aty opax )

Fig. 3. Relative errors of the conventional FDTD and proposed FDTD as tl
function of relative time step\¢/Atrprnumax. Dashed line represents the

unstable point of the conventional FDTD scheme.

At/AtrprpMax, the errors of both the conventional FDTD
and the proposed FDTD are almost the same. However, after
At/Atpprpmax = 1.0, the conventional FDTD solutions
diverge (become unstable) while the proposed FDTD continues
to produce stable results with increasing errors that may or may
not be acceptable depending on the applications and users
specifications.

C. Computational Expenditures

Since the Yee’s grid is used with the proposed FDTD method,
the number of field components at all the grid points is the same
as that with the conventional FDTD. As a result, the memory
requirement is in the same order as that for the conventional
FDTD method.

On the other hand, as indicated in (10), more components are
involved in the recursive computations at each time step with
the proposed FDTD method. The CPU time for each time step
with the proposed FDTD is then larger than that with the con-
ventional FDTD method. However, since a larger time step can
be used with the proposed FDTD, the total number of iterations
required with the proposed FDTD could be reduced. The op-
posite effects of the more CPU time for each time step and the
reduced number of iterations on the overall CPU time need to be
studied, in particular, numerically. In the following paragraphs,
a preliminary numerical experiment is presented.

Again, for the comparison purpose, both the proposed FDTD
and the conventional FDTD were used to simulate the cavity.
Yhis time, the time step\tpprp = 1.5 x 10712 s was chosen
with the conventional FDTD, while\t; = 4 X Atpptp =
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6 x 1071% swas chosen with the proposed US-FDTD. With sucult in an efficient FDTD algorithm that can handle electrically
time step selections, we found, by trial and error, that the targe electromagnetic structures effectively in the near future.
methods presented similar accuracy. Therefore, the two methods
can be compared in a fair manner. Twenty—thousand iterations APPENDIX
were run with the conventional FDTD method, and 5000 it- _ .
erations with the proposed FDTD. The iterations present theThe eigenvalues directly output by Maple V5.2.
same physical time period since the time step with the proposed
FDTD is four times of that with the conventional FDTD. Table Ih = A2 = 1
shows the first five resonant frequencies obtained with the twg — 1/25(=2*Wy 2*Wa 2% *e — W 2 it e* W a2
methods. The errors for the two methods are at the same level. T S S S S SRy S (e

On a Pentium-Ill 450-MHz PC, it took 545.83 s to finish the i Aok Aok A
simulation with the proposed FDTD and 873.34 s with the con-  — 2 W2 27172772
ventional FDTD. We then concluded preliminarily thatasaving — 2" Wy \2"u"e" W22 + 2" Wy 2" Wz 2" W 2"2
factor with the proposed FDTD in CPU time is about 1.6 when  x 2*17 2%, 2% 2 + 4*

the conventional FDTD is used as a reference. X Sqrb(—p 4 MW 2 W 2
— NSNS W N2 — N2 N W M Wy N 2T W 22
V. DISCUSSIONS ANDCONCLUSIONS NSNS W2 — N5 NS W2
In this paper, a new 3-D FDTD free of the Courant stability = — p2*"2*W 2 2* Wy 4* W 2”2

pondition is pre.selnted for solving electromagngtic prob_lem.s.lln — NN W N2 W2
it, the Yee’s grid is used but the alternative direction implicit At At Trr AeETrr A
. . - : ; — p AWy 2" W2
technique is applied in formulating the algorithm. As a result, A e A ecrr A A . v A evir A nerr A
the memory requirement remains in the same order as that for — # 47¢"4 Wat2"W2"2 — W2 Wa "Wy ™2
the conventional FDTD while the time step is no longer re-  — p*e* W2 2"Wy 4*Wz"4
s;ri(r:]ted by the ||1umehrical sta?ility tljut byfth? rfr]]odeling 3ccuralcy — EW WY AW 2)) (1373
of the FDTD algorithm. Analytical proof of the unconditiona Aoyt A TTr A Aoyt # AT A Ay
stability is shown and numerical verifications are presented to + WZA2*“ *5 Wa 2/\+*Wj\y*2/\li € WA/Z* 2/\+*Wy/\2
demonstrate the validity of the proposed method. Preliminary X Wa"2 e + Wy 2" " 272 4 272" Wa™2
experiments indicated that with the same accuracy, the proposed + W 22", 2%e"2 + Wy 2" Wz 2*W 2" 2)
method uses four times fewer iterations and is 1.6 times fasfgr— \x
than the conventional FDTD. . _ s = 1/2° (=2 Wy 2" W 2" e
The work of this paper, together with the earlier work reportéd e Ak e e A . Aex A
by Nakimi and Ito [9], has presented a new direction in the — 2 W2 27 e"Wan2 4+ 277373
continuing effort of the electromagnetic modeling community — — 2% 2" 2* W2 — 2*W /2% 2% "2
tpward improving computational efficiency of the FDTD algq— — VW2 W2 4 Wy N2 W N2 W 22
rithms. It can be expected that because of the removal of the time wTrr Aeyk Aok A "
. . . . . —2"Wy2 2% e"2 44
step constraint in terms of the numerical stability, various effi- N A Aai A
cient modeling techniques, such as multigridding scheme, can X sart(—p" 47" 4" Wy 2" W 272
be implemented in an easier way. As to the future directions, — p"*5%e"5* W22 — p 2% " 2* W A* Wy 2" W 22
since the time step is now solely determine_d by th(_a accuracy  _ A5t N5 Wyt 2 — N5 N5 W2
of the model, naturally, the subsequent yvork is: 1) to mvgstlggte 2R N W MW 22
the errors of the proposed model (in particular the numerical dis-
i i i — p 2N W AW N 2 Wy 2
persion properties) and 2) to develop an advanced model with H ¢ Y
higher accuracy. One of the possibilities of having an advanced — p 4" 4* Wy 2*Wz"2 — 4 e " W 2" W 22
model with smaller errors is to incorporate_ the MRTD principle  _ | * WAL W N Wy 2
into the proposed FDTD .scheme. By doing so, it is expecteq W AW MW M
that the time step can be increased to a much large value while . e A kA e A R
the solution errors remain small because of the high accuracy of — #'¢ Wz 4"Wy 4" Wz 2))/(u"3%€"3
the MRTD model. In addition, since the MRTD allows the use ~ + W2 2*u*e*Wa 2 + Wy 2" /" e* W22 + Wy 2"
of the number of the gird points much smaller than that forthe  x W2 2% )% e + Wy 2" 272 + 127 N2 W2
conventional FDTD, the combined saving in time with the pro- Aok Ak A Ak Ak A
. S . W22 252+ Wy 2" W 2" W22
posed method and in the grid size with the MRTD could be very +* A Ee s+ Wy * #2)
significant. The investigation along this line is currently undeys = As
way in our group.
In conclusions, the techniques such as MRTD opened a wakiere
for reduction in required computation memory while the pro-
posed FDTD and the work in [9] presented a way in shortening At s <kaAa>
- Sin s a=x,Y,2.

the CPU time. Incorporation of both techniques could well re-
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The first two eigenvalues are unity. Their magnitudes are or
For the other four eigenvalues, the arguments inside the squ
roots in the numerators are all negative numbers. As a result,
numerators are complex numbers. By taking the magnitudes
the numerators with MAPLE, we find symbolically that theil
values are exactly the same as the denominators. As a result,
magnitudes of the eigenvalues are unity.
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