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Abstract—In this paper, an unconditionally stable three-dimen-
sional (3-D) finite-difference time-method (FDTD) is presented
where the time step used is no longer restricted by stability but by
accuracy. The principle of the alternating direction implicit (ADI)
technique that has been used in formulating an unconditionally
stable two-dimensional FDTD is applied. Unlike the conventional
ADI algorithms, however, the alternation is performed in respect
to mixed coordinates rather than to each respective coordinate di-
rection. Consequently, only two alternations in solution marching
are required in the 3-D formulations. Theoretical proof of the un-
conditional stability is shown and numerical results are presented
to demonstrate the effectiveness and efficiency of the method. It is
found that the number of iterations with the proposed FDTD can
be at least four times less than that with the conventional FDTD at
the same level of accuracy.

Index Terms—Alternating direct implicit (ADI) technique,
FDTD method, instability, unconditional stable.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method [1] has
been proven to be an effective means that provides accu-

rate predictions of field behaviors for varieties of electromag-
netic interaction problems. The FDTD is formulated by directly
finite-differencing Maxwell’s equations, which leads to a re-
cursive time-marching algorithm where the field solution at the
current time step are deduced from the field values at the pre-
vious time steps. The basic theory and applications of the FDTD
method are well described and can be found in [2].

In general, FDTD is simple and flexible. It can be used
to solve various types of electromagnetic problems, such as
anisotropic and nonlinear problems. Moreover, since it is a
time-domain method, one single run of simulation can provide
information over a large bandwidth when the excitation is
chosen to be of large bandwidth.

Despite its simplicity and flexibility, the FDTD applications
have been limited to solving electrically small structure prob-
lems. The main reason is that the FDTD is not yet a computa-
tionally efficient technique. For an electrically larger problem,
it requires large memory and CPU time to obtain accurate so-
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lutions. As a result, computation efficiency becomes the bottle-
neck for the further applications of the FDTD method.

Theoretical studies on the FDTD show that the intensive
memory and CPU time requirements mainly come from the
following two modeling constraints ([2] and references therein).

1) The spatial increment step must be small enough in com-
parison with the smallest wavelength (usually 10–20 steps
per smallest wavelength) in order to make the numerical
dispersion error negligible.

2) The time step must be small enough so that it satisfies the
following Courant stability condition:

(1)

with being the maximum wave phase velocity in
the media being modeled. If the time step is not within
the bound, the FDTD scheme will become numerically
unstable, leading to an unbounded numerical error as a
FDTD solution marches.

To circumvent or relax the above constraints, various
time-domain techniques have been developed [3]–[8], resulting
in the improvement of the computation efficiency. Along the
line of relaxing the first constraint, multiresolution time-do-
main (MRTD) method was proposed by Krumpholz and Katehi
[5]. Through the applications of orthonormal wavelet spatial
expansions to Maxwell’s equations, MRTD scheme can reduce
numerical dispersion significantly. The spatial discretization
resolution can be made as low as two grid points per wave-
length, leading to a large saving in computation memory.
Similarly, another technique, the pseudospectral time-domain
(PSTD) method, was also developed recently [6]. By using the
fast Fourier transform (FFT) to represent spatial derivatives, the
PSTD method can also achieve a spatial grid of two points per
wavelength while maintaining a high accuracy. Nevertheless,
in both cases, the Courant stability conditions remains. For
MRTD, the stability condition becomes even more stringent.
The time-to-spatial step ratio becomes five times less than that
with the conventional FDTD.

To relax or even remove the stability constraint, attempts were
made but there have not been many. Early work was reported in
1984 where the alternating-direction-implicit (ADI) technique
was first applied to the Yee’s grid in order to formulate an im-
plicit FDTD scheme [7]. There, the finite-difference operator
for 3D solution of Maxwell’s equations was factored into three
operators with each operator being performed in respect to the
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three coordinate directions (namely, , or ). The scheme re-
quired three implicit substep computations for each FDTD re-
cursive cycle and it was never found to be completely stable
without adding significant dielectric loss. In 1990, a specially
designed two-dimensional (2-D) FDTD algorithm, which em-
ploys time steps larger than those allowed by methods with ex-
plicit time advancement, was presented in [8]. Nevertheless, it
is based on a new staggered grid different from Yee’s and the
grid points and field components are twice of the Yee’s on a
body surface. Consequently, the method consumes more com-
puter memory and computation resources. Very recently, a new
2-D FDTD algorithm free of the Courant stability conditions
was proposed for a 2D-TE wave [9]. The ADI method [11] was
again applied [7]. The resulting FDTD formulation was found to
be unconditionally stable. Consequently, the second constraint
of the FDTD modeling is completely removed. The selection of
the FDTD time step is now only dependent on the model accu-
racy.

In this paper, the ADI principle as applied in [8] is extended
to three dimensions, and athree-dimensional(3-D) finite-differ-
ence time-domain (FDTD) method that is free of the Courant
stability condition is consequently developed. Different from
the conventional ADI application as appeared in [7] and [9], the
ADI here is applied in respect to the sequence of the terms on
the right-hand sides (RHSs) of the Maxwell’s equations. It then
leads to onlytwo alternations in the computing direction rather
than three alternations with the conventional ADI [7]. More-
over, analytical proof of the unconditional stability is provided
and numerical experiments that verify the proof are shown. The
time step in the proposed FDTD can now be much larger than
that with the conventional FDTD.

The paper is organized in the following manners. In Sec-
tion II, the formulations of the proposed FDTD are described. In
Section III, the unconditional stability of the proposed scheme
is shown. In Section IV, the numerical results are presented. Fi-
nally, in Section V, discussions and conclusions are made in re-
spect to the future directions of the research in the area.

II. PROPOSED3-D UNCONDITIONALLY STABLE FDTD SCHEME

For simplicity, let’s consider an isotropic medium with
the medium permittivity . The first curl vector equation of
Maxwell’s equations

(2)

can be cast into three scalar partial differential equations in the
Cartesian coordinates

(3a)

(3b)

(3c)

In the same way, the second curl vector equation for an isotropic
medium with the medium permeability

(4)

can be split into three scalar equations

(5a)

(5b)

(5c)

Denote any component of the fields in a discrete
space as

where , or are time and space indexes,
is the time step, and are the spatial increment steps
along the directions, respectively.

Consider (3a). By applying the ADI principle that is widely
used in solving parabolic equations [11], the computation of
(3a) for the FDTD solution marching from theth time step
to the th time step is broken up into two computational
subadvancements: the advancement from the nth time step to the

th time step and the advancement from the th
time step to the th time step. More specifically, the two
substeps are as follows.

1) For the first half-step (i.e., at the th time step),
thefirst partial derivative on the RHS of (3a), , is
replaced with an implicit difference approximation of its
unknown pivotal values at th time step; while
the secondpartial derivatives on the RHS, , is
replaced with an explicit finite difference approximation
in its known values at the previousth time step. In other
words

(6)

2) For the second half time step (i.e., at th time
step), the second term on the RHS, , is replaced
with an implicit finite-difference approximation of its un-
known pivotal values at th time step; while the first
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term, , is replaced with an explicit finite-differ-
ence approximation in its known values at the previous

th time step. In other words

(7)

Note that the above two substeps represent the alternations in
the FDTD recursive computation directions in the sequence of
the terms, thefirst and thesecondterm. They result in the im-
plicit formulations as the RHSs of the equations contain the field
values unknown and to be updated. The technique is then termed
“the alternating direction implicit” technique. Attention should
also be paid to the fact that no time-step difference (or lagging)
between electric and magnetic field components is present in
the formulations.

Applying the same procedure to all the other five scalar dif-
ferential equations as described in (3) and (5), one can obtain
the complete set of the implicit unconditionally stable FDTD
formulas.

For the advancement from theth time step, the FDTD
equations are listed at the bottom of this page as (8a)–(8f).
For the advancement from the th to the th
time step, the FDTD equations are listed at the bottom of
the following page as (9a)–(9f). The notations and

with are the field components with their

grid positions being the same as those with the conventional
FDTD of the Yee’s scheme.

Note that the above ADI procedure is different from the
conventional ADI procedure in [7] and [9]. In the conven-
tional ADI procedure, the alternations in the computation di-
rections are made in respect to the three spatial coordinate
directions. In the 2-D case, there are two spatial coordinates,
e.g., and . Therefore, the computations are broken into
two substep computations for each temporal cycle (or each
time step) (e.g., [9]). The first substep computation is per-
formed in respect to the direction, while the second com-
putation is performed in respect with thedirection. In the
3-D case, the computations are broken up into three substeps
for each cycle since there are three spatial coordinates,,
and (e.g., [7]). In the proposed method, however, the ADI
is applied in terms of the sequence of the terms on the RHS
of the equations (thefirst and thesecondterms), rather than
in terms of the coordinate directions. It then leads to only
two alternations in the computation directions in three dimen-
sions. As a result, at each substep, the computations are per-
formed in respect to all the three coordinate directions but
with different terms or components. For instance, in (8), one
can see that and are implicitly computed in re-
spect to the and directions, respectively, while in (9)
they are explicit for those directions.

Equations (8) and (9) can be further simplified for efficient
computations. For instance, consider (8a) where both sides con-
tain the unknown field components. By substituting the expres-
sions for and repre-
sented by (8f) into (8a), one can obtain

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)



ZHENG et al.: DEVELOPMENT OF 3-D UNCONDITIONALLY STABLE FDTD METHOD 1553

(10)

In it, all the field components on the RHS are of known values
at the previous time steps, while the field components on the
left-hand side (LHS) are of the same field component,, but
at three adjacent grid points.

The same procedures can be applied to (8b)–(9f) and sim-
ilar equations can be obtained for the other field components.
Another easy way is to permute the indexes of the (10). The
resulting equations form a linear system of equations that can
be solved with available numerical packages. In the following
paragraphs, we will describe the approach to the solutions in a
matrix form.

In general, (10) and the other similar equations for other field
components can be summarized a matrix form

for advancement fromth to th time step (11)

for advancement from th to th time step

(12)

Here, vector is a one-column vector containing all the field
components at theth time step. and are the
coefficient matrices with their elements related to values of spa-
tial and temporal steps. They are all sparse matrices.and

are associated with the LHS of (10) while and are
associated with the RHS of the equations. As can be seen from
(10), each row of and contains only three nonzero ele-
ments at maximum. Maxtrix operations on them can be fast, in
particular, the inverse of and .

Recursive (11) and (12) can be solved either implicitly or ex-
plicitly. Since the inverse of the sparse matrix and can
be found relatively easily, an explicit method is used in our case.
That is

(13)

(14)

Combination of the above two equations reads

(15)

or

with .
In an actual simulation, (13) and (14) are computed succes-

sively to each other. However, or may not be needed
for calculating all the field values. They may be used only to
calculate the field values at the two left-most grid points. For
example, consider (10). can be used only to calculate, via
(13), the left-most values of , say at and at
the th time step. The rest of the ’s can then be
calculated by applying (10) with a sequence of ascendingthat

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)
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allows us to find at from s at and . In such
a way, for most of the computations, we avoid the application
of that is not necessarily very sparse. Thus, the computa-
tion efficiency can be improved. In addition, after all the elec-
tric field components are obtained, magnetic field components
can be calculated directly from (8d)–(8f) and (9d)–(9f) with the
electic field components already updated.

III. STABILITY ANALYSIS OF THEPROPOSEDFDTD SCHEME

Generally, for a recursive scheme or system

(16)

its numerical stability can then be determined with the so-called
Fourier method as described in [10]. In it, instantaneous values
of electric and magnetic fields distributed in space across a grid
are firstFourier-transformed into the waves in the spatial spec-
tral domain to represent a spectrum of spatial sinusoidal modes.
Then, by checking the eigenvalues of thewith the spectral-do-
main waves in the system, one can determine the stability condi-
tions of the system. If magnitudes of all the eigenvalues are less
than or equal to unity, the scheme is stable. If one of them is
larger than one, the scheme is potentially unstable. TheFourier
method is applied in this paper and the analysis is presented in
the following paragraphs.

Assuming the spatial frequencies to be and along
the and directions, the field components in the spatial
spectral domain can be writen as

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

Substitution of these equations into (8) and (9), respectively,
can lead to (16) in the spatial spectral domain in terms of

, and .
Denote the field vector in the spatial spectral domain as

Then the time-marching relation can be written in a matrix form
as

(18)

where

and

(19)

where

Substitution of (18) into (19) reads

(20)

With the use of Maple V5.2, we can obtain (21), shown at the
bottom of the next page, where

The eigenvalues of can then be found, again with the help of
MAPLE, as

(22)
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with and shown at the bottom of this page. The first two
eigenvalues obviously have magnitude of unity. The other four
eigenvalues have also magnitudes of unity. This is because

and the square roots in the numerator of the expressions for
and become real numbers. Therefore, we con-

clude that the proposed FDTD scheme is unconditionally stable
regardless of the time step . The Courant stability condition
is then removed.

For reference, the eigenvalue expressions output directly by
the MAPLEV5.2 we used is listed in Appendix. They are basi-
cally the long forms of (22).

IV. NUMERICAL RESULTS

To demonstrate the validity of the proposed FDTD method,
an inhomogeneous rectangular cavity used in [5] was computed
with both the proposed FDTD and the conventional FDTD. The
geometry of the cavity is depicted in Fig. 1. One half of the
cavity is filled with air and the other half with the dielectric
material of a relative permittivity of . The cavity has the
dimension of m m m. For both the proposed FDTD
and the conventional FDTD, a uniform mesh with m
was used, leading to a mesh of 1020 15 grid points.

A. Numerical Verification of the Stability

Although we have theoretically proved that the proposed
FDTD is unconditionally stable regardless of time step, numer-
ical verification is necessary to confirm the theoretical result.
Simulations were run for the inhomogeneous cavity with both
the conventional FDTD and the proposed FDTD having a time
step that exceeds the limit defined by the Courant condition
(1), s in our case.
Fig. 2 shows the electric field recorded at the center of the
cavity. s was used with the conventional
FDTD while a 100 times larger time step ps
was used with the proposed FDTD scheme. As can be seen, the
conventional FDTD quickly becomes unstable [see Fig. 2(a)],

Fig. 1. Cavity half filled with air and the other half filled with dielectric
material.

while the proposed FDTD remains with the stable solution [see
Fig. 2(b)]. We also extended the simulation time to a much long
period with the proposed scheme. No instability was observed.

B. Numerical Accuracy Versus Time Step

Since the proposed US-FDTD is now proved to be always
stable, the selection of the time step is then no longer restricted
by stability but by modeling accuracy. As a result, it is inter-
esting and meaningful to investigate how the large time step will
affect accuracy.

For the comparison purpose, both the conventional FDTD and
proposed US-FDTD were used to simulate the cavity again. This
time, the time step s was chosen and
fixed with the conventional FDTD, while the different values
of time step were used with the proposed FDTD to check
for the accuracy. Table I presents the simulation results for the
dominant mode in the cavity. As can be been, the relative er-
rors of the proposed FDTD increase with the time step. These

(21)
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Fig. 2. Time-domain electric fields at the center of the cavity recorded with
the conventional FDTD and the proposed US-FDTD. (a) Conventional FDTD
solutions that become unstable with�t = 2 � 10 s. (b) Proposed
US-FDTD solution with�t = 200� 10 s.

TABLE I
PROPOSEDUS-FDTD SIMULATION RESULTS WITHDIFFERENT�t

Fig. 3. Relative errors of the conventional FDTD and proposed FDTD as the
function of relative time step�t=�t . Dashed line represents the
unstable point of the conventional FDTD scheme.

TABLE II
COMPARISONS OFRESULTS WITH CONVENTIONAL FDTD AND

PROPOSEDUS-FDTD

errors are completely due to modeling accuracy of the numer-
ical algorithm, such as the numerical dispersion. The tradeoff
to the increased errors is, however, the reduction in the number
of the iterations and therefore the shortening of the CPU time.
In our experiments, for an error of 0.38%, the CPU time with
the proposed FDTD is about half of that with the conventional
FDTD, and for an error of 0.62%, the CPU time is cut to one
third of the conventional FDTD time. Note that the increase in
the time step or the reduction in the number of the iterations is
not linearly proportional to the shortening of the CPU time. The
reason is that the CPU time required for each time-step compu-
tation with the proposed FDTD is more than that with the con-
ventional FDTD since the more components are involved in the
computations [as seen from (10)].

Fig. 3 illustrates the relative errors for the dominant mode
of the cavity computed using the conventional FDTD and the
proposed FDTD with variable time steps. For clarity, relative
time-step is used. As can be seen, at low

, the errors of both the conventional FDTD
and the proposed FDTD are almost the same. However, after

, the conventional FDTD solutions
diverge (become unstable) while the proposed FDTD continues
to produce stable results with increasing errors that may or may
not be acceptable depending on the applications and users’
specifications.

C. Computational Expenditures

Since the Yee’s grid is used with the proposed FDTD method,
the number of field components at all the grid points is the same
as that with the conventional FDTD. As a result, the memory
requirement is in the same order as that for the conventional
FDTD method.

On the other hand, as indicated in (10), more components are
involved in the recursive computations at each time step with
the proposed FDTD method. The CPU time for each time step
with the proposed FDTD is then larger than that with the con-
ventional FDTD method. However, since a larger time step can
be used with the proposed FDTD, the total number of iterations
required with the proposed FDTD could be reduced. The op-
posite effects of the more CPU time for each time step and the
reduced number of iterations on the overall CPU time need to be
studied, in particular, numerically. In the following paragraphs,
a preliminary numerical experiment is presented.

Again, for the comparison purpose, both the proposed FDTD
and the conventional FDTD were used to simulate the cavity.
This time, the time step s was chosen
with the conventional FDTD, while
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s was chosen with the proposed US-FDTD. With such
time step selections, we found, by trial and error, that the two
methods presented similar accuracy. Therefore, the two methods
can be compared in a fair manner. Twenty–thousand iterations
were run with the conventional FDTD method, and 5000 it-
erations with the proposed FDTD. The iterations present the
same physical time period since the time step with the proposed
FDTD is four times of that with the conventional FDTD. Table II
shows the first five resonant frequencies obtained with the two
methods. The errors for the two methods are at the same level.

On a Pentium-III 450-MHz PC, it took 545.83 s to finish the
simulation with the proposed FDTD and 873.34 s with the con-
ventional FDTD. We then concluded preliminarily that a saving
factor with the proposed FDTD in CPU time is about 1.6 when
the conventional FDTD is used as a reference.

V. DISCUSSIONS ANDCONCLUSIONS

In this paper, a new 3-D FDTD free of the Courant stability
condition is presented for solving electromagnetic problems. In
it, the Yee’s grid is used but the alternative direction implicit
technique is applied in formulating the algorithm. As a result,
the memory requirement remains in the same order as that for
the conventional FDTD while the time step is no longer re-
stricted by the numerical stability but by the modeling accuracy
of the FDTD algorithm. Analytical proof of the unconditional
stability is shown and numerical verifications are presented to
demonstrate the validity of the proposed method. Preliminary
experiments indicated that with the same accuracy, the proposed
method uses four times fewer iterations and is 1.6 times faster
than the conventional FDTD.

The work of this paper, together with the earlier work reported
by Nakimi and Ito [9], has presented a new direction in the
continuing effort of the electromagnetic modeling community
toward improving computational efficiency of the FDTD algo-
rithms. It can be expected that because of the removal of the time
step constraint in terms of the numerical stability, various effi-
cient modeling techniques, such as multigridding scheme, can
be implemented in an easier way. As to the future directions,
since the time step is now solely determined by the accuracy
of the model, naturally, the subsequent work is: 1) to investigate
the errors of the proposed model (in particular the numerical dis-
persion properties) and 2) to develop an advanced model with
higher accuracy. One of the possibilities of having an advanced
model with smaller errors is to incorporate the MRTD principle
into the proposed FDTD scheme. By doing so, it is expected
that the time step can be increased to a much large value while
the solution errors remain small because of the high accuracy of
the MRTD model. In addition, since the MRTD allows the use
of the number of the gird points much smaller than that for the
conventional FDTD, the combined saving in time with the pro-
posed method and in the grid size with the MRTD could be very
significant. The investigation along this line is currently under
way in our group.

In conclusions, the techniques such as MRTD opened a way
for reduction in required computation memory while the pro-
posed FDTD and the work in [9] presented a way in shortening
the CPU time. Incorporation of both techniques could well re-

sult in an efficient FDTD algorithm that can handle electrically
large electromagnetic structures effectively in the near future.

APPENDIX

The eigenvalues directly output by Maple V5.2.

where
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The first two eigenvalues are unity. Their magnitudes are one.
For the other four eigenvalues, the arguments inside the square
roots in the numerators are all negative numbers. As a result, the
numerators are complex numbers. By taking the magnitudes of
the numerators with MAPLE, we find symbolically that their
values are exactly the same as the denominators. As a result, the
magnitudes of the eigenvalues are unity.
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