
Phase Vocoder Implementation
with FLWT and TD-PSOLA

Terry Kong
Stanford University

Email: tckong@stanford.edu

Abstract—The following is a report written for EE 264’s
final project. The goal of the project was to realize a real-time
implementation of a phase vocoder on a TI TMS320C5535 DSP
chip. The theory behind the implementation can be divided into
two sections: the Fast Lifting Wavelet Transform (FLWT) used
for pitch detection, and the Time-Domain Pitch Synchronous
Overlap and Add (TD-PSOLA) method for pitch correction. An
implementation of the algorithm is provided that is optimized
for processors that lack of a floating-point arithmetic unit.
The libraries are available at https://github.com/terrykong/Phase-
Vocoder.

I. INTRODUCTION

In the area of speech and audio processing, it is often
desired to modify the properties of the original audio signal.
These modifications include pitch shifting, time expansion
and compression, and formant preservation. The focus of this
project is to implement pitch shifting. Pitch is a property of
sound that characterizes the perceptual ordering of frequencies.
A higher pitch corresponds to a higher frequency and a
lower pitch corresponds to a lower frequency. Pitch is usually
determined by the fundamental frequency of a signal, which
may not be the case in a signal with significant overtones
or higher harmonics. It will be assumed for this project that
the pitch will always be characterized by its fundamental
frequency.

The process of pitch shifting, depending on how well it
needs to be done, is usually an involved task. To correctly
shift the pitch of a segment of audio, the pitch must first be
identified. This motivates the need for a robust pitch detection
algorithm. Once the pitch has been identified, the pitch can be
shifted which may be followed by a few touch-up algorithms
that abate the adverse effects pitch shifting introduces.

II. PITCH DETECTION

When analyzing the pitch of an audio signal, there is usually
a choice in the flavor of the algorithm. The analysis can
take place in the frequency domain, usually via the Short-
Time Fourier Transform, or in the time-domain. The benefit
of frequency domain analysis is that it can be interpreted
graphically very easily. For example, Fig.1a shows the STFT
of an audio sample of middle C on a piano. Notice the pitch
can be easily extracted by looking at the peaks. We would call
the peak at 130Hz the pitch of this signal.1

1The actual absolute frequency that middle C takes on is 261.626Hz. This
is a prime example of the perceived pitch being disguised by overtones.

(a) Frequency Domain (b) Time-Domain

Fig. 1: Different Representations of Middle C from a piano

Pitch, in the time-domain, appears as periodicity. In Fig.1b,
the pitch period is marked and it also delineates the difficulty
in extracting the pitch in time-domain. Typical methods of
extracting the pitch include the autocorrelation method or the
average magnitude difference function.

There are many differentiators between time-domain ap-
proaches and frequency domain approaches, but the one that
takes precedence in this project is latency. With the advent of
the Fast Fourier Transform (FFT), it has become possible to
take STFTs extremely fast even on CPUs with a single core.
With the advantage of having an intuitive representation and
robust FFT implementations, the frequency-domain methods
seem to be a logical choice. However, it turns out that there
is another algorithm that can compete with the efficiency of
the STFT, namely the Fast Lifting Wavelet Transform.

A. FLWT

The FLWT is like the FFT in that it takes advantage of
structure to speed up the calculation of the Discrete Wavelet
Transform(DWT). The DWT can be implemented with a filter
bank as depicted in Fig.2.

Fig. 2: Wavelet Filter Bank

The DWT shares many properties of the Discrete Fourier
Transform. One property is that both transform the time
domain signal into a different signal space with a different



basis. The basis that this algorithm uses is the Haar Wavelet
(we refer to this particular Wavelet Transform as the Haar
Wavelet Transform). This basis yields an interpretation of the
filters that compose the filter bank.2 At each stage of the
filter bank, the signal is being both low pass filtered and high
pass filtered simultaneously by each branch. The coefficients
of each of the low pass and high pass filters are

(
1
2 ,

1
2

)
and(

− 1
2 ,

1
2

)
, respectively. 3

What we exploit from the FLWT is the low-pass branch at
each stage of the filter bank. The idea is simple and intuitive:
low-pass filter the signal until it is smooth enough to detect the
pitch period by peak tracking. One way to determine the pitch
is by finding the distance between the two highest peaks in a
window. This can be made more reliable by taking the most
common distance between any two peaks in a window, i.e., the
mode.4 Since the highest and lowest peaks hold information
that is important for formant preservation, it is important to
remove the local maxima and minima, which usually form due
to high harmonics and noise. To remove these local peaks,
we smooth (low-pass filter) the signal. This is the motivation
behind taking the DWT of the signal. Since only the low-pass
branch of each stage is useful, the high-pass filter branch does
not need to be evaluated. This vastly simplifies the complexity
of the algorithm.

Here is the structure of the pitch detection algorithm using
the FLWT:

Algorithm 1 FLWT (Modified)

1: for n = 1 : windowlength
2 do

2: newwindow[n] = window[2n+1]+window[2n]
2

Algorithm 2 Pitch Detection

Ensure: windowlength = 2k, k ∈ N
1: levels← Num of stages in DWT

Ensure: length of signal
2levels � 1

2: for i = 1 : levels do
3: window ← FLWT (window)

4: Find the absolute value of the differences between all
peaks

5: pitch = mode(peak differences)

One thing to note is that if levels is too large given the
range of pitches you are trying to detect, you may filter out
the frequencies you are trying to detect. Appropriate settings
are covered in the Results section.

This approach of using the FLWT for pitch detection is
inspired [2].

2Another interpretation of the Haar Wavelet Transform is that each stage is
taking a weighted average and weighted difference of the input at that stage.

3The correct Haar wavelet coefficients are
(√

2
2
,
√
2

2

)
and

(
−

√
2
2
,
√
2

2

)
.

However, we do not need to recover the signal, so removing the constant
weighting of

√
2 is preferred since it reduces the number of computations.

4The event that occurs at the highest frequency.

B. Improving FLWT’s Robustness

A proper implementation of this pitch detection algorithm
should deal with the edge case where a segment of audio is
pitch-less. It may even be possible that the signal does not
have one dominant frequency, as is the case for white noise.
If a threshold parameter is used to improve the confidence of
correct pitch estimations, then the number of incorrect pitch
estimations will also increase. For this reason, this project also
explored different ways to improve the reliability of the pitch
detection algorithm by augmenting different processes after
the main algorithm. The two possibilities that were explored
were:

1) Median Filtering: Using a median filter, rare anomalous
pitch estimations can be removed. For example, instead of
detecting the fundamental frequency, the pitch detection al-
gorithm may detect an integer multiple of that fundamental
frequency.5 The median filter is actually a non-linear filter,
so if the median filter is not low-order, it can become the
bottleneck of the entire pitch-detection algorithm.

2) Zero-Order Hold: The zero-order hold process is simply
the idea of returning the last reliable pitch estimation if the
current pitch estimation is not reliable.

The operation of these augmented processes are included in
the Results section.

III. PITCH CORRECTION

Like pitch detection algorithms, pitch correction algorithms
also come in two flavors: time-domain methods and fre-
quency domain methods. Frequency domain pitch correction
algorithms are usually very robust, but the caveat is they
suffer from very long latencies.6 For this reason, the obvious
choice is to use a time-domain implementation. The method
chosen for this project is the Time-Domain Pitch Synchronous
Overlap and Add method(TD-PSOLA). The benefit of this
algorithm is that it is simple and one of the fastest imple-
mentation for pitch correction.

A. TD-PSOLA

The idea behind TD-PSOLA is to identify pitch periods,
the reciprocal of the pitch frequency, within the time-domain
signal, and shift copies of the pitch period around to change
the fundamental frequency. Shifting copies closer together
increases the fundamental frequency while spreading them
farther apart decreases the fundamental frequency. The process
effectively resamples the signal in the frequency domain. This
is an astounding effect because this couples a simple time-
domain operation to a very complicated one in the frequency
domain. The algorithm is illustrated in Fig.3.

Here is another helpful interpretation of the TD-PSOLA
method. If there is only one fundamental frequency and the
harmonics of an audio signal are prominent, as in Fig.1a,

5Sometimes known as an octave error
6This is attributed to frequency domain interpolation and the need to

calculate trigonometric functions.
7Image from: https://gtms1324.wordpress.com/2013/02/20/speech-

synthesis-using-psola/



Fig. 3: TD-PSOLA Illustration7

then the spacing between each peak in the frequency domain
corresponds to a particular pitch period. These peaks can be
thought of as a delta train that is sampling the spectral enve-
lope. The envelope holds the formant information, while the
spacing of the delta train that samples the envelope holds the
pitch information. According to Poisson’s summation formula,
a delta train in the frequency domain is related to a delta train
in the time domain (with different spacing). This explains
why moving copies of the pitch period changes the pitch.
Because if we are decreasing the spacing between adjacent
pitch periods, we are decreasing the spacing of the delta train
in the time domain. Since there is an inverse relationship
between time and frequency, the decrease in the time-domain
delta train spacing corresponds to an increase in the frequency
domain delta train spacing (which is equivalent to increasing
the pitch).8

An important subtlety of the TD-PSOLA algorithm is the
weighting window that needs to be applied to the analysis
window. For this project, the bartlett window was used since
its coefficients can be calculated very quickly. This weighting
window effectively weights the importance of the values in the
middle of the analysis window. The result minimizes the effect
of the the phase inconsistencies when shifting and adding since
the edge of each analysis window will be zero.

Here is an the structure of the pitch correction algorithm
using TD-PSOLA:

Note that for a given window length and sampling fre-
quency, there is a fundamental limit to how much the pitch
can deviate. While this paper doesn’t discus how to calculate
this limit, a rule of thumb that seems to provide a reasonable
effect is that there must be at least four pitch periods within

8A similar argument can be made for decreasing the pitch.
9windowa is the analysis window, which is the original window, and

windows is the synthesis window, which is the window where the result
of the TD-PSOLA is formed. This is the common definition of synthesis and
analysis in the literature.

Algorithm 3 Pitch Correction

1: Ts ← 1
sampling rate

2: Tanalysis ← 1
pitch period

3: Tsynthesis ← 1
new pitch period

4: Nanalysis ← Tanalysis

Ts
(analysis spacing)

5: Nsynthesis ← Tsynthesis

Ts
(synthesis spacing)

6: initialize windows (synthesis window)
7: i = Nanalysis/2
8: j = Nanalysis/2
9: for each pitch period in the analysis window do

10: windows[j − Nanalysis to j + Nanalysis] +=
windowa[i−Nanalysis to i+Nanalysis] ∗ wbartlett

9

11: i+ = Nanalysis

12: j+ = Nsynthesis

one window length.

B. Differences between typical TD-PSOLA Implementations

The implementation of the TD-PSOLA differs from the
typical TD-PSOLA method that is usually encountered. Most
of the time, TD-PSOLA methods will have a pitch marking
preprocessing step that looks at the time-domain signal and
marks prominent peaks, and uses the distance from each
adjacent peak as the local pitch period. For this project, this
approach doesn’t make much sense since there is already a
pitch detection step that estimates the fundamental frequency
across the entire window. Since the pitch period is uniform
over the window, the implementation of this specific TD-
PSOLA is much faster than the garden variety implementations
since the pitch markings are known at the start of the pitch
correction algorithm. The caveat is this approach doesn’t
guarantee formant preservation because there is no guarantee
that each pitch period in the analysis window will be centered
at a prominent peak.

Another caveat to this implementation is imposed by the
TI TMS320C5535 DSP chip. The C5535 is limited to 512
samples per window at its fastest sampling rate: 48kHz. This
implementation imposes an interested constraint on the pitch
correction problem. Since only a very small portion of the
signal is being analyzed at a time, phase inconsistencies
manifest at the edge of each window, which becomes a
nontrivial issue. The crux of the issue is that the TD-PSOLA
method attempts to leave the spectral envelope unchanged, but
to do so introduces changes in the phase of the signal. Hence,
TD-PSOLA method does not guarantee the continuity in phase
between different windows. Since the operation on the signal
is local, a discontinuity in the phase manifests at the edge of
each analysis window and between adjacent windows. This
issue is perceived as a humming in the synthesis.

IV. RESULTS

All algorithms previously discussed were implemented for
real-time operation. The figures that follow are all generated
by sending data back to MATLAB to display.



(a) No Additional Process (b) Zero-Order Hold

(c) 5th Order Median Filter

Fig. 4: Performance of Pitch Detection Algorithm

The settings that the chip used to produce reasonable audio
with negligible latency were: a sampling rate of 32kHz, an
analysis window size of 512 words10, and a 5th order median
filter. The FLWT used 6 levels.

A. Median Filter vs. Zero-Order Hold

The median filter resulted in the best performance. Figure 4
is a collection of results using a recording of an individual
singing a C-scale. Notice the improvement that using either a
zero-order hold, Fig.4b, or a 5th order median filter, Fig.4c,
has compared to the unprocessed result, Fig.4a.

This performance improvement can be qualified in two
different ways. Firstly, the median filter removes most of the
octave errors which if fed to the pitch correction algorithm,
will change the frequency by a significant erroneous amount.
Secondly, for periods when no one is speaking or singing,
the zero-order hold method will assume that even silence has
a pitch, which may be an issue for signals that have non-
negligible energy, e.g., white noise.

Although a median filter is non-linear, the implementation
of the 5th order median filter is done by using the nine
comparisons, the minimum amount, instead of sorting each
block of five data.

B. Pitch Detection Tradeoffs

The pitch detection algorithm was very effective above the
range of 32kHz. The algorithm usually pinpointed the pitch
within a few hertz. The algorithm began to operate unreliably
with high amounts of error when the sampling rate was below
24kHz. This makes sense since the sampling frequency is
directly related to the granularity of frequency.

10int16 or two bytes

(a) Before TD-PSOLA (b) After TD-PSOLA

Fig. 5: Local Effect of TD-PSOLA: Middle C being shifted
three semitones11higher

(a) Before TD-PSOLA (b) After TD-PSOLA

Fig. 6: Global Effect of TD-PSOLA: Middle C being shifted
three semitones higher

C. Pitch Correction

The local effect of the pitch correction algorithm can be
seen in Fig.5. Notice the tapering at the edge of the synthesis
window after the TD-PSOLA algorithm has been applied. This
is the effect of applying a weighting window. The signal after
512 samples is also at a different amplitude after applying the
TD-PSOLA. This is the phase inconsistency that was discussed
earlier that results in a humming when played back.

The global effect of the TD-PSOLA algorithm can be seen
in Fig.6

Interestingly, this implementation of the TD-PSOLA did
not always work for all sampling frequencies and all window
sizes. For example, the TD-PSOLA would work very poorly
if the sampling rate was too high. Without exhaustive testing,
my hypothesis is that the phase inconsistencies become more
significant as the window size represents a smaller and smaller
time period. However, the sampling frequency cannot be
lowered too much because the pitch correction may not have
enough copies of the pitch period to adequately change the
pitch. This is a very important tradeoff to keep in mind since
it will largely effect performance.

The ideal choice of sampling frequency for the TD-PSOLA
algorithm was a low frequency, while the pitch detection algo-
rithm required a higher frequency. This tradeoff is interesting
to note since it is a common theme in signal processing to
trade performance and speed.

11An change of k semitones is equivalent to multiplying the frequency by
2k/12. A positive k is pitch increase, and a negative k is a pitch decrease



V. CONCLUSION

Implementing a robust real-time phase vocoder is a very
difficult task. As this project has demonstrated, it is possible
to create a real-time phase vocoder, but making its effect
natural and perceptually pleasing requires more time than
a short project allows. During the process of writing the
software, I realized that certain parts of the pitch detection
algorithm could be made more sophisticated given more time. I
encourage anyone that finds this interesting to visit my github,
and download the software and try it yourself. The libraries
are not dependent on any system specific library or operating
system.

VI. FUTURE WORK

There is a lot more to do to make this implementation more
robust, which is exciting because this algorithm can actually
become better. It was written with best code practice in mind
so it shouldn’t be hard to continue working on this, or for
someone else to pick it up.

Here is a list of the things that could be done to im-
prove the functionality assuming this will be run on the TI
TMS320C5535 chip:

• Include buffered memory to hold past windows to provide
a smoother transition between adjacent windows. This
will minimize the effect of the phase discontinuities.

• Write a library that dynamically adjusts the pitch to the
”best” frequency, as opposed to its current operation,
which is to adjust the pitch to a set piano key scale.

• Include a efficient fixed-point coefficient generator for
an arbitrary length Hann window, which will replace the
fixed-point coefficient generator for an arbitrary length
bartlett window.

• Implement a time-expansion and compression mode,
which is simply the TD-PSOLA repurposed.

ACKNOWLEDGMENT

I’d like to thank Professor Ronald Schaffer and Professor
Fernando Mujica for their extremely supportive guidance
throughout this project. Thanks to them this project became
more than just a small dysfunctional MATLAB program. I’d
also like to thank the TAs Reggie Wilcox and Maisy Wieman
for their support and instruction for proper documentation of
the software.

REFERENCES

[1] E. Larson, R. Maddox, Real-time Time Domain Pitch Tracking Using
Wavelets, In Proceedings of University of Illinois at Urbana Champaign
Research Experience for Undergraduates Program, 2005.

[2] Lawrence Rabiner and Ronald Schafer. 2010. Theory and Applications
of Digital Speech Processing (1st ed.). Prentice Hall Press, Upper Saddle
River, NJ, USA. Chapter 13.5

APPENDIX
Project Timeline

1) Week 1 (2/16-2/22): Implemented Pitch Detection in
MATLAB

2) Week 2 (2/23-3/01): Implemented Pitch Detection in
C++

3) Week 3 (3/02-3/08): Implemented Pitch Correction in
MATLAB

4) Week 4 (3/09-3/13): Implemented Pitch Correction in
C++ and Wrote Supporting Libraries for Final Demo


