Pose Tracking I

Gordon Wetzstein
Stanford University

EE 267 Virtual Reality

Lecture 11

stanford.edu/class/ee267/
Overview

• overview of positional tracking
• camera-based tracking
• HTC’s Lighthouse
• VRduino – an Arduino for VR, specifically designed for EE 267 by Keenan Molner
• pose tracking with VRduino using homographies
What are we tracking?

- Goal: track pose of headset, controller, ...

- What is a pose?
 - 3D position of the tracked object
 - 3D orientation of the tracked object, e.g. using quaternions or Euler angles

- Why? So we can map the movement of our head to the motion of the camera in a virtual environment – motion parallax!
Overview of Positional Tracking

“inside-out tracking”: camera or sensor is located on HMD, no need for other external devices to do tracking

- simultaneous localization and mapping (SLAM) – classic computer & robotic vision problem (beyond this class)

“outside-in tracking”: external sensors, cameras, or markers are required (i.e. tracking constrained to specific area)

- used by most VR headsets right now, but everyone is feverishly working on insight-out tracking!
Marker-based Tracking

- seminal papers by Rekimoto 1998 and Kato & Billinghurst 1999
- widely adopted after introduced by ARToolKit
Marker-based Tracking

ARToolKit

OpenCV marker tracking
Inside-out Tracking

Google’s Project Tango
also used but not shown: IMU

problem: SLAM via sensor fusion
Inside-out Tracking

- marker-less inside-out tracking used by Microsoft HoloLens, Intel’s Project Alloy, ...
- eventually required by all untethered VR/AR systems
- if you need it for your own HMD, consider using Intel’s RealSense (small & has SDK)
- if you want to learn more about SLAM, take a 3D computer vision or robotic vision class, e.g. Stanford CS231A
“Outside-in Tracking”

- mechanical tracking
- ultra-sonic tracking
- magnetic tracking
- optical tracking
- GPS
- WIFI positioning
- marker tracking
- ...
Positional Tracking - Mechanical

some mechanical linkage, e.g.

• fakespace BOOM
• microscribe
Positional Tracking - Mechanical

pros:
• super low latency
• very accurate

cons:
• cumbersome
• “wired” by design
Positional Tracking – Ultra-sonic

- 1 transmitter, 3 receivers \(\rightarrow\) triangulation

Ivan Sutherland’s “Ultimate Display”

Logitech 6DOF
Positional Tracking – Ultra-sonic

pros:
• can be light, small, inexpensive

cons:
• line-of-sight constraints
• susceptible to acoustic interference
• low update rates
Positional Tracking - Magnetic

- reasonably good accuracy
- position and orientation
- 3 axis magnetometer in sensors
- need magnetic field generator (AC, DC, ...), e.g. Helmholtz coil
- magnetic field has to oscillate and be sync’ed with magnetometers
Positional Tracking - Magnetic

pros:
• small, low cost, low latency sensors
• no line-of-sight constraints

cons:
• somewhat small working volume
• susceptible to distortions of magnetic field
• not sure how easy it is to do this untethered (need to sync)
Positional Tracking - Magnetic

Magic Leap One controller tracking:
- magnetic field generator in controller
- magnetometer in headset
Positional Tracking - Optical

• track active (near IR) LEDs with cameras

OR

• track passive retro-reflectors with IR illumination around camera

• both Oculus Rift and HTC Vive come with optical tracking

Oculus Rift
https://www.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612
Understanding Pose Estimation - Triangulation

- for tracking individual 3D points, multi-camera setups usually use triangulation

- this does not give us the pose (rotation & translation) of camera or object yet
Understanding Pose Estimation

• for pose estimation, need to track multiple points with known relative 3D coordinates!

\[
\begin{pmatrix}
 x_i^n \\
 y_i^n \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x_i \\
 y_i \\
 z_i \\
\end{pmatrix}
\]
Understanding Pose Estimation

- when object is closer, projection is bigger
Understanding Pose Estimation

- when object is father, projection is smaller

... and so on ...

Estimating 6-DoF pose from 2D projections is known as the *Perspective-n-point problem*!
Understanding Pose Estimation

1. how to get projected 2D coordinates?
2. image formation
3. estimate pose with linear homography method
4. estimate pose with nonlinear Levenberg-Marquardt method (next class)
Understanding Pose Estimation

1. how to get projected 2D coordinates?
2. image formation
3. estimate pose with linear homography method
4. estimate pose with nonlinear Levenberg-Marquardt method (next class)

- HTC Lighthouse
- VRduino
HTC Lighthouse

https://www.youtube.com/watch?v=J54dotTl7k0
HTC Lighthouse – Base Station

http://gizmodo.com/this-is-how-valve-s-amazing-lighthouse-tracking-technology-1705356768
HTC Lighthouse – Base Station

important specs:

• runs at 60 Hz
 • i.e. horizontal & vertical update combined 60 Hz
 • broadband sync pulses in between each laser sweep (i.e. at 120 Hz)
• each laser rotates at 60 Hz, but offset in time
• useable field of view: 120 degrees
HTC Lighthouse – Base Station

• can use up to 2 base stations simultaneously via *time-division multiplexing* (TDM)

• base station modes:
 A: TDM slave with cable sync
 B: TDM master
 C: TDM slave with optical sync
HTC Lighthouse – Base Station

- sync pulse periodically emitted (120 times per second)
- each sync pulse indicates beginning of new sweep
- length of pulse also encodes additional 3 bits of information:
 - axis: horizontal or vertical sweep to follow
 - skip: if 1, then laser is off for following sweep
 - data: data bits of consecutive pulses yield OOTX frame

https://github.com/nairol/LighthouseRedox/blob/master/docs/Light%20Emissions.md#sync-pulse
VRduino

• in this class, we use the HTC Lighthouse base stations but implement positional tracking (i.e. pose estimation) on the VRduino

• VRduino is a shield (hardware add-on) for the Arduino Teensy 3.2; custom-designed for EE 267 by Keenan Molner
VRduino
VRduino

IMU

Teensy 3.2
VRduino

Lighthouse

Select
VRduino

Photodiode 0

Photodiode 1

Photodiode 3

Photodiode 2
VRduino

SCL: pin 19
SDA: pin 18
VRduino

power (3.3V)

ground
VRduino

3.3V power, **200mA MAX**
digital R/W, Serial, cap. sense
digital R/W, Serial, cap. sense
digital R/W

digital R/W, PWM, CAN
digital R/W, PWM, CAN
digital R/W, Serial, SPI

SPI, Serial, digital R/W
digital R/W
SPI, analog read, digital R/W
SPI, analog read, digital R/W
I2C, analog read, digital R/W
I2C, analog read, digital R/W
5V power, **500mA MAX**

For more details, see Lab Writeup
Pose Estimation with the VRduino

• timing of photodiodes reported in Teensy “clock ticks” relative to last sync pulse

• Teensy usually runs at 48 MHz, so 48,000,000 clock ticks per second
How to Get the 2D Coordinates?

- at time of respective sync pulse, laser is at 90° horizontally and -90° vertically
- each laser rotates 360° in 1/60 sec
How to Get the 2D Coordinates?

- at time of respective sync pulse, laser is at 90° horizontally and -90° vertically
- each laser rotates 360° in $1/60$ sec
How to Get the 2D Coordinates?

- at time of respective sync pulse, laser is at 90° horizontally and -90° vertically
- each laser rotates 360° in 1/60 sec

• convert from ticks to angle first and then to relative position on plane at unit distance

Top View

- optical axis (principle direction)
- laser sweep direction
- current laser position 90°

Top View

- laser sweep angle when it hits the photodiode
- starting laser position 90°
How to Get the 2D Coordinates?

raw number of ticks from photodiode

\[\Delta t [\text{sec}] = \frac{\# \text{ticks}}{48,000,000 \left[\frac{\text{ticks}}{\text{sec}} \right]} \]

\[\alpha \]

Top View

- convert from ticks to angle first and then to relative position on plane at unit distance

\[\Delta t \text{sec} \]

raw number of ticks from photodiode

\[\# \text{ticks} \]

\[\left[\frac{\text{ticks}}{\text{sec}} \right] \]

\[\Delta t \text{sec} \]

\[\alpha \]

laser sweep angle when it hits the photodiode

\[1 \]

starting laser position

\[90^\circ \]

\[x \]

\[z \]

\[p_{i,x/y}^{2D} \]

\[p_{i,x/y}^{3D} \]
How to Get the 2D Coordinates?

raw number of ticks from photodiode

\[
\Delta t [\text{sec}] = \frac{\text{# ticks}}{48,000,000 \left[\frac{\text{ticks}}{\text{sec}} \right]} \quad \text{CPU speed}
\]

offset from sync pulse

\[
\alpha [^\circ] = -\frac{\Delta t [\text{sec}]}{1/60 \left[\frac{\text{sec}}{^\circ} \right]} + \frac{360}{4} \left[^\circ \right]
\]

time per 1 revolution

• convert from ticks to angle first and then to relative position on plane at unit distance

Top View

laser sweep angle when it hits the photodiode

starting laser position 90°
How to Get the 2D Coordinates?

1. **Starting Laser Position!**

 \[p_i^{2D} = \tan \left(\frac{\alpha}{360[\degree]} \cdot 2\pi \right) \]

 - Convert from ticks to angle first and then to relative position on plane at unit distance.

 \[\alpha[\degree] = \frac{-\Delta t[\text{sec}]}{\frac{1}{60}[\text{sec}] + \frac{360}{4}[\degree]} \]

 - Offset from sync pulse.

 - Time per 1 revolution.

 - Laser sweep angle when it hits the photodiode.

 - Starting laser position 90°.
How to Get the 2D Coordinates?

Horizontal Sweep

$$\alpha^{[\circ]} = -\frac{\Delta t[\text{sec}]}{\frac{1}{60}[\text{sec}]} + \frac{360}{4}[\circ]$$

Vertical Sweep

$$\alpha^{[\circ]} = \frac{\Delta t[\text{sec}]}{\frac{1}{60}[\text{sec}]} - \frac{360}{4}[\circ]$$
Understanding Pose Estimation

1. how to get projected 2D coordinates?

2. image formation

3. estimate pose with linear homography method

4. estimate pose with nonlinear Levenberg-Marquardt method (next class)

- how 3D points project into 2D coordinates in a camera (or a Lighthouse base station)
- very similar to graphics pipeline
Image Formation

- Image formation is a model for mapping 3D points in the local "object" coordinate system to 2D points in the "window" coordinates.

\[
\begin{pmatrix}
 x_i \\
 y_i \\
 z_i \\
\end{pmatrix}, \quad \begin{pmatrix}
 x_i^n \\
 y_i^n \\
 z_i = 0 \\
\end{pmatrix}
\]
Image Formation – 3D Arrangement

1. transform 3D point into view space:

\[
\begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
\end{pmatrix} \cdot
\begin{pmatrix}
 r_{11} & r_{12} & r_{13} & t_x \\
 r_{21} & r_{22} & r_{23} & t_y \\
 r_{31} & r_{32} & r_{33} & t_z
\end{pmatrix} \cdot
\begin{pmatrix}
 x_i \\
 y_i \\
 z_i \\
 1
\end{pmatrix}
\]

This is the homogeneous coordinate, which we could also call \(w \)

“projection matrix”

“modelview matrix”

3x3 rotation matrix and translation 3x1 vector

2. perspective divide:

\[
\begin{pmatrix}
 x_i^n \\
 y_i^n
\end{pmatrix} =
\begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix} / \begin{pmatrix}
 z_i^c \\
 z_i^c \\
 z_i^c
\end{pmatrix}
\]
Image Formation – 2D Arrangement

1. transform 3D point into view space:

\[
\begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
 r_{11} & r_{12} & r_{13} & t_x \\
 r_{21} & r_{22} & r_{23} & t_y \\
 r_{31} & r_{32} & r_{33} & t_z
\end{pmatrix}
\begin{pmatrix}
 x_i \\
 y_i \\
 0 \\
 1
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
 r_{11} & r_{12} & t_x \\
 r_{21} & r_{22} & t_y \\
 r_{31} & r_{32} & t_z
\end{pmatrix}
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]

2. perspective divide:

\[
\begin{pmatrix}
 x_i^n \\
 y_i^n \\
 z_i^n
\end{pmatrix}
= \begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix}
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x_i^n \\
 y_i^n
\end{pmatrix}
= \begin{pmatrix}
 x_i^c \\
 y_i^c
\end{pmatrix}
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]
Image Formation – 2D Arrangement

- all rotation matrices are orthonormal, i.e.

\[
\sqrt{r_{11}^2 + r_{21}^2 + r_{31}^2} = 1
\]

\[
\sqrt{r_{12}^2 + r_{22}^2 + r_{32}^2} = 1
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
\begin{array}{cc}
r_{11} & r_{12} \\
r_{21} & r_{22} \\
r_{31} & r_{32}
\end{array}
\end{pmatrix}
\begin{pmatrix}
t_x \\
t_y \\
t_z
\end{pmatrix}
\]
The Homography Matrix

- all rotation matrices are orthonormal, i.e.
 \[\sqrt{r_{11}^2 + r_{21}^2 + r_{31}^2} = 1 \]
 \[\sqrt{r_{12}^2 + r_{22}^2 + r_{32}^2} = 1 \]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix} \cdot \begin{pmatrix}
r_{11} & r_{12} & t_x \\
r_{21} & r_{22} & t_y \\
r_{31} & r_{32} & t_z
\end{pmatrix} = \begin{pmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & h_9
\end{pmatrix}
\]

let's call this "homography matrix"
Understanding Pose Estimation

1. how to get projected 2D coordinates?
2. image formation
3. estimate pose with linear homography method
4. estimate pose with nonlinear Levenberg-Marquardt method (next class)

- how to compute the homography matrix
- how to get position and rotation from that matrix
The Homography Matrix

Turns out that: any homography matrix has only 8 degrees of freedom – can scale matrix by s and get the same 3D-to-2D mapping

- image formation with scaled homography matrix sH

$$
\begin{pmatrix}
x_i^n \\
y_i^n
\end{pmatrix}
\begin{pmatrix}
x_i^c \\
y_i^c \\
z_i^c
\end{pmatrix}
= \begin{pmatrix}
\frac{sh_1 x_i + sh_2 y_i + sh_3}{sh_7 x_i + sh_8 y_i + sh_9} \\
\frac{sh_4 x_i + sh_5 y_i + sh_6}{sh_7 x_i + sh_8 y_i + sh_9}
\end{pmatrix}
= \begin{pmatrix}
\frac{s(h_1 x_i + h_2 y_i + h_3)}{s(h_7 x_i + h_8 y_i + h_9)} \\
\frac{s(h_4 x_i + h_5 y_i + h_6)}{s(h_7 x_i + h_8 y_i + h_9)}
\end{pmatrix}
$$
The Homography Matrix

- common approach: estimate a scaled version of the homography matrix, where $h_9 = 1$
- we will see later how we can get scale factor s

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{pmatrix} = s \begin{pmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{pmatrix}$$

estimate these 8 homography matrix elements!
Pose Estimation via Homography

- image formation changes to

\[
\begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix} = s
\begin{pmatrix}
 h_1 & h_2 & h_3 \\
 h_4 & h_5 & h_6 \\
 h_7 & h_8 & 1
\end{pmatrix}
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]

homography matrix with 8 unknowns!
Pose Estimation via Homography

- Image formation changes to

\[
\begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix} = s
\begin{pmatrix}
 h_1 & h_2 & h_3 \\
 h_4 & h_5 & h_6 \\
 h_7 & h_8 & 1
\end{pmatrix}
\begin{pmatrix}
 x_i \\
 y_i \\
 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x_i^n \\
 y_i^n \\
 z_i^n
\end{pmatrix} = \begin{pmatrix}
 \frac{x_i^c}{z_i^c} \\
 \frac{y_i^c}{z_i^c}
\end{pmatrix} = \begin{pmatrix}
 h_1 x_i + h_2 y_i + h_3 \\
 h_7 x_i + h_8 y_i + 1 \\
 h_4 x_i + h_5 y_i + h_6 \\
 h_7 x_i + h_8 y_i + 1
\end{pmatrix}
Pose Estimation via Homography

- multiply by denominator

\[
\begin{pmatrix}
 x_i^n \\
 y_i^n \\
 z_i^n
\end{pmatrix} = \begin{pmatrix}
 x_i^c \\
 y_i^c \\
 z_i^c
\end{pmatrix} = \begin{pmatrix}
 h_1 x_i + h_2 y_i + h_3 \\
 h_4 x_i + h_5 y_i + h_6 \\
 h_7 x_i + h_8 y_i + 1
\end{pmatrix}
\]

\[
x_i^n (h_7 x_i + h_8 y_i + 1) = h_1 x_i + h_2 y_i + h_3
\]

\[
y_i^n (h_7 x_i + h_8 y_i + 1) = h_4 x_i + h_5 y_i + h_6
\]
Pose Estimation via Homography

- reorder equations

\[
\begin{align*}
h_1 x_i + h_2 y_i + h_3 - h_7 x_i x_i^n - h_8 y_i x_i^n &= x_i^n \\
h_4 x_i + h_5 y_i + h_6 - h_7 x_i y_i^n - h_8 y_i y_i^n &= y_i^n
\end{align*}
\]
Pose Estimation via Homography

- 8 unknowns (red) but only 2 measurements (blue) per 3D-to-2D point correspondence

\[
\begin{align*}
 h_1 x_i + h_2 y_i + h_3 - h_7 x_i x_i^n - h_8 y_i x_i^n &= x_i^n \\
 h_4 x_i + h_5 y_i + h_6 - h_7 x_i y_i^n - h_8 y_i y_i^n &= y_i^n
\end{align*}
\]

- need at least 4 point correspondences to get to invertible system with 8 equations & 8 unknowns!
- VRduino has 4 photodiodes \(\rightarrow\) need all 4 to compute pose
Pose Estimation via Homography

- solve $Ah=b$ on Arduino using Matrix Math Library via `MatrixInversion` function (details in lab)

\[
\begin{pmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1 x_1^n & -y_1 x_1^n \\
 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1 y_1^n & -y_1 y_1^n \\
 x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2 x_2^n & -y_2 x_2^n \\
 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2 y_2^n & -y_2 y_2^n \\
 x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3 x_3^n & -y_3 x_3^n \\
 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3 y_3^n & -y_3 y_3^n \\
 x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4 x_4^n & -y_4 x_4^n \\
 0 & 0 & 0 & x_4 & y_4 & 1 & -x_4 y_4^n & -y_4 y_4^n \\
\end{pmatrix}
\begin{pmatrix}
 h_1 \\
 h_2 \\
 h_3 \\
 h_4 \\
 h_5 \\
 h_6 \\
 h_7 \\
 h_8 \\
\end{pmatrix}
\begin{pmatrix}
 x_1^n \\
 y_1^n \\
 x_2^n \\
 y_2^n \\
 x_3^n \\
 y_3^n \\
 x_4^n \\
 y_4^n \\
\end{pmatrix}
\]
Get Position from Homography Matrix

- still need scale factor s to get position!

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
 r_{11} & r_{12} & t_x \\
 r_{21} & r_{22} & t_y \\
 r_{31} & r_{32} & t_z
\end{pmatrix}
= s
\begin{pmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & 1
\end{pmatrix}
\]
Get Position from Homography Matrix

- normalize homography to have approx. unit-length columns for the rotation part, such that \(\sqrt{r_{11}^2 + r_{21}^2 + r_{31}^2} \approx 1 \), \(\sqrt{r_{12}^2 + r_{22}^2 + r_{32}^2} \approx 1 \)

\[
s = \frac{2}{\sqrt{h_1^2 + h_4^2 + h_7^2 + \sqrt{h_2^2 + h_5^2 + h_8^2}}}
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
r_{11} & r_{12} & t_x \\
r_{21} & r_{22} & t_y \\
r_{31} & r_{32} & t_z
\end{pmatrix}
= s
\begin{pmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & 1
\end{pmatrix}
\]
Get Position from Homography Matrix

- this gives us the position as

\[
\begin{align*}
t_x &= sh_3, \\
t_y &= sh_6, \\
t_z &= -s
\end{align*}
\]
Get Rotation from Homography Matrix

1. get normalized 1st column of 3x3 rotation matrix
2. get normalized 2nd column via orthogonalization
3. get missing 3rd column with cross product

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\cdot
\begin{pmatrix}
r_{11} & r_{12} & t_x \\
r_{21} & r_{22} & t_y \\
r_{31} & r_{32} & t_z
\end{pmatrix}
=
s
\begin{pmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & 1
\end{pmatrix}
\]
Get Rotation from Homography Matrix

1. get normalized 1st column of 3x3 rotation matrix

\[
\tilde{r}_1 = \begin{pmatrix}
 h_1 \\
 h_4 \\
 -h_7
\end{pmatrix}, \quad r_1 = \frac{\tilde{r}_1}{||\tilde{r}_1||_2}
\]

\[
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -1
\end{pmatrix} \cdot \begin{pmatrix}
 r_{11} & r_{12} & t_x \\
 r_{21} & r_{22} & t_y \\
 r_{31} & r_{32} & t_z
\end{pmatrix} = s \begin{pmatrix}
 h_1 & h_2 & h_3 \\
 h_4 & h_5 & h_6 \\
 h_7 & h_8 & 1
\end{pmatrix}
\]
Get Rotation from Homography Matrix

2. get normalized 2nd column via orthogonalization

\[
\tilde{r}_2 = \begin{pmatrix} h_2 \\ h_5 \\ -h_8 \end{pmatrix} - r_1 \cdot \begin{pmatrix} h_2 \\ h_5 \\ -h_8 \end{pmatrix} r_1, \quad r_2 = \frac{\tilde{r}_2}{||\tilde{r}_2||_2}
\]

\[
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ r_{31} & r_{32} & t_z \end{pmatrix} = s \begin{pmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{pmatrix}
\]
Get Rotation from Homography Matrix

3. get missing 3rd column with cross product: \(r_3 = r_1 \times r_2 \)

- \(r_3 \) this is guaranteed to be orthogonal to the other two columns

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix} \cdot
\begin{pmatrix}
r_{11} & r_{12} & t_x \\
r_{21} & r_{22} & t_y \\
r_{31} & r_{32} & t_z
\end{pmatrix}
= s
\begin{pmatrix}
h_1 & h_2 & h_3 \\
h_4 & h_5 & h_6 \\
h_7 & h_8 & 1
\end{pmatrix}
\]
Get Rotation from Homography Matrix

- make 3x3 rotation matrix
 \[R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\
 r_{21} & r_{22} & r_{23} \\
 r_{31} & r_{32} & r_{33} \end{pmatrix} \]

- convert to quaternion or Euler angles
Get Rotation from Homography Matrix

• remember Euler angles (with yaw-pitch-roll order):

\[
\begin{pmatrix}
 r_{11} & r_{12} & r_{13} \\
 r_{21} & r_{22} & r_{23} \\
 r_{31} & r_{32} & r_{33}
\end{pmatrix}
= \begin{pmatrix}
 \cos(\theta_z) & -\sin(\theta_z) & 0 \\
 \sin(\theta_z) & \cos(\theta_z) & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos(\theta_x) & -\sin(\theta_x) \\
 0 & \sin(\theta_x) & \cos(\theta_x)
\end{pmatrix}
\begin{pmatrix}
 \cos(\theta_y) & 0 & \sin(\theta_y) \\
 0 & 1 & 0 \\
 -\sin(\theta_y) & 0 & \cos(\theta_y)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 \cos(\theta_y)\cos(\theta_z) - \sin(\theta_x)\sin(\theta_y)\sin(\theta_z) & -\cos(\theta_x)\sin(\theta_z) & \sin(\theta_y)\cos(\theta_z) + \sin(\theta_x)\cos(\theta_y)\sin(\theta_z) \\
 \cos(\theta_y)\sin(\theta_z) + \sin(\theta_x)\sin(\theta_y)\cos(\theta_z) & \cos(\theta_x)\cos(\theta_z) & \sin(\theta_y)\sin(\theta_z) - \sin(\theta_x)\cos(\theta_y)\cos(\theta_z) \\
 -\cos(\theta_x)\sin(\theta_y) & \cos(\theta_x)\cos(\theta_y) & \sin(\theta_x)
\end{pmatrix}
\]

• get angles from 3x3 rotation matrix:

\[
r_{32} = \sin(\theta_x)
\Rightarrow \theta_x = \sin^{-1}(r_{32}) = \text{asin}(r_{32})
\]

\[
r_{31} = -\frac{\cos(\theta_x)\sin(\theta_y)}{\cos(\theta_x)\cos(\theta_y)} = -\tan(\theta_y)
\Rightarrow \theta_y = \tan^{-1}\left(-\frac{r_{31}}{r_{33}}\right) = \text{atan2}\left(-\frac{r_{31}}{r_{33}}\right)
\]

\[
r_{12} = -\frac{\cos(\theta_x)\sin(\theta_z)}{\cos(\theta_x)\cos(\theta_z)} = -\tan(\theta_z)
\Rightarrow \theta_z = \tan^{-1}\left(-\frac{r_{12}}{r_{22}}\right) = \text{atan2}\left(-\frac{r_{12}}{r_{22}}\right)
\]
Temporal Filter to Smooth Noise

• pose estimation is very sensitive to noise in the measured 2D coordinates!

→ estimated position and especially rotation may be noisy

• apply a simple temporal filter with weight α to smooth the pose at time step k:

$$
\left(\theta_x, \theta_y, \theta_z, t_x, t_y, t_z\right)_{\text{filtered}}^{(k)} = \alpha \left(\theta_x, \theta_y, \theta_z, t_x, t_y, t_z\right)_{\text{filtered}}^{(k-1)} + (1 - \alpha) \left(\theta_x, \theta_y, \theta_z, t_x, t_y, t_z\right)_{\text{unfiltered}}^{(k)}
$$

• smaller $\alpha \rightarrow$ less filtering, larger $\alpha \rightarrow$ more smoothing
Pose Estimation via Homographies – Step-by-Step

in each loop() call of the VRduino:

1. get timings from all 4 photodiodes in “ticks”
2. convert “ticks” to degrees and then to 2D coordinates on plane at unit distance (i.e. get x_i^n, y_i^n)
3. populate matrix A using the 2D and 3D point coordinates
4. estimate homography as $h=A^{-1}b$
5. get position t_x, t_y, t_z and rotation, e.g. in Euler angles from the estimated homography
6. apply temporal filter to smooth out noise
Must read: course notes on tracking!
Understanding Pose Estimation

1. how to get projected 2D coordinates?

2. image formation

3. estimate pose with linear homography method

4. estimate pose with nonlinear Levenberg-Marquardt method (next class)

• advanced topic
• all details of this are also derived in course notes