Adaptive Filters

\[y[n] = \sum_{m=0}^{M-1} w_m u[n - m] \]

- \(u[n] \) zero mean stationary input signal
- \(w_m \) length \(M \) filter with impulse response \(w_0, w_1, \ldots, w_{M-1} \)
- \(y[n] \) output signal
- \(d[n] \) desired signal
- \(e[n] \) error signal
Adaptive Filters

\[w = [w_0 \ w_1 \ \ldots \ w_{M-1}]^T \]

\[u_n = [u[n] \ u[n-1] \ \ldots \ u[n-M+1]]^T \]

correlation matrix \(R_u \triangleq \mathbb{E}[u_n u_n^T] \)

cross-correlation vector \(r_{ud} \triangleq \mathbb{E}[u_n d_n] \)
consider a time window of length $K \geq M$

for $n = n_0, n_0 + 1, ..., n_0 + K - 1$

output $y[n] = \sum_{m=0}^{M-1} w_m u[n - m]$ in matrix form

\[
\begin{bmatrix}
y[n_0] \\
y[n_0 + 1] \\
\vdots \\
y[n_0 + K - 1]
\end{bmatrix} \triangleq
\begin{bmatrix}
u[n_0] & u[n_0 - 1] & \ldots & u[n_0 - M + 1] \\
u[n_0 + 1] & u[n_0] & \ldots & u[n_0 - M + 1] \\
\vdots & \vdots & \ddots & \vdots \\
u[n_0 + K - 1] & u[n_0] & \ldots & u[n_0 - M + 1]
\end{bmatrix} \begin{bmatrix}
w_0 \\
w_1 \\
\vdots \\
w_{M-1}
\end{bmatrix}
\]

\[y = Aw\]

error vector $e = y - d = Aw - d$

minimize $||Aw - d||_2^2$ using Least Squares
Wiener-Hopf Equations

- alternative approach: consider minimizing instantaneous error
- optimal filter coefficients \(w = \text{arg min } J(w) \)

 error signal \(e[n] = y[n] - d[n] = u_n^T w - d \)

\[J(w) = \mathbb{E} e[n]^2 \]
\[\mathbb{E} e[n]^2 = (u_n^T w - d)(u_n^T w - d) \]
Wiener-Hopf Equations

- alternative approach: consider minimizing instantaneous error
- optimal filter coefficients $w = \arg \min J(w)$
 - error signal $e[n] = y[n] - d[n] = u_n^T w - d$
 - $J(w) = \mathbb{E} e[n]^2$
 - $\mathbb{E} e[n]^2 = (u_n^T w - d)(u_n^T w - d)$

- $\mathbb{E} e[n]^2 = \mathbb{E} d[n]^2 + w^T R_u w - 2 w^T r_{ud}$
- gradient $\frac{\partial J(w)}{\partial w} = 2 R_u w - 2 r_{ud}$
- solution $w^* = R_u^{-1} r_{ud}$ Wiener Filter (if R_u is invertible)
Least Mean-Square Algorithm

- unknown dynamic system is stimulated by an input vector consisting of the elements $x_1(i), x_2(i), \ldots, x_M(i)$

$$x(i) = [x_1(i), x_2(i), \ldots, x_M(i)]^T$$
\[e(n) = d(n) - [x(1), x(2), \ldots, x(n)]^T w(n) \]
\[= d(n) - X(n)w(n) \]

- \(d(n) \): \(n \times 1 \) desired response vector
- \(X(n) \): \(n \times M \) data matrix
Recap: Least Mean-Square Algorithm

- unknown dynamic system is stimulated by an input vector consisting of the elements \(x_1(i), x_2(i), \ldots, x_M(i)\)

\[
x(i) = [x_1(i), x_2(i), \ldots, x_M(i)]^T
\]
Least Mean-Square Algorithm

(1) The M elements of $x(i)$ originate at different points in space. We view $x(i)$ as a snapshot of data.

(2) The M elements represent the set of present and $(M - 1)$ past values of some excitation that are uniformly spaced in time.
input snapshot at discrete time n
\[x(n) \triangleq [x_1(n), x_2(n), \ldots, x_M(n)] \]
output $y(n) = x^T(n)w(n)$
desired signal $d(n)$
error vector:
\[e(n) = d(n) - y(n) = d(n) - x^T(n)w(n) \]
\(\mathbf{x}(n) \triangleq [x_1(n), x_2(n), \ldots, x_M(n)] \)

\(e(n) = d(n) - y(n) = d(n) - \mathbf{x}^T(n)\mathbf{w}(n) \)

- instantaneous cost function \(E(\mathbf{w}) \triangleq \frac{1}{2} e^2(n) \)

Differentiate \(E(\mathbf{w}) \) with respect to the filter weights \(\mathbf{w} \)

\[
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = e(n) \frac{e(n)}{\partial \mathbf{w}}
\]

\[
\frac{e(n)}{\partial \mathbf{w}} = -\mathbf{x}(n)
\]

- instantaneous estimate of the gradient \(\approx \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -\mathbf{x}(n)e(n) \)

- LMS algorithm:

\[
\mathbf{w}(n + 1) = \mathbf{w}(n) + \eta \mathbf{x}(n)e(n)
\]

\[
= \mathbf{w}(n) + \eta \mathbf{x}(n)\left(d(n) - \mathbf{x}^T(n)\mathbf{w}(n) \right)
\]

(stochastic) gradient descent
Training Sample: \(\text{Input signal vector} = \mathbf{x}(n) \)
\(\text{Desired response} = d(n) \)

User-selected parameter: \(\eta \)

Initialization. Set \(\hat{\mathbf{w}}(0) = 0 \).

Computation. For \(n = 1, 2, \ldots \), compute
\[
e(n) = d(n) - \hat{\mathbf{w}}^T(n)\mathbf{x}(n)
\]
\[
\hat{\mathbf{w}}(n + 1) = \hat{\mathbf{w}}(n) + \eta \mathbf{x}(n)e(n)
\]
Adaptive filtering applications: EEG denoising

- Electroencephalography (EEG): electrophysiological monitoring method to record electrical activity of the brain.
- Electrooculography (EOG): a technique for measuring the corneo-retinal standing potential that exists between the front and the back of the human eye.
Adaptive filtering applications

- canceling of maternal electrocardiogram (ECG)
\[e(n) = d(n) - [x(1), x(2), \ldots, x(n)]^T w(n) \]
\[= d(n) - X(n)w(n) \]

- \(d(n) \): \(n \times 1 \) desired response vector
- \(X(n) \): \(n \times M \) data matrix
LMS convergence analysis

- signal correlation matrix
 \[R_x = \mathbb{E} \ x(n)x^T(n) \]
- \(w^* \triangleq R_x^{-1}r_{dx} \) optimal Wiener filter
- \(\epsilon(n) = w^* - w(n) \)
LMS convergence analysis

- Signal correlation matrix
 \[R_x = \mathbb{E} \ x(n)x^T(n) \]

- Optimal Wiener filter
 \[w^* \triangleq R_x^{-1}r_d \]

- Error
 \[\epsilon(n) = w^* - w(n) \]

The error satisfies the recursion

\[\epsilon(n + 1) = (I - \eta R_x)\epsilon(n) + \text{zero mean noise} \]

- Cost function
 \[E(n) = E_{min} + E_{ex}(\infty) + E_{trans}(n) \]

- LMS converges if
 \[0 < \eta < \frac{2}{\lambda_{max}(R_x)} \]

- Asymptotic error
 \[E_{ex}(\infty) = E_{min} \sum_i \frac{\eta \lambda_i}{2 - \eta \lambda_i} \]
Adaptive filtering applications: channel equalization
Adaptive filtering applications: channel equalization

Learning curves based on 200 realizations.
The decay is related to $\tau_{mse, av}$.
A large μ gives fast convergence, but also a large $J_{ex}(\infty)$.

The curves illustrate learning curves for two different μ.
Adaptive filters to neural networks

- Nonlinear models for function approximation

\[w^T x + b \rightarrow f(\cdot) = f(w^T x + b) \]

- Example \(f(u) = \frac{1}{1+e^{-u}} \) gives \(\frac{1}{1+e^{-(w^T x + b)}} \)
Adaline: Adaptive Linear Neuron

- Bernard Widrow and Ted Hoff (1960)
Training Adaline