Recap: Covariance Estimation

- Suppose x_1, x_2, \ldots, x_n i.i.d. $\sim N(\mu, \Sigma)$
- Estimating means
 $$\mu_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_n$$
- Estimating covariances
 $$\Sigma_{ML} = \frac{1}{n} \sum_{i=1}^{n} (x_n - \mu_{ML})(x_n - \mu_{ML})^T$$
 Regularized covariance: $\hat{\Sigma} = (1 - \alpha) \text{diag}(\Sigma_{ML}) + \alpha \Sigma_{ML}$
Recap: Covariance Estimation

- Suppose x_1, x_2, \ldots, x_n i.i.d. $\sim N(\mu, \Sigma)$
- Estimating means
 $$\mu_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_n$$
- Estimating covariances
 $$\Sigma_{ML} = \frac{1}{n} \sum_{i=1}^{n} (x_n - \mu_{ML})(x_n - \mu_{ML})^T$$
 Regularized covariance: $\hat{\Sigma} = (1 - \alpha) \text{diag}(\Sigma_{ML}) + \alpha \Sigma_{ML}$
- LDA
 Estimate μ_k, for $k = 1, \ldots, K$ and Σ
 $Kn + \binom{n}{2} + n$ parameters
- QDA
 Estimate μ_k, Σ_k for $k = 1, \ldots, K$
 $Kn + K \left(\binom{n}{2} + n \right)$ parameters
Recap: Stability of Covariance

- Estimating covariance on 3-sample subsets
Recap: Fisher’s LDA

- \(\mu_k = \mathbb{E}[x \mid x \text{ comes from class } k] \)
- \(\Sigma_k = \mathbb{E}(x - \mu_k)(x - \mu_k)^T \mid x \text{ comes from class } k \)
- classify using a scalar feature \(y = a^Tx \)
Recap: Fisher’s LDA

- $\mu_k = \mathbb{E}[x \mid x \text{ comes from class } k]$
- $\Sigma_k = \mathbb{E}(x - \mu_k)(x - \mu_k)^T \mid x \text{ comes from class } k$
- classify using a scalar feature $y = a^T x$
 - $\beta_k = \mathbb{E}[y \mid x \text{ comes from class } k]$
 - $\sigma_k^2 = \mathbb{E}[(y - \beta_k)^2 \mid x \text{ comes from class } k]$

$$\max_a \frac{(\beta_1 - \beta_2)^2}{\sigma_1^2 + \sigma_2^2}$$
Recap: Fisher’s LDA

\[\beta_k = \mathbb{E}[y \mid x \text{ comes from class } k] = a^T \mu_k \]
\[\sigma_k^2 = \mathbb{E}[(y - \beta_k)^2 \mid x \text{ comes from class } k] = \mathbb{E}[(a^T (x - \mu_k))^2] = \mathbb{E}[(a^T (x - \mu_k)(x - \mu_k)^T a] = a^T \Sigma_k a \]

\[\max_a \frac{(\beta_1 - \beta_2)^2}{\sigma_1^2 + \sigma_2^2} = \max_a \frac{(a^T (\mu_1 - \mu_2))^2}{a^T (\Sigma_1 + \Sigma_2) a} \]

\[= \max_a \frac{a^T Q a}{a^T P a} \]

where \(Q = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T \) and \(P = \Sigma_1 + \Sigma_2 \).
Fisher’s LDA

\[
\max_a \frac{a^T Q a}{a^T P a}
\]

where \(Q = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T\) and \(P = \Sigma_1 + \Sigma_2\).

Solution: \(Qa = \lambda Pa\), therefore \(P^{-1}Qa = \lambda a\)

\[
P^{-1}(\mu_1 - \mu_2)(\mu_1 - \mu_2)^T a = \lambda a
\]

\(a = \text{constant} \times P^{-1}(\mu_1 - \mu_2)\)

can be normalized as \(a := \frac{P^{-1}(\mu_1 - \mu_2)}{||P^{-1}(\mu_1 - \mu_2)||_2}\)
Multi-class Fisher LDA (K classes with $N_1, ..., N_K$ examples)

- Consider $y = A^T x$, where A^T is $m \times n$

\[
\mu_k = \frac{1}{N_k} \sum_{j \in \text{class } k} x_j \quad \text{and} \quad \mu = \frac{1}{N} \sum_{j=1}^{N} x_j
\]

\[
S_k = \sum_{j \in \text{class } k} (x_j - \mu_k)(x_j - \mu_k)^T
\]

- within-class scatter S_W

\[
S_W = \sum_{k=1}^{K} S_k
\]

- between-class scatter S_B

\[
S_B = \sum_{k=1}^{K} N_k (\mu_k - \mu)(\mu_k - \mu)^T
\]
Multi-class Fisher LDA (K classes with N_1, \ldots, N_K examples)

- Consider $y = A^T x$, where A^T is $m \times n$

 $\mu_k = \frac{1}{N_k} \sum_{j \in \text{class } k} x_j$ and $\mu = \frac{1}{N} \sum_{j=1}^{N} x_j$

 $S_k = \sum_{j \in \text{class } k} (x_j - \mu_k)(x_j - \mu_k)^T$

- within-class scatter $S_W = \sum_{k=1}^{K} S_k$
- between-class scatter $S_B = \sum_{k=1}^{K} N_k(\mu_k - \mu)(\mu_k - \mu)^T$
Multi-class Fisher LDA (K classes with N_1, \ldots, N_K examples)

- Consider the transformation $y = A^T x$, where A^T is $m \times n$
- Transform all samples $y_j = A^T x_j$, $\forall j$.
- Mean and scatter matrices in the transformed y domain:
Multi-class Fisher LDA (K classes with N_1, \ldots, N_K examples)

- Consider the transformation $y = A^T x$, where A^T is $m \times n$
- Transform all samples $y_j = A^T x_j$, $\forall j$.
- Mean and scatter matrices in the transformed y domain:

 \[
 \tilde{\mu}_k = \frac{1}{N_k} \sum_{j \in \text{class } k} y_j = \frac{1}{N_k} \sum_{j \in \text{class } k} A^T y_j = A^T \mu_k \\
 \tilde{\mu} = \frac{1}{N} \sum_{j=1}^{N} y_j = \frac{1}{N} \sum_{j=1}^{N} A^T x_j = A^T \mu \\
 \tilde{S}_k = \sum_{j \in \text{class } k} (y_j - \tilde{\mu}_k)(y_j - \tilde{\mu}_k)^T = \sum_{j \in \text{class } k} (A^T x_j - A^T \mu_k)(A^T y_j - A^T \tilde{\mu}_k)^T = A^T S_k A \\
 \tilde{S}_W = \sum_{k=1}^{K} \tilde{S}_k = A^T S_W A \quad \text{within-class scatter} \\
 \tilde{S}_B = A^T S_B W \quad \text{between-class scatter}
 \]
Multi-class Fisher LDA \((K\text{ classes with } N_1, \ldots, N_K\text{ examples})\)

Consider \(y = A^T x\), where \(A^T\) is \(m \times n\) within-class scatter \(\tilde{S}_W = A^T S_W A\) between-class scatter \(\tilde{S}_B = A^T S_B W\)

What is the right objective function?
Bivariate Gaussian

\[x = [x_1, ... x_n] \sim N(\mu, \Sigma), \quad n = 2 \]

90\% probability contour

\[
P(x_1, ... x_n; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}
\]

whitening \(x \sim N(\mu, \Sigma) \implies z = \Sigma^{-\frac{1}{2}} (x - \mu) \sim N(0, I) \)
Bivariate Gaussian

\[x = [x_1, ... x_n] \sim N(\mu, \Sigma), \; n = 2 \]

90\% probability contour

\[P(x_1, ... x_n; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)} \]

whitening \(x \sim N(\mu, \Sigma) \implies z = \Sigma^{-\frac{1}{2}}(x - \mu) \sim N(0, I) \)

\[\text{area of the ellipse containing } 1 - \alpha \text{ probability} \]
\[\text{area} = \pi \chi^2_2(\alpha) \sqrt{\lambda_1} \sqrt{\lambda_2} \]

\[\text{chi-square upper percentile } \chi^2_2(0.1) \approx 4.61, \; \chi^2_2(0.01) \approx 9.21 \]
Multivariate Gaussian

\[x = [x_1, ... x_n] \sim N(\mu, \Sigma) \]

\[
P(x_1, ... x_n; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)}
\]

The smallest region such that there is probability \(1 - \alpha\) that a randomly selected observation will fall into is an \(n\)-dimensional ellipsoid with volume

\[
\frac{(2\pi)^{n/2}}{n\Gamma(n/2)} (\chi_p^2(\alpha)^{n/2}) |\Sigma|^{1/2}
\]
Multi-class Fisher LDA (K classes with N_1, \ldots, N_K examples)

- Consider $y = A^T x$, where A^T is $m \times n$
- Mean and scatter matrices in the transformed y domain:
 - within-class scatter $\tilde{S}_W = A^T S_W A$
 - between-class scatter $\tilde{S}_B = A^T S_B W$
- Objective function $J(A) = \frac{|A^T S_B A|}{|A^T S_W A|}$
Multi-class Fisher LDA (K classes with N_1, \ldots, N_K examples)

Consider $y = A^T x$, where A^T is $m \times n$

Mean and scatter matrices in the transformed y domain:
- within-class scatter $\tilde{S}_W = A^T S_W A$
- between-class scatter $\tilde{S}_B = A^T S_B W$

Objective function $J(A) = \frac{|A^T S_B A|}{|A^T S_W A|}$

Columns of the optimal A satisfy

$$S_B a_i = \lambda_i S_W a_i$$

i.e., Eigenvectors of $S_W^{-1} S_B$
Multi-class Fisher LDA (K classes with N_1, \ldots, N_K examples)

\[
\mu_k = \frac{1}{N_k} \sum_{j \in \text{class } k} x_j \quad \text{and} \quad \mu = \frac{1}{N} \sum_{j=1}^{N} x_j
\]

\[
S_k = \sum_{j \in \text{class } k} (x_j - \mu_k)(x_j - \mu_k)^T
\]

within-class scatter $S_W = \sum_{k=1}^{K} S_k$

between-class scatter $S_B = \sum_{k=1}^{K} N_k (\mu_k - \mu)(\mu_k - \mu)^T$

Objective function $J(A) = \frac{|A^T S_B A|}{|A^T S_W A|}$

Columns of the optimal A are the Eigenvectors of $S_W^{-1}S_B$
Another objective function

- Objective function $J(A) = \frac{|A^T S_B A|}{|A^T S_W A|}$
- Alternative objective $J(A) = \text{trace}[(A^T S_W A)^{-1}(A^T S_B A)]$
- Same solution
 Columns of the optimal A are the Eigenvectors of $S_W^{-1} S_B$
Coffee bean dataset

- 5 types of coffee beans were presented to an array of chemical gas sensors. 60 dimensional feature vectors
Application: Hyperspectral Imaging
Application: Hyperspectral Imaging

- E0-1 Satellite (Hyperion imaging spectrometer) 200 bands

Image taken by Hyperion shows the relative chlorophyll content of vegetation in Fairfax County. The spectral profiles indicate healthy grass in the athletic field and golf course. The spectral profile of the trees indicates dormant vegetation.

Vegetation

Oxygen in the atmosphere is detected by the spectral profiles in the near infrared wavelength.
Fisher LDA for Hyperspectral Imaging
Problems with linear discrimination
Problems with linear discrimination
Problems with linear discrimination
Stationary Processes and Quadratic Discriminants

- \(h_k(x) = x^T W_k x + w_k^T x + w_{k0} \)

Classify as class \(k \) if \(h_k(x) > h_{k'}(x) \) \(\forall k' \neq k \)

\(W_k = -\frac{1}{2} \Sigma_k^{-1} \)

\(w_k = \Sigma_k^{-1} \mu_k \)

\(w_{k0} = -\frac{1}{2} \mu_k^T \Sigma_k^{-1} \mu_k - \frac{1}{2} \log |\Sigma_k| + \log \pi_k \)

For stationary processes \(\Sigma_{kl} \) only depends on \((k - l) \)

- Estimate \(r[k] = \sum_n (x[n] - \mu)(x[n + k] - \mu) \)
Stationary Processes and Quadratic Discriminants

- \(h_k(x) = x^T W_k x + w_k^T x + w_{k0} \)
 - Classify as class \(k \) if \(h_k(x) > h_{k'}(x) \quad \forall k' \neq k \)
 - \(W_k = -\frac{1}{2} \Sigma_k^{-1} \)
 - \(w_k = \Sigma_k^{-1} \mu_k \)
 - \(w_{k0} = -\frac{1}{2} \mu_k^T \Sigma_k^{-1} \mu_k - \frac{1}{2} \log |\Sigma_k| + \log \pi_k \)

For stationary processes, \(\Sigma_{kl} \) only depends on \((k - l) \)

- Estimate \(r[k] = \sum_n (x[n] - \mu)(x[n + k] - \mu) \)
 - Fourier transformation \(y = Fx \) turns every \(\Sigma_k \) into diagonal
 - i.e., \(F\Sigma F^H = \text{Diagonal} \)
 - Estimate only the diagonals
How to check if linear/quadratic discrimination works

Plot $z_1 = (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1)$ and $z_2 = (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2)$ in the (z_1, z_2) space.
How to check if linear/quadratic discrimination works

- Plot \(z_1 = (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1) \) and
 \(z_2 = (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2) \) in the \((z_1, z_2)\) space

- 40 dimensional radar signal, two classes

Fig. 4-9 \(d^2 \)-display of a radar data.

(slide credit: K. Fukunaga)
Separating Hyperplanes

- Linear/Quadratic Discriminant Analysis, Bayes Optimal Classifiers
 require modeling signals: $p(x)$, and class distributions $p(y|x)$
- Vapnik’s Principle
 ’When solving a problem if interest, do not solve a more general problem as an intermediate step’
Separating Hyperplanes

- Directly estimate hyperplanes \(w^T x + b \geq 0 \)
 parameters \(\theta = (w, b) \)
Separating Hyperplanes

- Directly estimate hyperplanes $w^T x + b \geq 0$
- parameters $\theta = (w, b)$
- Hyperplane: $H = \{ x : w^T x + b = 0 \}$
Separating Hyperplanes

- Directly estimate hyperplanes $w^T x + b \geq 0$
- Hyperplane: $H = \{ x : w^T x + b = 0 \}$
- Distance between a point z and H
 \[d(z, H) = \min_{h \in H} ||z - h||_2 \]
- Decompose $z = z_0 + \frac{w}{||w||_2} r$
- $w^T z + b = w^T z_0 + b + ||w||_2 r$
Separating Hyperplanes

- Directly estimate hyperplanes \(w^T x + b \geq 0 \) parameters \(\theta = (w, b) \)
- Hyperplane: \(H = \{ x : w^T x + b = 0 \} \)
- distance between a point \(z \) and \(H \)
 \[d(z, H) = \min_{h \in H} ||z - h||_2 \]
- Decompose \(z = z_0 + \frac{w}{||w||_2} r \)
- \(w^T z + b = w^T z_0 + b + ||w||_2 r \)
- \[d(z, H) = |r| = \frac{|w^T z + b|}{||w||_2} \]
Data $x_1, ..., x_n$ and corresponding labels $y_1, ... y_n \in \{-1, +1\}$

- Directly estimate hyperplanes $w^T x + b = 0$
- Margin ρ of a hyperplane is

$$
\rho(w, b) = \min_{i=1,\ldots,n} d(x_i, H) \\
= \min_{i=1,\ldots,n} \frac{|w^T x_i + b|}{||w||_2}
$$
Data x_1, \ldots, x_n and corresponding labels $y_1, \ldots, y_n \in \{-1, +1\}$

- Directly estimate hyperplanes $w^T x + b = 0$
- Margin ρ of a hyperplane is

 $$
 \rho(w, b) = \min_{i=1, \ldots, n} d(x_i, H)
 = \min_{i=1, \ldots, n} \frac{|w^T x_i + b|}{||w||_2}
 $$

- Maximum margin separating hyperplane is the solution of

 $$
 \begin{align*}
 \max_{w,b} & \quad \rho(w, b) \\
 \text{s.t.} & \quad y_i(w^T x_i + b) \geq 0 \ \forall i
 \end{align*}
 $$
Maximum margin hyperplane

Data x_1, \ldots, x_n and corresponding labels $y_1, \ldots, y_n \in \{-1, +1\}$

- Margin $\rho(w, b) = \min_{i=1, \ldots, n} \frac{|w^T x_i + b|}{||w||_2}$
- Maximum margin separating hyperplane is the solution of

$$\max_{w, b} \min_{i=1, \ldots, n} \frac{|w^T x_i + b|}{||w||_2}$$

$$s.t. \ y_i (w^T x_i + b) \geq 0 \ \forall i$$
Maximum margin hyperplane

Data $x_1, ..., x_n$ and corresponding labels $y_1, ..., y_n \in \{-1, +1\}$

- Margin $\rho(w, b) = \min_{i=1,\ldots,n} \frac{|w^T x_i + b|}{||w||_2}$
- Maximum margin separating hyperplane is the solution of

$$\max_{w,b} \min_{i=1,\ldots,n} \frac{|w^T x_i + b|}{||w||_2}$$

s.t. $y_i(w^T x_i + b) \geq 0 \ \forall i$

- not unique

$(\alpha w, \alpha b)$ gives the same hyperplane
Maximum margin hyperplane

Data x_1, \ldots, x_n and corresponding labels $y_1, \ldots, y_n \in \{-1, +1\}$

- Margin $\rho(w, b) = \min_{i=1,\ldots,n} \frac{|w^T x_i + b|}{||w||_2}$
- Maximum margin separating hyperplane is the solution of

$$\max_{w, b} \min_{i=1,\ldots,n} \frac{|w^T x_i + b|}{||w||_2}$$
$$\text{s.t. } y_i(w^T x_i + b) \geq 0 \ \forall i$$

- **not unique**

$(\alpha w, \alpha b)$ gives the same hyperplane

- Scale w and b by $\frac{1}{\min_{i=1,\ldots,n} |w^T x_i + b|}$

Now $\rho = \frac{1}{||w||_2}$
Maximum margin hyperplane

Data $x_1, ..., x_n$ and corresponding labels $y_1, ..., y_n \in \{-1, +1\}$

$$\max_{w,b} \frac{1}{||w||_2}$$

$$s.t. \quad y_i(w^T x_i + b) \geq 0 \ \forall i$$

equivalently

$$\min_{w,b} ||w||_2^2$$

$$s.t. \quad y_i(w^T x_i + b) \geq 0 \ \forall i$$

▶ Hard-margin support vector machine (SVM)
Problems with hard margin

- Separability
Problems with hard margin

- Sensitivity
Soft Margin Support Vector Machine

\[
\begin{align*}
\min_{w,b,s_1,...,s_n} & \quad \frac{1}{2}||w||^2_2 + C \frac{1}{n} \sum_{i=1}^{n} s_i \\
\text{s.t.} & \quad y_i(w^T x_i + b) \geq 1 - s_i \quad \forall i \\
& \quad s_i \geq 0 \quad \forall i
\end{align*}
\]

- \(s_1, ..., s_n \) are slack variables
- \(C \) is a tuning parameter