#### EE269 Signal Processing for Machine Learning Wavelets Part II

Instructor : Mert Pilanci

Stanford University

October 5, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### What makes a good wavelet

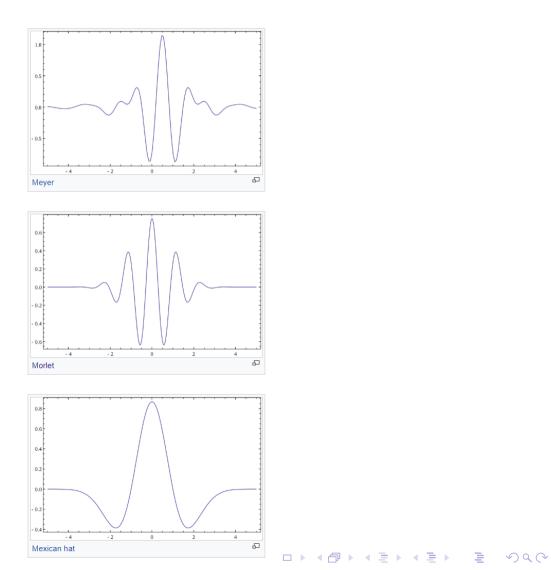
Application specific

Compact time support vs frequency support

~

- Smoothness
- Orthogonality

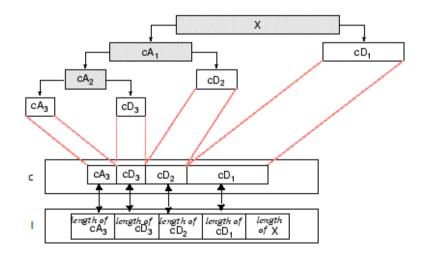
# Other Wavelets



### **Other Wavelets**

In MATLAB

[c,1] = wavedec(x,n,wname) returns the wavelet decomposition of the signal x at level n using the wavelet wname



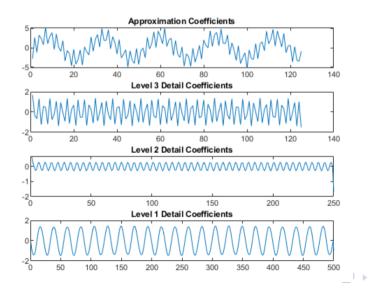
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

### Other Discrete Wavelets

```
[c,l] = wavedec(sumsin,3,'db2');
approx = appcoef(c,l,'db2');
[cd1,cd2,cd3] = detcoef(c,l,[1 2 3]);
```

Plot the coefficients.

subplot(4,1,1)
plot(approx)
title('Approximation Coefficients')
subplot(4,1,2)
plot(cd3)
title('Level 3 Detail Coefficients')
subplot(4,1,3)
plot(cd2)
title('Level 2 Detail Coefficients')
subplot(4,1,4)
plot(cd1)
title('Level 1 Detail Coefficients')



< ⊒ >

ъ

Ξ.

SQ (~

### Fourier vs Wavelet Transforms

- Fourier Transform has convolution theorem and mathematical relationships
- No closed form relations exist for wavelet transforms
- Fourier transform has uniform spectral resolution
- Wavelet transform has adaptive resolution
- 100 Hz resolution at 400 Hz and at 4000 Hz are not the same

### Short-time Fourier Transform

window signal
e.g. w[m] =   

$$\begin{cases} 0 & m < 0, m \ge L \\ 1 & 0 \le m \le L - 1 \end{cases}$$

Short Time Fourier Transform (STFT)

$$X[n,k] = \sum_{m=0}^{L-1} x[n+m]w[m]e^{-j(2\pi/N)km}, \quad 0 \le k \le N-1.$$

### Short-time Fourier Transform

window signal

e.g. 
$$w[m] = \begin{cases} 0 & m < 0, m \ge L \\ 1 & 0 \le m \le L - 1 \end{cases}$$

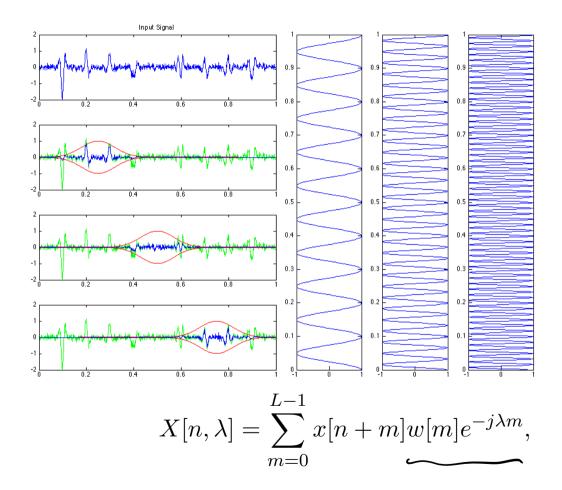
Short Time Fourier Transform (STFT)

$$X[n,k] = \sum_{m=0}^{L-1} x[n+m]w[m]e^{-j(2\pi/N)km}, \quad 0 \le k \le N-1.$$

Continuous Frequency STFT

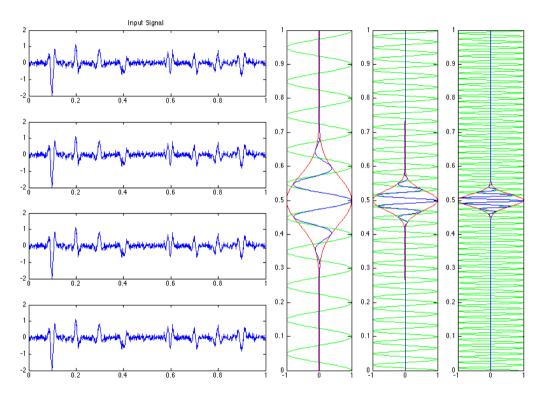
$$X[n,\lambda] = \sum_{m=0}^{L-1} x[n+m]w[m]e^{-j\lambda m},$$

### Short-time Fourier Transform



time-windowed signal

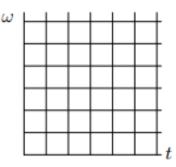
# Short-time Fourier Transform vs Wavelet Transform



- windowed signal = windowed complex exponential basis
- STFT has uniform time and frequency resolution
- In contrast, wavelets have adaptive windows:
- short windows for higher frequencies (small scale)
- Iong windows for lower frequencies (large scale)

# Wavelet Transform vs STFT





Wavelet Transform

Short Time Fourier Transform

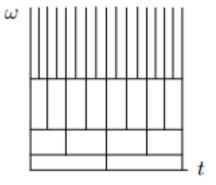
Wavelet transform analyzes a signal at different frequencies with different resolutions:

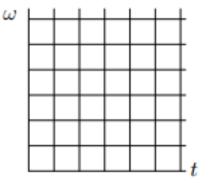
good time resolution and relatively poor frequency resolution at high frequencies

good frequency resolution and relatively poor time resolution at low frequencies

Wavelet transform is better for signals with non-periodic and fast transient features (i.e., high frequency content for short duration)

# Wavelet Transform vs STFT

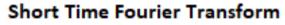




Wavelet Transform

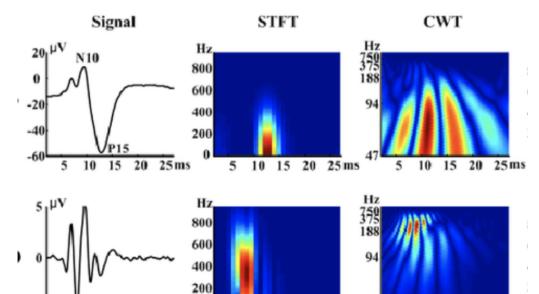
5

10 15



5 10 15 20 25ms

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

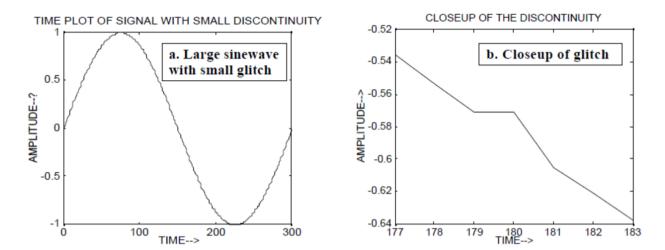


5 10 15 20 25ms

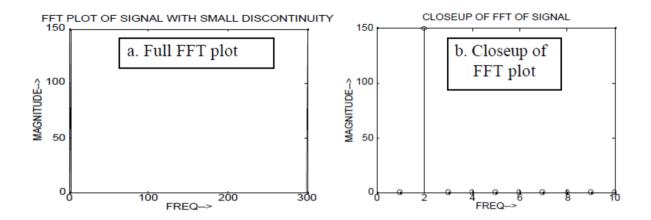
0

20 25ms

# Wavelet Transform vs STFT : Locality

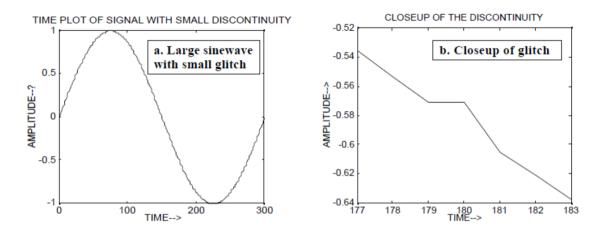


< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > < < つ < </li>

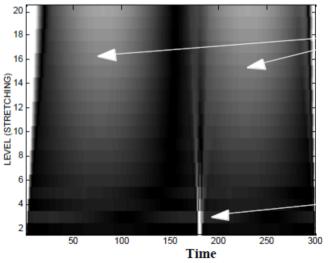


#### ◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○ ○ ○

# Wavelet Transform vs STFT : Locality



WAVELET PLOT OF SIGNAL & DISCONTINUITY

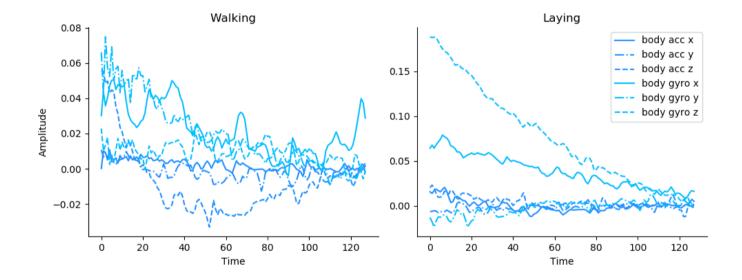




Stretched "low frequency" wavelet compares better to long sinusoidal (wave) signal. It "finds" peaks and valleys.

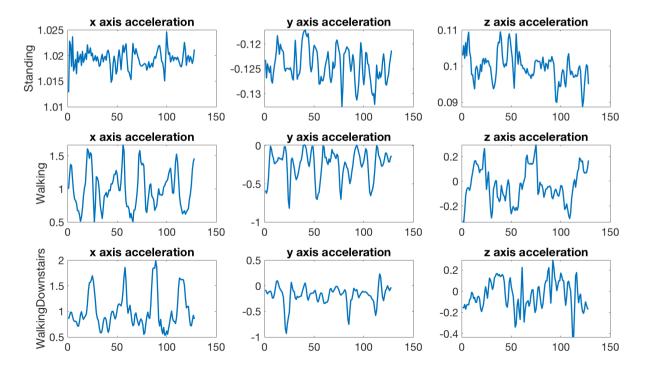
Short "high frequency" wavelet compares well to discontinuity. It "finds" it's location at 180.

# Human Activity Recognition (HAR) Dataset

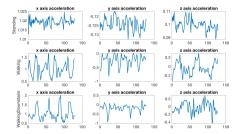


# Application

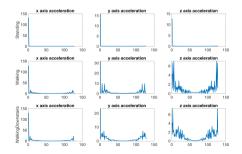
- Human Activity Recognition Using Smartphones Data Set (Reyes-Ortiz et al, 2012)
- Compote DFT of the training signals  $X_1[k], X_2[k], ...X_m[k]$ DFT Magnitude  $|X_1[k]|, |X_2[k]|, ...|X_m[k]|$



Results: training set: 7724 signals, test set: 2575 signals



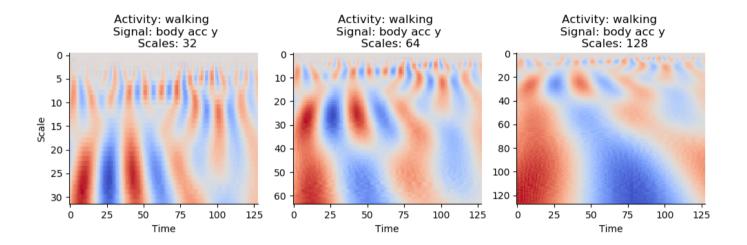
3-Nearest Neighbors,  $\ell_2$ -norm distance on x[n]. Accuracy : 0.77



3-Nearest Neighbors,  $\ell_2$ -norm distance on |X[k]|. Accuracy : 0.85

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへで

# Continuous Wavelet Transform of HAR signals



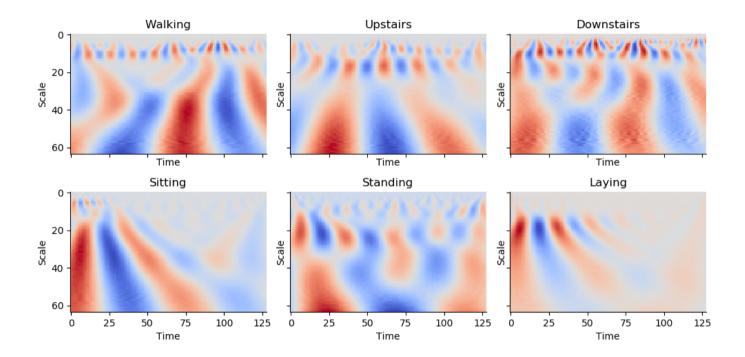
< □ > < □ > < □ > < □ > < □ > < □ >

臣

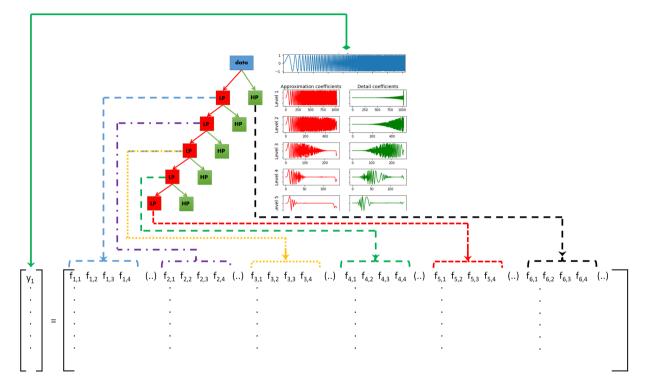
5900

changing the number of scales

### Continuous Wavelet Transform of HAR signals



## Wavelet Transform Features



- mean, median
- variance
- zero crossing rate, mean crossing rate
- entropy

slide credit: A. Taspinar

### Human Activity Recognition dataset

▶ 3-Nearest Neighbors, ℓ<sub>2</sub>-norm distance on x[n].
 accuracy : 0.77%

▶ 3-Nearest Neighbors, ℓ<sub>2</sub>-norm distance on |X[k]|.
 accuracy : 0.85%

1D Convolutional Net

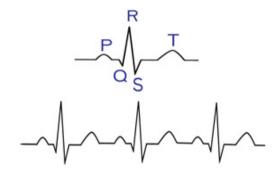
accuracy : 91%

Wavelet Transform Features (entropy, zero crossing, simple statistics) + linear classifier accuracy : 95%

< ロ > < 同 > < E > < E > E の < C</p>

# Application: Arrhythmia Detection

Normal heart rhythm



Irregular heart rhythm



▲□▶▲□▶▲□▶▲□▶ □ のへぐ

### Application: Arrhythmia Detection

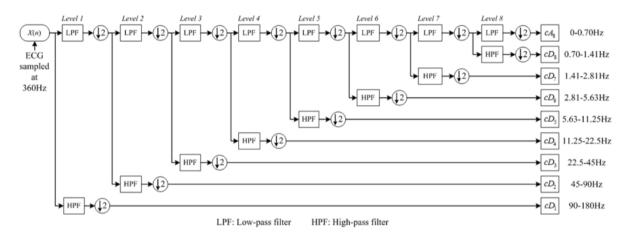


Figure 3. The decomposition process of the 8-level WMRA.

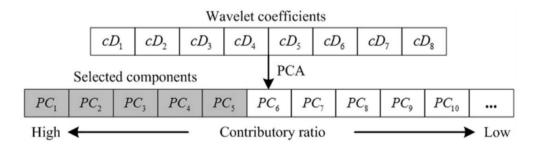


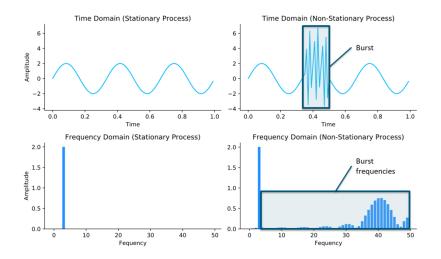
Figure 4. Low-dimensional feature vector generated by PCA using wavelet coefficients.

SQ (~

# Application: Arrhythmia Detection

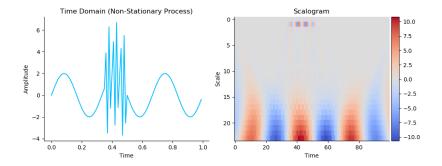
| Literatures and feature extraction methods               | Feature selection<br>(dimension) | Beat<br>types | Training/test<br>beats | Classifiers                        | Independent<br>training/test data | k-fold cross<br>validation | SEN (%) | SPE (%) | ACC<br>(%) |
|----------------------------------------------------------|----------------------------------|---------------|------------------------|------------------------------------|-----------------------------------|----------------------------|---------|---------|------------|
| Spectral correlation <sup>1</sup>                        | Yes (88)                         | 5             | Totally 6259           | SVM                                | Unknown                           | 10-fold                    | 99.20   | 99.70   | 98.60      |
| Wavelet transform, morphological features <sup>5</sup>   | No (28)                          | 5             | 10675/93894            | Artificial neural<br>network       | No                                | No                         | 88.60   | 96.18   | 97.86      |
| Morphological features <sup>7</sup>                      | Yes (6)                          | 6             | 35848/35848            | Linear<br>discriminant<br>analysis | No                                | No                         | 91.19   | 98.65   | 94.03      |
| Morphological features <sup>8</sup>                      | No (13)                          | 3             | 600/30273              | SVM, neural<br>network             | No                                | No                         | 98.52   | 99.19   | 97.14      |
| Time domain features9                                    | No (9)                           | 6             | 42427/14142            | Decision tree                      | No                                | No                         | 97.50   | 99.80   | 99.51      |
| Morphological features <sup>10</sup>                     | No (16)                          | 3             | 15509/8081             | SVM, neural<br>network             | Yes                               | No                         | 92.82   | 93.74   | 92.85      |
| Morphological features <sup>11</sup>                     | No (8)                           | 5             | 12570/12570            | Regression neural<br>network       | No                                | No                         | 85.50   | 99.40   | 99.40      |
| Fourier transform, wavelet package14                     | Yes (70)                         | 16            | 3345/2542              | k-NN                               | No                                | No                         | 85.59   | 99.56   | 93.59      |
| Wavelet transform, cosine transform <sup>15</sup>        | Yes (18)                         | 4             | 720/360                | SVM                                | Unknown                           | No                         | 98.60   | 95.50   | 96.50      |
| Wavelet transform <sup>16</sup>                          | Yes (24)                         | 5             | 900/900                | SVM, genetic<br>algorithm          | No                                | No                         | 98.50   | 99.69   | 98.80      |
| Higher order spectral <sup>17</sup>                      | No (7)                           | 5             | 330/500                | SVM                                | Unknown                           | No                         | 90.00   | 87.93   | 85.79      |
| Wavelet transform <sup>18</sup>                          | Yes (20)                         | 4             | 360/360                | SVM                                | Unknown                           | No                         | 98.62   | 99.54   | 98.61      |
| Temporal and spectral features <sup>21</sup>             | Yes (15)                         | 6             | 1440/720               | SVM                                | No                                | No                         | 97.60   | 93.80   | 95.20      |
| Temporal and spectral features <sup>22</sup>             | Yes (13)                         | 8             | Totally 17857          | SVM                                | No                                | 5-fold                     | 95.00   | 99.00   | 98.60      |
| Higher order statistics, wavelet packet <sup>27</sup>    | Yes (28)                         | 5             | 3345/2542              | k-NN                               | Yes                               | No                         | 89.80   | 97.80   | -          |
| Hilbert-Huang transform32                                | Yes (18)                         | 6             | 10700/10700            | SVM                                | No                                | No                         | 98.64   | 99.77   | 99.51      |
| Wavelet transform <sup>46</sup>                          | Yes (18)                         | 5             | Totally 101352         | SVM                                | Yes                               | 44-fold                    | -       | -       | 86.40      |
|                                                          |                                  | 16            | 24100/86009            |                                    | No                                | No                         | 99.32   | -       | 99.01      |
| Approximate entropy, wavelet packet47                    | Yes (9)                          | 5             | 145/145                | SVM, PNN                           | Unknown                           | No                         | 98.70   | 99.70   | 98.60      |
| Non-linear and center-clipping transform <sup>48</sup>   | No (5)                           | 5             | 13640/13640            | Wavelet neural<br>network          | No                                | No                         | 98.78   | 99.70   | 98.78      |
| Eigenvector method <sup>49</sup>                         | Yes (12)                         | 4             | 360/360                | Recurrent neural<br>network        | Unknown                           | No                         | 98.89   | 99.25   | 98.06      |
| Higher order statistics <sup>50</sup>                    | No (24)                          | 5             | 4000/14299             | RBF neural<br>network              | No                                | No                         | 92.93   | 98.52   | 95.18      |
| Geometrical features <sup>51</sup>                       | No (18)                          | 7             | 4035/3150              | SVM, <i>k</i> -NN,<br>BPNN         | No                                | No                         | 97.52   | 99.65   | 98.06      |
| Wavelet transform, morphological features <sup>52</sup>  | Yes (8)                          | 3             | 50928/49636            | Linear<br>discriminant<br>analysis | Yes                               | No                         | 80.00   | -       | 94.00      |
| Wavelet transform, linear prediction model <sup>53</sup> | No (12)                          | 3             | 50554/49273            | Linear<br>discriminant<br>analysis | Unknown                           | No                         | 86.50   | _       | 86.50      |
| Cross correlation <sup>54</sup>                          | No (30)                          | 3             | 41961/51285            | Artificial neural<br>network       | Unknown                           | No                         | 97.49   | -       | 95.24      |
| WMRA [This work]                                         | Yes (12)                         | 6             | Totally 107049         | SVM                                | Yes                               | - 10-fold                  | 44.40   | 88.88   | 81.47      |
|                                                          |                                  |               |                        |                                    | No                                |                            | 99.09   | 99.82   | 99.70      |

#### Limitations of the Fourier Transform



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

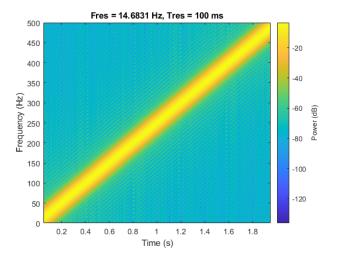
#### Non-stationary signals



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

#### Chirp Signals

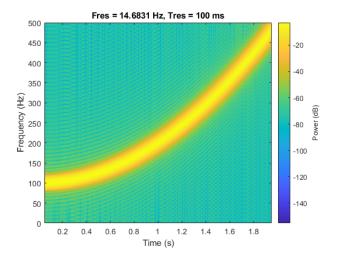
linear chirp 
$$x(t) = \sin(2\pi(ct^2 + f_0t))$$



・ロト・西ト・山田・山田・山口・

#### Chirp Signals

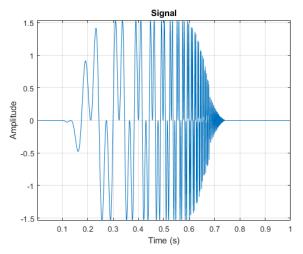
• quadratic chirp 
$$x(t) = \sin(2\pi(ct^3 + dt^2 + f_0t))$$



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

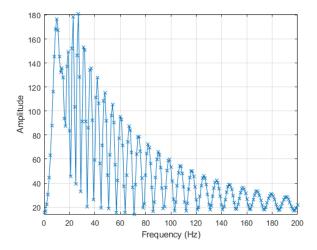
#### **Resolving Signal Components**

sum of two hyperbolic chirps: one with instantaneous frequency  $\frac{7.5}{(0.80-t)^2}$  and one with  $\frac{2.5}{(0.80-t)^2}$  sampled at 2048Hz



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

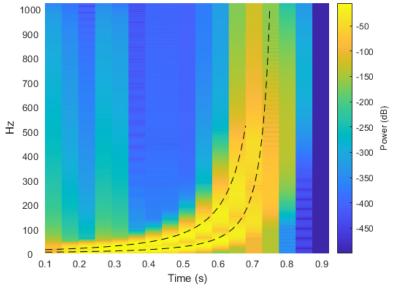
#### Discrete Fourier Transform



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

#### Short-Time Fourier Transform - long window

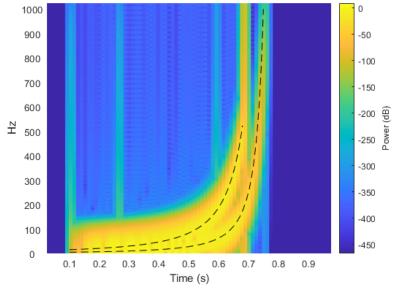
Time Resolution: 200 ms



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

#### Short-Time Fourier Transform - short window

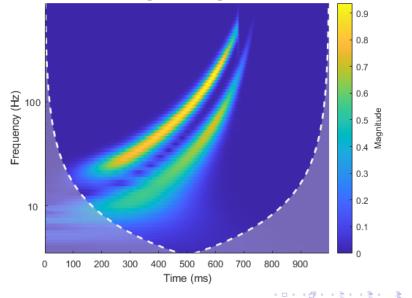
Time Resolution: 50 ms



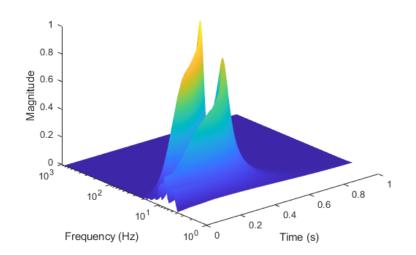
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

#### Continuous Wavelet Transform

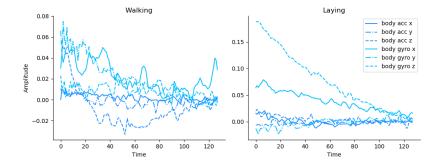
Magnitude Scalogram



#### Scalogram In 3-D

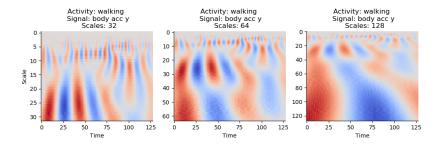


### Human Activity Recognition (HAR) Dataset



▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

### Continuous Wavelet Transform of HAR signals

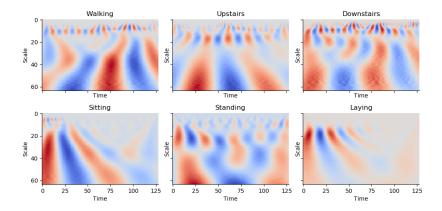


(日)

э

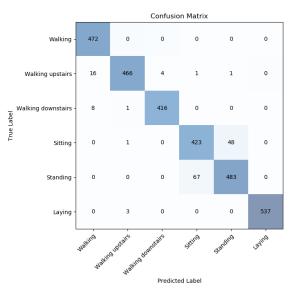
changing the number of scales

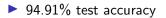
### Continuous Wavelet Transform of HAR signals



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

# Deep Convolutional Neural Network

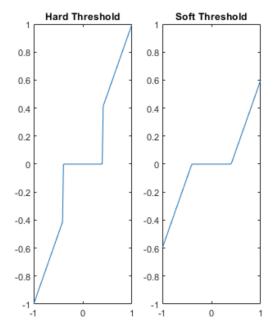




◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- 1. input signal  $x = [x[1], \ldots, x[N]]$
- 2. compute discrete wavelet transform y = Wx
- 3. perform thresholding in the wavelet domain (shrink coefficients by hard/soft thresholding)
- 4. reconstruct the signal from thresholded discrete wavelet coefficients  $\hat{x} = W^{-1}S(y)$

# Hard/Soft Thresholding



ヨト ▲ ヨ ト ヨ - - - のへで

## Hard/Soft Thresholding

#### hard thresholding

$$H_{\lambda}(y) = y1[|y| > \lambda]$$

soft thresholding

$$S_{\lambda}(y) = \operatorname{sign}(y)(|y| - \lambda)_+$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Sparse Signal Recovery and Optimization

noisy observation model

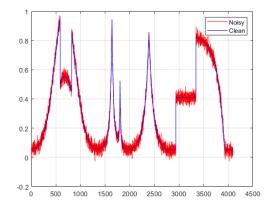
$$y = y^* + \sigma w$$

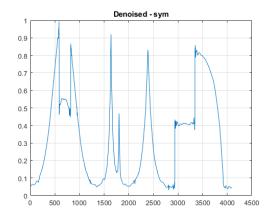
 $w \sim N(0,1)$  independent identically distributed Gaussian noise

- ► y<sup>\*</sup> is a sparse clean signal
- $\blacktriangleright$  recover  $y^*$  from y via

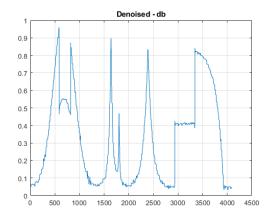
hard thresholding:  $\hat{y} = H_{\lambda}(y) = \arg \min_{z} \|y - z\|_{2}^{2} + \lambda \|z\|_{0}$ soft thresholding:  $\hat{y} = S_{\lambda}(y) = \arg \min_{z} \|y - z\|_{2}^{2} + \lambda \|z\|_{1}$ 

(ロ)、(型)、(E)、(E)、(E)、(O)への



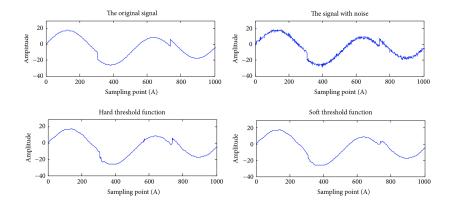


シック 単 (中本) (中本) (日)



シック 単 (中本) (中本) (日)

### Hard vs Soft Thresholding



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

# Image Denoising by Wavelet Thresholding





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2D Biorthogonal mother wavelet