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Linear systems and additive noise

» Linear systems, e.g., filters, can easily separate additive noise
from useful information when we know the frequency range of

the noise and information

yln] = z{n] + w(n]

» In vector notation

Hy=Hx+ Hw



Multiplicative or convolutive noise

» This is harder if the signal and noise are convoluted, e.g., in
speech processing

yln] = 2[n] x win]
» wln] is the flowing air (noise source)
» h[n] is the vocal tract (filter)

We can develop an operator that can separate convoluted
components by transforming convolution into addition



Cepstrum
P> Developed to separate convoluted signals

yln] = zln] + wln]

Discrete Fourier Domain:

> Take logarithms
log[Y[k]] = log X [k] 4 log W [k]

» we can apply a linear filter to log Y [k] to separate

» equivalently we can take DFT of log Y [k] and process in
frequency domain

cepstrum is the DFT (or DCT) of the log spectrum
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Fundamental perlod
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(a) Windowed speech waveform (32 ms at

8 kHz sampling rate).
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(b) Log spectrum (from a Fourier transform).
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(c) Cepstrum computed from the log spectrum

shown in (b).
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(d) Log spectrum reconstructed from the first
40 cepstral coefficients in (c).

Figure 10.3 Analysing a section of speech waveform to obtain the cepstrum and then to

reconstruct a cepstrally smoothed spectrum.



1. Frames:

short 10ms
windows

2. FFT:

power spectrum
spectrogram

W‘-’ 3. Filtering:
' mel filter

! motivated by
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L‘ 4l | “cssential data”
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4. Features:
DCT transform
mel cepstrum
MFCC

-less features
-less correlation




Application: Mel-frequency spectrum

» perceptual scale of pitches
» 1 mels = 1000 Hz

» a formula to convert f hertz into m mels
m = 2595 1oz (1+ 7y )
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Application: Mel-frequency spectrum

» weighted DFT magnitude
» mel-frequency spectrum M F'[r] is defined as
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MF[r] =) |V;[k]X[k]
k

» V,.[k] is the triangular weighting function for the rth filter.

» bandwidths are constant for center frequencies j 1kHz and
then increase exponentially

» identical to convolutions with 22 filters
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Application: Mel-frequency spectrum
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MF[r] = > Vi [k XK
k

» Mel Frequency Cepstral Coefficient (MFCC)

MFCClm] = ilog(l\/lF[r]) cos [%” (7“ + %) m] (1)

» i.e., inner-product with cosines MFCC|m] = (log MF[r|, ¢, [7])



Application: Speaker Identification

Speech signal represented as a sequence of CEPSTRAL vectors
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» train a k-Nearest Neighbor classifier to classify frames



Application: Speaker |dentification

v

vvyyvyy

AN4 dataset (CMU): 5 male and 5 female subjects speaking
words and numbers

collect the training samples into frames of 30 ms with an
overlap of 75%

calculate MFCC
train a k-Nearest Neighbor classifier on the frames
for a given test signal, predictions are made every frame

most frequently occurring label is declared as the speaker



Application: Speaker Identification

speaker 1 (blue) and speaker 2 (red) time domain signals

frame based MFCC features




Application: Speaker Identification

Speaker Recognition Experiments (5-NN)
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Application: Speaker Identification

Validation Accuracy
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» average accuracy is 92.93%



