EE269 Signal Processing for Machine Learning Cepstrum

Instructor : Mert Pilanci

Stanford University

October 11 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Linear systems and additive noise

Linear systems, e.g., filters, can easily separate additive noise from useful information when we know the frequency range of the noise and information

$$y[n] = x[n] + w[n]$$

In vector notation

$$Hy = Hx + Hw$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Multiplicative or convolutive noise

This is harder if the signal and noise are convoluted, e.g., in speech processing

$$y[n] = x[n] \ast w[n]$$

- w[n] is the flowing air (noise source)
- ▶ *h*[*n*] is the vocal tract (filter)

We can develop an operator that can separate convoluted components by **transforming convolution into addition**

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Cepstrum

Developed to separate convoluted signals

$$y[n] = x[n] \ast w[n]$$

Discrete Fourier Domain:

$$Y[k] = X[k]W[k]$$

Take logarithms

$$\log[Y[k]] = \log X[k] + \log W[k]$$

• we can apply a linear filter to $\log Y[k]$ to separate

• equivalently we can take DFT of $\log Y[k]$ and process in frequency domain

cepstrum is the DFT (or DCT) of the log spectrum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Figure 10.3 Analysing a section of speech waveform to obtain the cepstrum and then to reconstruct a cepstrally smoothed spectrum.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

- perceptual scale of pitches
- 1 mels = 1000 Hz
- ► a formula to convert f hertz into m mels $m = 2595 \log_{10} \left(1 + \frac{f}{700}\right)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● の Q @

- weighted DFT magnitude
- \blacktriangleright mel-frequency spectrum MF[r] is defined as

- \triangleright $V_r[k]$ is the triangular weighting function for the rth filter.
- bandwidths are constant for center frequencies i 1kHz and then increase exponentially
- ▶ identical to convolutions with 22 filters < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- weighted DFT magnitude
- \blacktriangleright mel-frequency spectrum MF[r] is defined as

- \triangleright $V_r[k]$ is the triangular weighting function for the rth filter.
- bandwidths are constant for center frequencies i 1kHz and then increase exponentially
- ▶ identical to convolutions with 22 filters < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathsf{MF}[r] = \sum_{k} |V_r[k]X[k]|^2$$

Mel Frequency Cepstral Coefficient (MFCC)

$$\mathsf{MFCC}[m] = \sum_{r=1}^{R} \log(\mathsf{MF}[r]) \cos\left[\frac{2\pi}{R}\left(r + \frac{1}{2}\right)m\right] \quad (1)$$

• i.e., inner-product with cosines $MFCC[m] = \langle \log MF[r], c_m[r] \rangle$

train a k-Nearest Neighbor classifier to classify frames

▲□▶ ▲□▶ ▲三▶ ▲三▶ ● 三 - のへで

- AN4 dataset (CMU): 5 male and 5 female subjects speaking words and numbers
- collect the training samples into frames of 30 ms with an overlap of 75%
- calculate MFCC
- train a k-Nearest Neighbor classifier on the frames
- for a given test signal, predictions are made every frame
- most frequently occurring label is declared as the speaker

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Application: Speaker Identification speaker 1 (blue) and speaker 2 (red) time domain signals

frame based MFCC features

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

◆□ > ◆□ > ◆三 > ◆三 > ● ○ ● ● ●

	fejs	1806	29	27	18	6	6	2	2		5		95.0%	5.0%
True Class	fmjd	32	2137	35	55	25	4		3	1			93.2%	6.8%
	fsrb	50	35	2018	22	19	15	1	4	5	5		92.8%	7.2%
	ftmj	35	71	28	1796	20	6	3	7	4	5		90.9%	9.1%
	fwxs	26	55	17	25	1908	4	2	16	1	8		92.5%	7.5%
	mcen	11	8	2	7	7	1461	19	9	10	13		94.4%	5.6%
	mrcb	23	5	5	8	6	42	1285	5	18	7		91.5%	8.5%
	msjm	12	15	5	16	28	26	3	1262	1	21		90.9%	9.1%
	msjr	15		8		3	16	30	1	1256	3		94.3%	5.7%
	msmn	14	9	7	7	18	21	1	17	2	1404		93.6%	6.4%
		89.2%	90.4%	93.8%	91.9%	93.5%	91.3%	95.5%	95.2%	96.8%	95.4%			
		10.8%	9.6%	6.2%	8.1%	6.5%	8.7%	4.5%	4.8%	3.2%	4.6%			
		(e ^{js} ,	inid	(Srb	ptrni (inixs r	ICEN I	nrcb r	nsim	m ^{ilem}	smn			
Predicted Class														

Validation Accuracy

average accuracy is 92.93%