Linear systems and additive noise

Linear systems, e.g., filters, can easily separate additive noise from useful information when we know the frequency range of the noise and information

\[y[n] = x[n] + w[n] \]

In vector notation

\[H_y = H_x + H_w \]
Multiplicative or convolutive noise

- This is harder if the signal and noise are **convoluted**, e.g., in speech processing

\[y[n] = x[n] \ast w[n] \]

- \(w[n] \) is the flowing air (noise source)
- \(h[n] \) is the vocal tract (filter)

We can develop an operator that can separate convoluted components by **transforming convolution into addition**
Cepstrum

- Developed to separate convoluted signals

\[y[n] = x[n] \ast w[n] \]

Discrete Fourier Domain:

\[Y[k] = X[k]W[k] \]

- Take logarithms

\[\log[Y[k]] = \log X[k] + \log W[k] \]

- we can apply a linear filter to \(\log Y[k] \) to separate

- equivalently we can take DFT of \(\log Y[k] \) and process in frequency domain

cepstrum is the DFT (or DCT) of the log spectrum
(a) Windowed speech waveform (32 ms at 8 kHz sampling rate).

(b) Log spectrum (from a Fourier transform).

(c) Cepstrum computed from the log spectrum shown in (b).

(d) Log spectrum reconstructed from the first 40 cepstral coefficients in (c).

Figure 10.3 Analysing a section of speech waveform to obtain the cepstrum and then to reconstruct a cepstrally smoothed spectrum.
1. Frames: short 10ms windows
2. FFT: power spectrum spectrogram
3. Filtering: mel filter motivated by human ear “essential data”
4. Features: DCT transform mel cepstrum MFCC - less features - less correlation
Application: Mel-frequency spectrum

- perceptual scale of pitches
- 1 mels = 1000 Hz
- a formula to convert f hertz into m mels

 $$m = 2595 \log_{10} \left(1 + \frac{f}{700} \right)$$

![Graph showing the mel scale vs hertz scale]
Application: Mel-frequency spectrum

- weighted DFT magnitude
- mel-frequency spectrum $MF[r]$ is defined as

$$MF[r] = \sum_{k} |V_r[k]X[k]|^2$$

- $V_r[k]$ is the triangular weighting function for the rth filter.
- bandwidths are constant for center frequencies ≤ 1kHz and then increase exponentially
- identical to convolutions with 22 filters
Application: Mel-frequency spectrum

- weighted DFT magnitude
- mel-frequency spectrum $MF[r]$ is defined as

$$MF[r] = \sum_k |V_r[k]X[k]|^2$$

- $V_r[k]$ is the triangular weighting function for the rth filter.
- bandwidths are constant for center frequencies ≤ 1kHz and then increase exponentially
- identical to convolutions with 22 filters
Application: Mel-frequency spectrum

\[\text{MF}[r] = \sum_{k} |V_r[k] X[k]|^2 \]

- Mel Frequency Cepstral Coefficient (MFCC)

\[\text{MFCC}[m] = \sum_{r=1}^{R} \log(\text{MF}[r]) \cos \left[\frac{2\pi}{R} \left(r + \frac{1}{2} \right) m \right] \tag{1} \]

- i.e., inner-product with cosines \[\text{MFCC}[m] = \langle \log \text{MF}[r], c_m[r] \rangle \]
Application: Speaker Identification

Speech signal represented as a sequence of CEPSTRAL vectors

- train a k-Nearest Neighbor classifier to classify frames
Application: Speaker Identification

- AN4 dataset (CMU): 5 male and 5 female subjects speaking words and numbers
- Collect the training samples into frames of 30 ms with an overlap of 75%
- Calculate MFCC
- Train a k-Nearest Neighbor classifier on the frames
- For a given test signal, predictions are made every frame
- Most frequently occurring label is declared as the speaker
Application: Speaker Identification

speaker 1 (blue) and speaker 2 (red) time domain signals

frame based MFCC features
Application: Speaker Identification

Speaker Recognition Experiments (5-NN)

Total Accuracy

- Raw data
- Window size = 100
- Window size = 500
- Window size = 10000
Application: Speaker Identification

![Validation Accuracy Table]

Average accuracy is 92.93%