EE269
 Signal Processing for Machine Learning

Wavelets, Discrete Wavelet Transform and Short-Time Fourier Transform
Instructor: Mert Pilanci

Stanford University

Continuous Wavelet Transform

- Define a function $\psi(t)$
- Create scaled and shifted versions of $\psi(t)$

$$
\psi_{s, \tau}=\frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)
$$

Continuous Wavelet Transform

- Define a function $\psi(t)$
- Create scaled and shifted versions of $\psi(t)$

$$
\psi_{s, \tau}=\frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)
$$

- Continuous Wavelet Transform

$$
W(s, \tau)=\int_{-\infty}^{\infty} f(t) \psi_{s, \tau}^{*} d t=\left\langle f(t), \psi_{s, \tau}\right\rangle
$$

- Transforms a continuous function of one variable into a continuous function of two variables : translation and scale
- For a compact representation, we can choose a mother wavelet $\psi(t)$ that matches the signal shape

Continuous Wavelet Transform

- Define a function $\psi(t)$
- Create scaled and shifted versions of $\psi(t)$

$$
\psi_{s, \tau}=\frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)
$$

- Continuous Wavelet Transform

$$
W(s, \tau)=\int_{-\infty}^{\infty} f(t) \psi_{s, \tau}^{*} d t=\left\langle f(t), \psi_{s, \tau}\right\rangle
$$

- Transforms a continuous function of one variable into a continuous function of two variables : translation and scale
- For a compact representation, we can choose a mother wavelet $\psi(t)$ that matches the signal shape
- Inverse Wavelet Transform

$$
f(t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(s, \tau) \psi_{s, \tau} d \tau d s
$$

Wavelets

Higher value of $\mathrm{W}_{\psi}\left(\mathrm{s}, \tau_{2}\right)$

Continuous Wavelet Transform

```
Fs = 1e3;
t = 0:1/Fs:1;
x = cos(2*pi*32*t).*(t>=0.1& t<0.3) + sin(2*pi*64*t).*(t>0.7);
stem(x);
```


Continuous Wavelet Transform

```
cwt(x,1000)
```


Continuous Haar Wavelets

- Consider the function

$$
\phi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- translates $\phi(x-k)$

Continuous Haar Wavelets

- Consider the function

$$
\phi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- linear combination of the translates $\phi(x-k)$

Continuous Haar Wavelets

- Consider the function

$$
\phi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Define
$V_{0}=$ all square integrable functions of the form

$$
g(x)=\sum_{k} a_{k} \phi(x-k)
$$

$=$ all square integrable functions which are constant on integer intervals

Continuous Haar Wavelets

- Consider the function

$$
\phi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Define
$V_{1}=$ all square integrable functions of the form

$$
g(x)=\sum_{k} a_{k} \phi(2 x-k)
$$

$=$ all square integrable functions which are constant on half integer intervals

Continuous Haar Wavelets

- Consider the function

$$
\phi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Define
$V_{j}=$ all square integrable functions of the form

$$
g(x)=\sum_{k} a_{k} \phi\left(2^{j} x-k\right)
$$

$=$ all square integrable functions which are constant on 2^{-j} length intervals

Continuous Haar Wavelets

- Nested spaces:...$V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \ldots$

- There is a subspace W_{0} such that $V_{0} \oplus W_{0}=V_{1}$, i.e. $W_{0}:=V_{1} \ominus V_{0}$

Continuous Haar Wavelets

- Nested spaces:...$V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \ldots$

- There is a subspace W_{0} such that $V_{0} \oplus W_{0}=V_{1}$, i.e. $W_{0}:=V_{1} \ominus V_{0}$
- In general $W_{j}=V_{j+1} \ominus V_{j}$

Continuous Haar Wavelets

- Nested spaces: ... $V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \ldots$

- $W_{j}=V_{j+1} \ominus V_{j}$
- Theorem: Every square integrable function can be uniquely expressed as

$$
\sum_{j=-\infty}^{\infty} w_{j} \quad \text { where } w_{j} \in W_{j}
$$

Continuous Haar Wavelets

- Nested spaces:...$V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \ldots$
- $W_{j}=V_{j+1} \ominus V_{j}$
- Theorem: Every square integrable function can be uniquely expressed as

$$
\sum_{j=-\infty}^{\infty} w_{j} \quad \text { where } w_{j} \in W_{j}
$$

- Define $\psi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq \frac{1}{2} \\ -1 & 1 / 2 \leq x \leq 1\end{cases}$
- $\left\{2^{j / 2} \psi\left(2^{j} x-k\right)\right\}_{k=-\infty}^{\infty}$ forms an orthonormal basis for W_{j}

Continuous Haar Wavelets

- Nested spaces:...$V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \ldots$
- $W_{j}=V_{j+1} \ominus V_{j}$
- Theorem: Every square integrable function can be uniquely expressed as

$$
\sum_{j=-\infty}^{\infty} w_{j} \quad \text { where } w_{j} \in W_{j}
$$

- Define $\psi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq \frac{1}{2} \\ -1 & 1 / 2 \leq x \leq 1\end{cases}$
- $\left\{2^{j / 2} \psi\left(2^{j} x-k\right)\right\}_{k=-\infty}^{\infty}$ forms an orthonormal basis for W_{j}
- Each function can be written as $f=\sum_{j} w_{j}$

Continuous Haar Wavelets

- Nested spaces:...$V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \ldots$
- $W_{j}=V_{j+1} \ominus V_{j}$
- Theorem: Every square integrable function can be uniquely expressed as

$$
\sum_{j=-\infty}^{\infty} w_{j} \quad \text { where } w_{j} \in W_{j}
$$

- Define $\psi(x)= \begin{cases}1 & \text { if } 0 \leq x \leq \frac{1}{2} \\ -1 & 1 / 2 \leq x \leq 1\end{cases}$
- $\left\{2^{j / 2} \psi\left(2^{j} x-k\right)\right\}_{k=-\infty}^{\infty}$ forms an orthonormal basis for W_{j}
- Each function can be written as $f=\sum_{j} w_{j}$
- $f=\sum_{j} \sum_{j} a_{j k} \psi_{j k}(x)$ (multiresolution analysis)

Discrete Wavelet Transform

- Discrete shifts and scales $\psi\left(\frac{t-\tau}{s}\right)$
- Suppose we have a signal of length N

$$
x=\left[x_{1}, x_{2}, \ldots x_{N}\right]
$$

- Consider a length $N / 2$ approximation of x, e.g., for transmission

Discrete Wavelet Transform

- Discrete shifts and scales $\psi\left(\frac{t-\tau}{s}\right)$
- Suppose we have a signal of length N

$$
x=\left[x_{1}, x_{2}, \ldots x_{N}\right]
$$

- Consider a length $N / 2$ approximation of x, e.g., for transmission
- pairwise averages:

$$
x_{k}=\frac{x_{2 k-1}+x_{2 k}}{2}, \quad k=1, \ldots, N / 2
$$

Discrete Wavelet Transform

- Discrete shifts and scales $\psi\left(\frac{t-\tau}{s}\right)$
- Suppose we have a signal of length N

$$
x=\left[x_{1}, x_{2}, \ldots x_{N}\right]
$$

- Consider a length $N / 2$ approximation of x, e.g., for transmission
- pairwise averages:

$$
x_{k}=\frac{x_{2 k-1}+x_{2 k}}{2}, \quad k=1, \ldots, N / 2
$$

- example

$$
x=[6,12,15,15,14,12,120,116] \rightarrow s=[9,15,13,118]
$$

- suppose that we are allowed to send $N / 2$ more numbers
- differences

$$
d_{k}=\frac{x_{2 k-1}-x_{2 k}}{2}, \quad k=1, \ldots, N / 2
$$

- we can recover x

$$
\begin{gathered}
x=[6,12,15,15,14,12,120,116] \rightarrow \\
{[s \mid d]=[9,15,13,118 \mid 3,0,-1,-2]}
\end{gathered}
$$

- suppose that we are allowed to send $N / 2$ more numbers
- differences

$$
d_{k}=\frac{x_{2 k-1}-x_{2 k}}{2}, \quad k=1, \ldots, N / 2
$$

- we can recover x

$$
\begin{gathered}
x=[6,12,15,15,14,12,120,116] \rightarrow \\
{[s \mid d]=[9,15,13,118 \mid 3,0,-1,-2]}
\end{gathered}
$$

- One step Haar Transformation $x \rightarrow[s \mid d]$

One Step Haar Transformation

$$
\left[\begin{array}{rrrrrrrr}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
\hline-\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
x_{1}+x_{2} \\
x_{3}+x_{4} \\
x_{5}+x_{6} \\
x_{7}+x_{8} \\
\hline x_{2}-x_{1} \\
x_{4}-x_{3} \\
x_{6}-x_{5} \\
x_{8}-x_{7}
\end{array}\right]
$$

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16

Discrete Haar Wavelet Transform

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16
48	16			8	-8		

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16
48	16	48		8	-8	0	

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
				8	-8	0	12

Repeating the same process on the averages

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32		16		8	-8	0	12

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12
		16	10	8	-8	0	12

Discrete Haar Wavelet Transform

56	40	8	24	48	48	40	16
48	16	48	28	8	-8	0	12
32	38	16	10	8	-8	0	12
35	-3	16	10	8	-8	0	12

Discrete Haar Wavelet Transform

Discrete Wavelet Transform : Haar wavelet

```
s=1;
h = [ll 1}1]/2
g = [\begin{array}{ll}{1}&{-1}\end{array}]/2;
y = [llllll
a1 = filter (h, 1, y)
d1 = filter (g, 1, y)
a1 = a1 (2:2:end)
d1 = d1 (2:2: end)
a2 = filter (h, 1, a1)
d2 = filter (g, 1, a1)
a2 = a2 (2:2:end)
d2 = d2 (2:2:end)
dwty = [la2 d2 d1}
% level }1\mathrm{ approximation
% level 1 detail
% downsample
% level 2 approximation
% level }2\mathrm{ detail
% downsample
```


Discrete Haar Wavelet Transform

let's try another signal
$x=(1: 64) / 64 ;$
$y=\operatorname{humps}(x)-\operatorname{humps}(\theta)$;
stem(y)


```
a1 = filter (h, 1, y);
d1 = filter (g, 1, y);
\% level 1 approximation
= filter \((g, 1, y) ; \quad\) \% level 1 detail
a1 \(=a 1\) ( \(2: 2\) :end) ;
\% downsample
d1 = d1 ( \(2: 2:\) end);
```

subplot(1,2,1);stem(a1);subplot(1,2,2);stem(d1)ل

Discrete Haar Wavelet Transform

```
a2 = filter (h, 1, a1);
d2 = filter (g, 1, a1);
a2 = a2 (2:2: end );
a2 = a2 (2:2:end);
% level }2\mathrm{ approximation
% level }2\mathrm{ detail
% downsample
figure;subplot(1,2,1);stem(a2);subplot(1,2,2);stem(d2)
```


$\begin{aligned} a 3 & =\text { filter }(h, 1, a 2) ; \\ d 3 & =\text { filter }(g, 1, a 2)\end{aligned}$
$\mathrm{d} 3=$ filter $(\mathrm{g}, 1, \mathrm{a} 2)$;
$a 3=a 3$ ($2: 2:$ end);
$d 3=d 3$ (2:2:end);
\% downsample
figure;subplot(1,2,1);stem(a3);subplot(1,2,2);stem(d3)

Discrete Haar Wavelet Transform

Discrete Haar Transform Filter Bank

$$
H=\left[\begin{array}{cccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Discrete Haar Transform Matrix

- repeat the computation on the means
- keep differences in each step

2D Discrete Haar Transform

2D Discrete Haar Transform

2D Discrete Haar Transform

