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▶ Why finite-bit quantization creates structured artifacts

▶ Dither: add noise then quantize (what “dithering” usually
means)

▶ Fundamental analysis: linearization

▶ Subtractive dither (variant): exact uniform error

▶ Stochastic rounding: unbiased randomized rounding

▶ Quantization in GPUs

▶ Practical takeaways



Recall (Lecture 1): Bennett’s theorem is asymptotic

▶ For a uniform quantizer with step ∆, the additive model
assumes

X 7→ Q(X) = X − ε, ε ∼ U(−∆/2,∆/2), ε ⊥ X.

▶ Bennett’s theorem justifies this as ∆ → 0 (many levels,
smooth pdf, no overload).

▶ At finite bit-depth, ε(x) is deterministic and correlated.



Finite rate artifacts: why randomness helps

▶ Deterministic quantization maps smooth ramps to a staircase
⇒ contouring/banding in images.

▶ Quantized sinusoids produce spurious tones (harmonics), not
white noise.

▶ In feedback systems, quantization can create limit cycles.

▶ Dithering idea: add small noise before quantization to
randomize the staircase.
▶ trades structured distortion for “noise-like” distortion
▶ often preferred perceptually (weak grain vs hard bands)
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Additive dither: two canonical architectures

x + Q(·) y

d

(A) (non-subtractive) dither

x + Q(·) − y

d

(B) subtractive dither (variant)

▶ In this lecture we start with (A): add noise then quantize.

▶ (B) is a useful variant when the same d is known at
encoder/decoder.



Uniform rounding quantizer

We use a uniform rounding quantizer with step ∆:

Q∆(z) ≜ ∆ · round
( z

∆

)
.

Quantization error:

e(z) ≜ Q∆(z)− z ∈
[
−∆

2
,
∆

2

]
.

▶ Without randomization, e(x) is a periodic sawtooth function
of x.



Non-subtractive dither (definition)

Let d be a random dither, independent of the signal x.

Non-subtractive dithering:

y = Q∆(x+ d)

The reconstruction error is

ε ≜ y − x = d+ e(x+ d).

▶ Benefit: breaks correlation between the signal and the
quantization staircase.

▶ Cost: d appears directly in the output error.
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Proof of linearization
Fix x ∈ R and write

x = k∆+ r, r ∈
[
−∆

2
,
∆

2

)
.

With d ∼ U [−∆/2,∆/2],

x+ d ∼ U
(
k∆+ r − ∆

2
, k∆+ r +

∆

2

)
,

an interval of length ∆, so

Q∆(x+ d) ∈ {k∆, (k + 1)∆}.

Let

p = P(Q∆(x+ d) = (k + 1)∆ | x) = P(x+ d > k∆+∆/2)

Since the interval is uniform and centered at x,

p =
r

∆
.

Thus

E[Q∆(x+d) | x] = p(k+1)∆+(1−p)k∆ = k∆+∆p = k∆+r = x.

□
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Numerical example (linearization)
Quantize an 8-bit pixel using a 4-bit uniform quantizer.

▶ Dynamic range: 0 to 255.

▶ Step size: ∆ = 16 (levels at {. . . , 96, 112, 128, . . .}).
▶ Choose pixel value x = 100.

Write x = 96 + 4, so k∆ = 96 and r = 4.

Let d ∼ U(−8, 8). Then x+ d ∼ U(92, 108). The boundary
between 96 and 112 is at 104.

P(Q∆(x+ d) = 112) =
r

∆
=

4

16
=

1

4

P(Q∆(x+ d) = 96) = 1− 1

4
=

3

4
.

Therefore, on average we get

E[Q∆(x+ d) | x] = 112
1

4
+ 96

3

4
= 100.



Dithering is stochastic rounding
Let Q∆ be a uniform scalar quantizer and

d ∼ U
[
−∆

2
,
∆

2

]
.

Assumption (no overload): x± ∆
2 lies strictly inside the

quantizer range.

For fixed x, x+ d is uniform over an interval of length ∆. Hence
Q∆(x+ d) can take only the two neighboring quantization levels.

Let x ∈ [t, t+∆) and define

p ≜
x− t

∆
=

’distance from x to t’

’distance from t to t+∆’
.

Then

Q∆(x+ d) =

{
t with probability 1− p,

t+∆ with probability p.

Therefore, E[Q∆(x+ d) | x] = (1− p)t+ p(t+∆) = x.
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Stochastic rounding in NVFP4
▶ NVIDIA’s NVFP4 data format was announced in March 2024

as a key feature of its Blackwell GPU architecture
▶ Its representable values are not uniformly spaced
▶ Each block is first scaled before quantization
▶ Popular in LLM inference and training

Stochastic rounding: Instead of always rounding to the nearest
value, we randomly round up or down so that the average equals
the original number. How stochastic rounding works in

NVFP4.
▶ After scaling, a real number lies between two neighboring

NVFP4 values
▶ Call them vlow and vhigh
▶ We round to either one at random

round to vhigh with probability
x− vlow

vhigh − vlow
, otherwise round to vlow.
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How much dither should we add?

A standard choice is one-LSB uniform dither:

d ∼ U
(
−∆

2
,
∆

2

)

▶ large enough to randomize the fractional part modulo ∆

▶ minimal support that yields the exact linearization result
E[Q∆(x+ d) | x] = x

If the dither amplitude is much smaller than ∆, artifacts remain; if
much larger, you add unnecessary noise.
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▶ Examples
▶ dithering in 1D signals
▶ dithering in images
▶ dithering in audio
▶ spectrum (later)



Quantization of a pure sine wave



Dithered quantization of a pure sine wave



Uniform quantization of an image
▶ values in [0, 100] and threshold at 50



Adding noise



Dithering: Add noise and quantize



Dithering in music

▶ original audio

▶ 1-bit quantization

▶ 1-bit quantization with dithering
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Subtractive dither: the key simplification

In subtractive dither,

y = Q∆(x+d)−d ⇒ ε ≜ y−x = Q∆(x+d)−(x+d) = e(x+d).

▶ The reconstruction error equals the quantization error of the
dithered input.

▶ If (x+ d) mod ∆ is uniform, then ε becomes uniform.



Theorem (uniform subtractive dither)

Claim. Let d ∼ U(−∆/2,∆/2) be independent of x. In
subtractive dithering:

y = Q∆(x+ d)− d

the error ε = y − x satisfies

ε ∼ U
(
−∆

2
,
∆

2

)
, ε ⊥ x

Quantization error and the signal are independent (see appendix
for the proof). Consequently,

E[ε | x] = 0, Var(ε) =
∆2

12
.



Subtractive vs non-subtractive dithering of a sine wave



Summary

▶ Bennett’s theorem explains when quantization error looks
uniform in the high-rate regime.

▶ Dithering is a way to engineer this behavior at finite rate.
▶ non-subtractive dither: linearizes in expectation (good for

images)
▶ subtractive dither: gives uniform, input-independent error

(great for analysis) but need to make the noise sequence
available at the receiver

▶ Stochastic rounding is an unbiased randomized quantizer;
tightly related to dither.

▶ NVFP4 utilizes stochastic rounding for unbiasedness.



Appendix: Why subtractive dither gives signal-independent
noise

Let d ∼ U(−∆/2,∆/2) and define

z = x+ d, x̂ = Q∆(z)− d.

Quantization depends only on the position of z within a cell. Write
x = k∆+ r with r ∈ [−∆/2,∆/2), so

z = k∆+ (r + d).

Since d is uniform over one full quantization step, the random
variable (r + d) is uniform over an interval of length ∆,
independent of r.
Wrapping any length-∆ interval into one cell produces a uniform
variable on [−∆/2,∆/2), hence

e ≜ x̂− x ∼ U(−∆/2,∆/2),

with a distribution that does not depend on x.

Conclusion: Subtractive dither yields uniform, signal-independent
noise. □
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