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Why finite-bit quantization creates structured artifacts

Dither: add noise then quantize (what “dithering” usually
means)

Fundamental analysis: linearization

Subtractive dither (variant): exact uniform error
Stochastic rounding: unbiased randomized rounding
Quantization in GPUs

Practical takeaways



Recall (Lecture 1): Bennett's theorem is asymptotic

» For a uniform quantizer with step A, the additive model
assumes
X—=QX)=X—¢,

» Bennett's theorem justifies this as A — 0 (many levels,

smooth pdf, no overload).
> At finite bit-depth, e(z) is deterministic and correlated.

e~U(-AJ2,A/2), e L X,



Finite rate artifacts: why randomness helps

» Deterministic quantization maps smooth ramps to a staircase
= contouring/banding in images.

» Quantized sinusoids produce spurious tones (harmonics), not
white noise.

» In feedback systems, quantization can create limit cycles.



Finite rate artifacts: why randomness helps

» Deterministic quantization maps smooth ramps to a staircase
= contouring/banding in images.

» Quantized sinusoids produce spurious tones (harmonics), not
white noise.
» In feedback systems, quantization can create limit cycles.

» Dithering idea: add small noise before quantization to
randomize the staircase.
» trades structured distortion for “noise-like” distortion
> often preferred perceptually (weak grain vs hard bands)
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Dithering
Definition



Additive dither: two canonical architectures

(A) (non-subtractive) dither

d (B) subtractive dither (variant)

w Q) | — |~

d

» In this lecture we start with (A): add noise then quantize.

» (B) is a useful variant when the same d is known at
encoder/decoder.



Uniform rounding quantizer

We use a uniform rounding quantizer with step A:

Qa(z) £ A round(%) .

Quantization error:

e(z) 2 Qalz) —z € [—2, ﬂ .

» Without randomization, e(x) is a periodic sawtooth function
of x.



Non-subtractive dither (definition)

Let d be a random dither, independent of the signal x.

Non-subtractive dithering:

| y=Qalz+d) |

The reconstruction error is

eLy—z=d+e(z+d).

» Benefit: breaks correlation between the signal and the
quantization staircase.

» Cost: d appears directly in the output error.
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Dithering

Fundamental property: linearization



Proof of linearization
Fix x € R and write

A
z=kA+r, TE[ 5

w\[>

)

A A

With d ~ U[-A/2,A/2],

an interval of length A, so
Qa(z +d) € {kA, (kE+ 1)A}.



Proof of linearization
Fix x € R and write

A
z=kA+r, TE[ 5

w\[>

)

a:—i—dwl/{(kA—i—r—?, k:A—i—r—i—?),

With d ~ U[-A/2,A/2],

an interval of length A, so
Qa(z +d) € {kA, (kE+ 1)A}.
Let
p=PQa(x+d)=(k+ 1A |x)=Plx+d>kA+ A/2)

Since the interval is uniform and centered at z,
r

p:Z'



Proof of linearization
Fix x € R and write

A
z=kA+r, TE[ 5

w\[>

)

a:—i—dwl/{(kA—i—r—?, k:A—i—r—i—?),

With d ~ U[-A/2,A/2],

an interval of length A, so
Qa(z +d) € {kA, (kE+ 1)A}.
Let
p=PQa(x+d)=(k+ 1A |x)=Plx+d>kA+ A/2)

Since the interval is uniform and centered at z,
T
p_ A‘
Thus

E[QA(z+d) | ] = p(k+1)A+(1—p)kA = kA+Ap = kA+r = z.



Numerical example (linearization)
Quantize an 8-bit pixel using a 4-bit uniform quantizer.
» Dynamic range: 0 to 255.
» Step size: A =16 (levels at {...,96,112,128,...}).
» Choose pixel value z = 100.
Write z = 96 + 4, so kA = 96 and r = 4.

Let d ~U(—8,8). Then x + d ~ U(92,108). The boundary
between 96 and 112 is at 104.

P(QA(JZ—Fd):llZ):%:%:%
P(Qalr+d)=96)=1- 7=

Therefore, on average we get

1 3



Dithering is stochastic rounding
Let QA be a uniform scalar quantizer and

A A
d~U|——, —|.
23]
Assumption (no overload): x + % lies strictly inside the
quantizer range.
For fixed x, x + d is uniform over an interval of length A. Hence
QA(z + d) can take only the two neighboring quantization levels.
Let x € [t,t + A) and define

aT—t "distance from x to t'
P="A" T "distance from t to ¢ + A"

Then
t with probability 1 — p,

r+d) =
Qal ) {t+A with probability p.



Dithering is stochastic rounding
Let QA be a uniform scalar quantizer and

A A
d~U|——, —|.
23]
Assumption (no overload): x + % lies strictly inside the
quantizer range.
For fixed x, x + d is uniform over an interval of length A. Hence
QA(z + d) can take only the two neighboring quantization levels.
Let x € [t,t + A) and define

aT—t "distance from x to t'
P="A" T "distance from t to ¢ + A"

Then
t with probability 1 — p,

r+d) =
Qal ) {t+A with probability p.

Therefore, E[Qa(x+4d)|z]=(1—p)t+plt+A)==zx.



Stochastic rounding in NVFP4

> NVIDIA's NVFP4 data format was announced in March 2024
as a key feature of its Blackwell GPU architecture

> lts representable values are not uniformly spaced

» Each block is first scaled before quantization

» Popular in LLM inference and training

Stochastic rounding: Instead of always rounding to the nearest
value, we randomly round up or down so that the average equals
the original number. How stochastic rounding works in

NVFPA4.
» After scaling, a real number lies between two neighboring
NVFP4 values
» Call them vjo,, and vhigh
» We round to either one at random

. .. T =0 .
round to wvpigh With probability ﬁ, otherwise round to vjgy.

VUhigh — Vlow
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Quantization in GPUs: NVFP4
How much dither?



How much dither should we add?

A standard choice is one-LSB uniform dither:
A A
d ~ =22
u(-33)

» large enough to randomize the fractional part modulo A

> minimal support that yields the exact linearization result
ElQa(x+d) | z] =z



How much dither should we add?

A standard choice is one-LSB uniform dither:
A A
d ~ =22
u(-33)

» large enough to randomize the fractional part modulo A

> minimal support that yields the exact linearization result
ElQa(x+d) | z] =z
If the dither amplitude is much smaller than A, artifacts remain; if
much larger, you add unnecessary noise.



> Examples
> dithering in 1D signals
> dithering in images
» dithering in audio
» spectrum (later)



Quantization of a pure sine wave
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Dithered quantization of a pure sine wave

3-bit quantization with non-subtractive dither
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Uniform quantization of an image
» values in [0,100] and threshold at 50

85%  85%
75%  75%
55%  55%



Adding noise

8 bit 8 bit (noise added)

85% 85%
75% ,5%’
55%
45%




Dithering: Add noise and quantize

8 bit

85%
75%
95%
45%

8 bit (noise added)




Dithering in music

» original audio

» 1-bit quantization

» 1-bit quantization with dithering

DA
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Subtractive dithering (variant)
Exact Bennett-like model



Subtractive dither: the key simplification

In subtractive dither,

y = Qa(z+d)—d = e 2 y—x = Qa(z+d)—(v+d) = e(z+d).

» The reconstruction error equals the quantization error of the
dithered input.

» If (z + d) mod A is uniform, then € becomes uniform.



Theorem (uniform subtractive dither)

Claim. Let d ~U(—A/2,A/2) be independent of z. In
subtractive dithering:

y=0Qa(z+d)—d

the error ¢ = y — x satisfies

A A
ENU<—2,2>7 e 1L =z

Quantization error and the signal are independent (see appendix
for the proof). Consequently,

A2

Ele | z] =0, Var(e) = TR



Subtractive vs non-subtractive dithering of a sine wave

3-bit quantization with subtractive dither
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Summary

> Bennett's theorem explains when quantization error looks
uniform in the high-rate regime.
» Dithering is a way to engineer this behavior at finite rate.

» non-subtractive dither: linearizes in expectation (good for
images)

» subtractive dither: gives uniform, input-independent error
(great for analysis) but need to make the noise sequence
available at the receiver

» Stochastic rounding is an unbiased randomized quantizer;
tightly related to dither.

> NVFP4 utilizes stochastic rounding for unbiasedness.



Appendix: Why subtractive dither gives signal-independent
noise
Let d ~U(—A/2,A/2) and define
z=ux+d, T =0Qa(z) —d.

Quantization depends only on the position of z within a cell. Write
x =kA+r with r € [-A/2,A/2), so

z=kA+ (r+d).
Since d is uniform over one full quantization step, the random
variable (r + d) is uniform over an interval of length A,
independent of r.

Wrapping any length-A interval into one cell produces a uniform
variable on [-A/2,A/2), hence

e2i—x~U-A/2,A/2),
with a distribution that does not depend on z.

Conclusion: Subtractive dither yields uniform, signal-independent
noise. £l
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