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Outline

▶ from uniform to non-uniform quantization

▶ objective: distortion-rate tradeoffs (fixed-rate scalar
quantization)

▶ optimality conditions (Lloyd–Max)

▶ “solutions” for Gaussian and other distributions

▶ Lloyd–Max iterative algorithm

▶ connection to 1D k-means (and vector quantization)

▶ practical non-uniform quantizers (companding, dead-zone,
log)

▶ NormalFloat and quantizing Large Language Models



Why go beyond uniform quantizers?

▶ Uniform quantizers use a constant step size ∆ across the
dynamic range.

▶ Many real signals have non-uniform statistics:
▶ speech and transform coefficients are often peaked near 0

(Laplacian-like)
▶ sensor noise can be close to Gaussian
▶ heavy tails / outliers are common in ML activations

▶ Uniform bins waste resolution where the pdf is small and
under-resolve where the pdf is large.

▶ Idea: allocate more bins where fX(x) is high.
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Questions

▶ Intuition: we should use finer quantization where the source is
more likely to take values.

▶ Question 1 (Finite number of levels): Given a fixed number
of quantization levels, how should we choose the decision
regions and reconstruction values to minimize distortion?

▶ Question 2 (Asymptotic behavior): As the number of
quantization levels becomes very large, how should these
reconstruction values be distributed across the real line?
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Theoretical Results

▶ We’ll derive necessary conditions for optimal quantizers with a
fixed number of levels, and a local search algorithm

▶ Asymptotically, the density of quantization centroids must be
proportional to the density of data raised to power 1/3



General scalar quantizer model

▶ A scalar quantizer is specified by
▶ decision thresholds t0 < t1 < · · · < tM with

t0 = −∞, tM = +∞
▶ reconstruction levels (codepoints) y0, . . . , yM−1

▶ Mapping rule:

Q(x) = yk if x ∈ [tk, tk+1) .

▶ Quantization error: ε = X −Q(X).



Objective: fixed-rate MSE quantizer design

▶ Given M = 2b levels and pdf fX , choose {tk}, {yk} to
minimize MSE.

▶ Distortion (MSE):

D ≜ E
[
(X −Q(X))2

]
=

M−1∑
k=0

∫ tk+1

tk

(x− yk)
2fX(x) dx.

▶ Fixed-rate means: M is fixed (each symbol uses log2M bits).

▶ (Later: entropy coding gives variable-rate / expected bits.)



Geometry: Voronoi cells on the real line

▶ For squared error, the distortion contribution of cell k is

Dk =

∫ tk+1

tk

(x− yk)
2fX(x) dx.

▶ Think of {yk} as “centers” and thresholds as 1D Voronoi
boundaries.

▶ The design problem is non-convex (many local minima), but
has simple necessary conditions.



Lloyd–Max: two necessary conditions (MSE)

▶ A locally optimal MSE quantizer must satisfy:
▶ (C1) Centroid condition:

yk = E[X | X ∈ [tk, tk+1)] =

∫ tk+1

tk
xfX(x) dx∫ tk+1

tk
fX(x) dx

.

▶ (C2) Nearest-neighbor (boundary) condition:

tk =
yk−1 + yk

2
, k = 1, . . . ,M − 1.
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Notes

▶ The optimal quantizer may not be unique!

▶ Even if there is only one optimal quantizer, there may be more
than one quantizer that satisfies the properties, in which case
the best quantizer is one of them. In other words, the
optimality properties are necessary for optimality, but not
sufficient. Example of two quantizers that satisfy the
optimality criteria

▶ For log-concave densities (logarithm of the density is
concave), such as Gaussian, there is a unique quantizer
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Proof idea: optimize yk with fixed thresholds

Fix the thresholds {tk} and minimize D over {yk}.

Because the cells are disjoint, we can minimize each Dk separately:

Dk(yk) =

∫ tk+1

tk

(x− yk)
2fX(x) dx.

▶ Dk(yk) is a convex quadratic function of yk.



Centroid condition: calculus

Differentiate Dk(yk) w.r.t. yk:

∂Dk

∂yk
=

∫ tk+1

tk

2(yk − x)fX(x) dx =

2

(
yk

∫ tk+1

tk

fX(x) dx−
∫ tk+1

tk

xfX(x) dx

)
.

Set derivative to zero:

yk

∫ tk+1

tk

fX(x) dx =

∫ tk+1

tk

xfX(x) dx.

Hence

yk =

∫ tk+1

tk
xfX(x) dx∫ tk+1

tk
fX(x) dx

= E[X | X ∈ [tk, tk+1)].
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Proof idea: optimize tk with fixed codepoints

Fix the codepoints {yk} and optimize the thresholds.

Only two adjacent cells depend on an interior boundary tk:

Dk−1+Dk =

∫ tk

tk−1

(x−yk−1)
2fX(x) dx+

∫ tk+1

tk

(x−yk)
2fX(x) dx.



Boundary condition: “equal distortion” at the boundary

Differentiate w.r.t. tk using Leibniz’ rule:

∂

∂tk
(Dk−1 +Dk) = (tk − yk−1)

2fX(tk)− (tk − yk)
2fX(tk).

Set derivative to zero (assuming fX(tk) > 0):

(tk − yk−1)
2 = (tk − yk)

2.

Since yk−1 < yk for an ordered quantizer,

tk =
yk−1 + yk

2
.

▶ Interpretation: at the boundary, both neighboring
reconstructions are equally good.



Summary: Lloyd–Max conditions

▶ For MSE-optimal scalar quantization, a local optimum
satisfies
▶ nearest-neighbor boundaries: tk = (yk−1 + yk)/2
▶ centroids: yk = E[X | X ∈ [tk, tk+1)]

▶ This suggests an alternating minimization (update t then y).

▶ Global optimality is not guaranteed (non-convex);
initialization matters.
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Closed-form designs are rare

▶ The Lloyd–Max conditions are implicit and coupled.

▶ For most pdfs and most M , there is no closed-form {tk, yk}.
▶ Two useful notions of “solution”:

▶ Numerical Lloyd–Max design for a given pdf and M
▶ High-rate approximation that gives analytic bin spacing

(companding)



Lloyd–Max algorithm (fixed-rate, MSE)

Given M levels and pdf fX :

1. Initialize reconstruction levels y0 < · · · < yM−1 (or
thresholds).

2. Boundary update:

tk ←
yk−1 + yk

2
, k = 1, . . . ,M − 1.

3. Centroid update:

yk ←
∫ tk+1

tk
xfX(x) dx∫ tk+1

tk
fX(x) dx

, k = 0, . . . ,M − 1.

4. Repeat until convergence (small change in D, t, or y).

▶ Each step does not increase distortion D (coordinate descent).

▶ Converges to a local optimum (stationary point).



Implementation notes

▶ For analytic pdfs: integrals may be computed in closed form
(rare) or numerically.

▶ For empirical data samples {xi}ni=1:
▶ replace integrals by sums (sample means)
▶ yields exactly the 1D k-means algorithm

▶ Initialization matters (multiple restarts can help).

▶ Constraints are easy to add in practice: clipping / overload
region, symmetry, etc.



Empirical quantization objective = 1D k-means

Given samples x1, . . . , xn and M clusters/levels, define
assignments a(i) ∈ {0, . . . ,M − 1}.

The empirical distortion is

D̂ =
1

n

n∑
i=1

(xi − ya(i))
2.

▶ This is exactly the k-means algorithm (with M centers) on
the line.

▶ k-means is a popular iterative algorithm for clustering data.
Start with random centers, then repeat: Assign each
observation to the cluster with the nearest mean center.
Recalculate centers for observations assigned to each cluster.



Alternating minimization = Lloyd–Max / k-means

▶ Assignment step: for fixed centers {yk},

a(i)← argmin
k

(xi − yk)
2,

which in 1D produces contiguous intervals and boundaries
tk = (yk−1 + yk)/2.

▶ Update step: for fixed assignments,

yk ←
1

|{i : a(i) = k}|
∑

i:a(i)=k

xi.

▶ In the population limit (n→∞), sample means become
conditional expectations.
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Numerical Lloyd–Max: standard normal example

For X ∼ N (0, 1) and b = 3 bits (M = 8), Lloyd–Max yields
symmetric thresholds/levels.

k threshold tk level yk
0 t0 = −∞ y0 ≈ −2.1519
1 t1 ≈ −1.7479 y1 ≈ −1.3439
2 t2 ≈ −1.0500 y2 ≈ −0.7560
3 t3 ≈ −0.5005 y3 ≈ −0.2451
4 t4 = 0 y4 ≈ 0.2451
5 t5 ≈ 0.5005 y5 ≈ 0.7560
6 t6 ≈ 1.0500 y6 ≈ 1.3439
7 t7 ≈ 1.7479 y7 ≈ 2.1519
8 t8 = +∞

Table: Lloyd–Max thresholds/levels for N (0, 1) with M = 8 (rounded).



Numerical Lloyd–Max: unit-variance Laplacian example

For a unit-variance Laplacian and b = 3 bits (M = 8):

k threshold tk level yk
0 t0 = −∞ y0 ≈ −3.0867
1 t1 ≈ −2.3796 y1 ≈ −1.6725
2 t2 ≈ −1.2527 y2 ≈ −0.8330
3 t3 ≈ −0.5332 y3 ≈ −0.2334
4 t4 = 0 y4 ≈ 0.2334
5 t5 ≈ 0.5332 y5 ≈ 0.8330
6 t6 ≈ 1.2527 y6 ≈ 1.6725
7 t7 ≈ 2.3796 y7 ≈ 3.0867
8 t8 = +∞

Table: Lloyd–Max thresholds/levels for a unit-variance Laplacian with
M = 8 (rounded).



Takeaways

▶ Both designs are symmetric (because the pdf is symmetric).
▶ Compared to Gaussian, Laplacian has:

▶ tighter inner thresholds (more bins near 0)
▶ more spread-out outer reconstruction levels (longer tails)

▶ Uniform sources yield uniform quantizers.

▶ In general: bin widths adapt to the shape of fX .



Beyond 1D: vector quantization (preview)

▶ Quantizing x ∈ Rd with a codebook {yk}Mk=1 leads to

minE[∥X −Q(X)∥22], Q(X) ∈ {y1, . . . , yM}.

▶ Boundaries become Voronoi cells in Rd.

▶ Lloyd’s algorithm (a.k.a. k-means) generalizes directly.



High-rate distortion for non-uniform scalar quantizers

Assume “locally uniform” cells with a cell size function ∆(x).

Heuristic Bennett-style approximation:

D ≈ 1

12

∫
∆(x)2 fX(x) dx.

▶ Compare to uniform case: ∆(x) ≡ ∆ gives D ≈ ∆2/12.

▶ Now we can choose ∆(x) to trade distortion across x.



Point density and the fixed-rate constraint

Instead of ∆(x), use point density λ(x):

λ(x) ≜ (fraction of centroids per unit length near x),

∫
R
λ(x) dx = 1.

λ(x)dx =
number of centroids in [x, x+ dx]

M

For large number of centroids M (high-rate), local cell width
satisfies

∆(x) ≈ 1

Mλ(x)
.

Plugging into the high-rate distortion:

D ≈ 1

12M2

∫
fX(x)

λ(x)2
dx.



Optimal high-rate non-uniform quantizer (sketch proof)

We minimize

min
λ≥0

∫
fX(x)

λ(x)2
dx s.t.

∫
λ(x) dx = 1.

Form the Lagrangian

L(λ) =
∫ (

fX(x)

λ(x)2
+ νλ(x)

)
dx.

Stationarity (pointwise):

∂

∂λ

(
f

λ2
+ νλ

)
= −2f

λ3
+ ν = 0 ⇒ λ(x)3 ∝ fX(x).

Therefore

λ⋆(x) ∝ fX(x)1/3, ∆⋆(x) ∝ fX(x)−1/3.



Interpretation

▶ The density of quantization centroids must be proportional to
the density of data raised to power 1/3.

▶ Companding: We can find a nonlinear scalar transformation
to warp the signal axis so that optimal non-uniform bins in
become uniform bins after transformation.
▶ practical implication: we can apply the nonlinear

transformation and then quantize uniformly



Companding

▶ One can implement any nonuniform quantizer with a
compander.

▶ Conversely, any compander is the implementation of some
quantizer.



Companding interpretation (analytic “solution”)

Define a monotone function g (a compressor) with derivative
proportional to the centroid density:

g′(x) = λ⋆(x) =
fX(x)1/3∫
fX(u)1/3du

.

Then

g(x) =

∫ x

−∞
g′(u) du ∈ [0, 1].

▶ Quantize u = g(x) uniformly into M bins: u ∈ [ k
M , k+1

M ).

▶ Thresholds in x-domain are approximately

tk ≈ g−1

(
k

M

)
.

▶ This is a principled non-uniform quantizer derived from
high-rate analysis.



Why does this work?

▶ Thresholds tk = g−1
(

k
M

)
, imply g(tk+1)− g(tk) =

1
M

▶ By the mean value theorem, for some ξk ∈ [tk, tk+1],

g(tk+1)− g(tk) = g′(ξk) (tk+1 − tk).

▶ Substituting g′(x) = λ⋆(x) gives

tk+1 − tk ≈
1

Mλ⋆(ξk)
.

▶ hence the induced cell width satisfies

∆(x) ≈ 1

Mλ⋆(x)

which is exactly the spacing required by high-rate optimality.
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Example: Gaussian pdf X ∼ N (0, 1)

For f(x) = 1√
2π
e−x2/2,

f(x)1/3 ∝ e−x2/6.

Hence the optimal high-rate compressor is

g(x) ∝
∫ x

−∞
e−u2/6 du = 1

2

(
1 + erf(x/

√
6)
)

= Φ

(
x√
3

)
.

▶ High-rate thresholds: tk ≈ g−1(k/M) =
√
3Φ−1(k/M).

▶ Interpretation: compared to equal-probability bins (Φ−1), this
is “less aggressive” near the tails.



Example: Laplacian pdf (unit variance)

For a unit-variance Laplacian,

f(x) =

√
2

2
e−

√
2|x|.

Then

f(x)1/3 ∝ e−β|x|, β =

√
2

3
.

The optimal high-rate compressor (normalized to [0, 1]) becomes

g(x) =

{
1
2e

βx, x ≤ 0,

1− 1
2e

−βx, x ≥ 0.

▶ High-rate thresholds follow tk ≈ g−1(k/M).

▶ Compared to Gaussian, Laplacian puts even more resolution
near 0.



Sanity check: uniform pdf (unit variance)

If X ∼ Unif[−
√
3,
√
3] then f(x) is constant on its support.

High-rate result gives

λ⋆(x) ∝ f(x)1/3 = constant ⇒ ∆⋆(x) = constant.

▶ For uniform sources, the optimal quantizer is (approximately)
uniform.



Companding in practice: µ-law (speech telephony)
▶ Goal: allocate more resolution near small amplitudes.

▶ Compressor for |x| ≤ Xmax:

g(x) = sign(x)
ln
(
1 + µ|x|/Xmax

)
ln(1 + µ)

.

▶ Quantize g(x) uniformly, then expand via g−1.

▶ Large µ ⇒ more non-uniformity (stronger compression).

▶ µ = 255 in the North American and Japanese standards



A-law and piecewise companders

▶ A-law (common in Europe) is a piecewise log/linear
compander.

▶ Motivation: approximate an “optimal” non-uniform quantizer
with simple hardware.

▶ General design pattern:
▶ choose a monotone compressor g (log-like, power-law, learned)
▶ uniform quantization in the compressed domain
▶ optional entropy coding on the indices

▶ µ-law (used in North America) offers better dynamic range
but worse distortion for small signals, while A-law (used in
Europe) provides more resolution for low-level signals, making
it better for international calls



Dead-zone quantizers (transform coding)

▶ Transform coefficients (DCT/MDCT/wavelets) are often
strongly peaked at 0.

▶ A dead-zone quantizer uses a larger bin around 0:
▶ encourages many zeros ⇒ compressible symbol stream
▶ matches perceptual metrics (small coefficients are less

important)

▶ Canonical in JPEG (DCT + quantization matrices) and audio
codecs.



Log and floating-like quantization

▶ Some applications care about relative error: |ε|/|x|.
▶ Log quantization (for x > 0):

Q(x) = exp
(
Quni(lnx)

)
▶ roughly constant relative error
▶ connects to floating point and block floating point formats

▶ Used in: audio amplitude coding, dynamic range compression,
some ML activation quantizers.



Non-uniform quantization in modern ML systems (preview)

▶ Non-uniformity appears in several ways:
▶ per-channel scales (different ∆ per channel)
▶ learned codebooks (vector quantization / product

quantization)
▶ clipping + non-linear companders to handle outliers

▶ Many methods can be interpreted as “match the quantizer to
the data distribution”.



Visualization of LLM Weights: Hymba (Nvidia) Nov 2024





NormalFloat NF4 (Dettmers et al. 2023)

▶ NF4 is a 4-bit quantization format employing non-uniform
quantization across 16 discrete levels.

▶ It better approximates the weight distribution—typically near
a normal distribution—by allocating more quantization levels
near zero.

▶ This non-uniform allocation minimizes quantization error,
especially for small but critical weight values.

▶ NF4 is widely used in QLoRA for efficient fine-tuning of large
language models.
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Key takeaways

▶ Uniform quantization is rarely optimal when fX is
non-uniform.

▶ MSE-optimal scalar quantizers satisfy Lloyd–Max conditions:
▶ boundaries are midpoints between adjacent codepoints
▶ codepoints are conditional means (centroids)

▶ High-rate theory gives analytic guidance:

λ⋆(x) ∝ fX(x)1/3, ∆⋆(x) ∝ fX(x)−1/3.

▶ Lloyd–Max is alternating minimization = 1D k-means.

▶ Practical designs: companding (µ-law), dead-zone quantizers,
log quantization, NormalFloat



Numerical Comparisons
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Implementation details

▶ Fixed-rate scalar quantization: b bits ⇒M = 2b levels.
▶ In the plots, we compared three constructive designs:

▶ (A) Optimized uniform (with clipping): choose a range
parameter Xmax to minimize MSE.

▶ (B) Lloyd–Max (nonuniform): alternate boundary +
centroid updates until convergence.

▶ (C) High-rate compander (analytic approx): derive
λ⋆(x) ∝ fX(x)1/3, build g, then set thresholds via g−1.

▶ We can use (C) as a good initialization for (B).



(A) Optimized uniform quantizer: 1D search over Xmax

▶ Uniform quantizer with design range [−Xmax, Xmax]:

∆ =
2Xmax

M
, yk = −Xmax+

(
k+1

2

)
∆, k = 0, . . . ,M−1,

tk = −Xmax+k∆, k = 1, . . . ,M−1, t0 = −∞, tM = +∞.

▶ Define the MSE as a scalar function of Xmax:

D(Xmax) ≜ E
[
(X−QXmax(X))2

]
=

M−1∑
k=0

∫ tk+1

tk

(x−yk)2fX(x) dx.

▶ Optimize the clipping range:

X⋆
max = arg min

Xmax>0
D(Xmax).

▶ Implementation:
▶ Evaluate D(Xmax) by analytic integrals or sample based

approximation.
▶ Use a 1D optimization (grid search / golden-section, e.g.

minimize scalar of scipy).



(B) Lloyd–Max (nonuniform) quantizer: alternating
minimization

▶ Input: fX (or samples), number of levels M .

▶ Initialize ordered codepoints y0 < · · · < yM−1 (uniform
spacing, or compander init).

▶ Repeat until convergence:
▶ Boundary update (nearest-neighbor):

tk ←
yk−1 + yk

2
, k = 1, . . . ,M − 1, t0 = −∞, tM = +∞.

▶ Centroid update:

yk ← E[X | X ∈ [tk, tk+1)] =

∫ tk+1

tk
xfX(x) dx∫ tk+1

tk
fX(x) dx

.

▶ Facts: each step does not increase D (coordinate descent) ⇒
convergence to a local optimum.

▶ Sample-based version is exactly 1D k-means (assignment +
sample means).



(C) High-rate compander: how to get g and the thresholds

▶ Optimize over point densities λ(x):

λ⋆(x) =
fX(x)1/3∫
fX(u)1/3 du

, ∆⋆(x) ∝ fX(x)−1/3.

▶ Build the compressor as the integral of λ⋆:

g(x) =

∫ x

−∞
λ⋆(u) du ∈ [0, 1] ⇒ g′(x) = λ⋆(x).

▶ Uniformly quantize u = g(x) into M bins, then map back:

tk ≈ g−1
( k

M

)
, k = 0, . . . ,M, yk ≈ g−1

(k + 1
2

M

)
, k = 0, . . . ,M−1.

▶ Practical refinement: do a few Lloyd–Max iterations starting
from these {tk, yk}.



Closed-form g−1 for Gaussian and Laplace (unit variance)

▶ Gaussian X ∼ N (0, 1):

fX(x)1/3 ∝ e−x2/6 ⇒ λ⋆(x) = N (0, 3).

Using Gaussian CDF

g(x) = Φ
( x√

3

)
, g−1(u) =

√
3Φ−1(u).

▶ Laplace (unit variance): fX(x) = 1
2se

−|x|/s with s = 1/
√
2.

Then fX(x)1/3 ∝ e−|x|/(3s), so λ⋆ is Laplace with scale 3s,
and

g−1(u) =

{
(3s) ln(2u), 0 < u < 1

2 ,

−(3s) ln(2(1− u)), 1
2 ≤ u < 1.

▶ Uniform source: fX constant on its support ⇒ λ⋆ constant
⇒ uniform quantizer is already optimal.



Zador’s Formula for Asymptotic MSE

▶ In the high-rate regime, we have seen that
D(λ) ≈ 1

12L2

∫ f(x)
λ(x)2

dx where L = 2b and λ⋆(x) ∝ fX(x)1/3

therefore

D⋆(b) ≈ 2−2b

12

(∫
f1/3(x)dx

)3
.

▶ Zador’s formula relating b (bits) and quantization MSE



Asymptotic Formula and Empirical MSE
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