
EE269
Signal Processing and Quantization for

Machine Learning
Quantization Noise

Instructor : Mert Pilanci

Stanford University



Outline

▶ uniform quantizer

▶ saturation

▶ asymptotic analysis (Bennett’s Theorem)

▶ statistical properties

▶ 6dB rule

▶ practical takeaways



Uniform Quantizer

slide credit: B. Gray



Quantizer mapping q(x)



Quantized Cosine



Saturation and Error

▶ no-overload range: input ∈ [−M
2 ∆, M2 ∆]

▶ an input within bin is mapped to the midpoint of the bin
▶ error ≤ ∆

2

▶ overload range: input /∈ [−M
2 ∆, M2 ∆]

▶ error is greater than ∆
2



Quantization Noise

▶ ϵ ≜ x− q(x) is the quantizer error

▶ given an input sequence xn, we have a corresponding
quantization noise sequence ϵn

▶ additive noise model



Analysis of Quantization Noise

two assumptions used in system analysis and design

▶ (A1) ϵn is uniformly distributed in [−∆/2,∆/2]

▶ (A2) ϵn is uncorrelated, i.e., E[ϵiϵj ] = 0 for i ̸= j

these assumptions are usually false!
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Asymptotic Analysis

▶ it can be shown that as the number of bins grow to infinity
and ∆ goes to zero, these assumptions are correct.

Bennett’s Theorem: Suppose that

1. the input is in no-overload region
2. M (number of bins) is asymptotically large
3. ∆ is asymptotically small
4. probability density of the signal is smooth

then, assumptions A1 and A2 hold.



Consequences

▶ since ϵn is uniformly distributed in [−∆/2,∆/2]

▶ quantization error is zero mean

E[ϵn] = E[q(xn)− x(n)] = 0

▶ variance

Var[ϵn] = E[ϵ2n] =
1

∆

∫ ∆/2

−∆/2
e2 de =

∆2

12



Signal-to-quantization-noise ratio (SQNR)

▶ define SQNR≜ E[x2]
E[ϵ2]

▶ suppose signal variance is σ2, then SQNR≈ σ2

∆2/12

▶ in dB:

SQNRdB ≈ 10 log10

(
12σ2

∆2

)
▶ halve ∆ =⇒ SQNR improves by 20 log10 2 ≈ 6.02dB

▶ uniform quantizer with total dynamic range 2A has error
∆ = 2A

2b
where b is the number of bits

▶ therefore, each bit increases SQNR by ≈ 6.02 dB



Bits SQNR (dB) Typical application / perceptual quality
4 ≈ 25 Severe audible distortion
8 ≈ 50 Telephone PCM, AM radio quality
12 ≈ 74 High-quality speech, FM radio, early digital audio
16 ≈ 98 CD-quality audio, professional distribution
24 ≈ 146 Studio recording

Table: Approximate signal-to-quantization-noise ratio (SQNR) versus
bit-depth for uniform PCM quantization, assuming full-scale utilization
and no overload. Each additional bit improves SQNR by approximately 6
dB.



Some compression standards have variable bits

▶ MP3, AAC, MP4 do not have a fixed bit-depth. They use
adaptive, psychoacoustically driven quantization, where the
effective number of bits varies in time, frequency, and channel.

▶ FLAC, WAV, AIFF preserve a true bit-depth.



Quantization in Images

▶ grayscale image quantization
▶ 6 dB/bit =⇒ 8 bits ≈ 48 dB SQNR
▶ human vision saturates around this level for uniform noise

▶ PNG/JPEG use 8 bits per channel

▶ 10-bit and 12-bit exist only for HDR or professional
post-processing



Proof of Bennett’s Theorem

Setup. Let Xn be a continuous random variable with pdf fXn(x).
Consider a uniform midrise quantizer with step size ∆ and
quantization regions

Rk =

[
−M∆

2
+ k∆, −M∆

2
+ (k + 1)∆

)
, k = 0, 1, . . . ,M−1.

Define the quantization error

εn = Xn −Q(Xn), εn ∈
(
−∆

2
,
∆

2

)
.

We study the marginal distribution of εn.



CDF Decomposition

Define the cumulative distribution function

Fεn(α) = Pr(εn ≤ α), α ∈
(
−∆

2
,
∆

2

)
.

By conditioning on the quantization regions,

Pr(εn ≤ α) =

M−1∑
k=0

Pr(εn ≤ α ∩ Xn ∈ Rk) .



Integral Approximation

For a fixed region Rk, the event {εn ≤ α} corresponds to

Xn ∈
[
−M∆

2
+ k∆, −M∆

2
+ k∆+ α

)
.

Hence,

Pr(εn ≤ α ∩Xn ∈ Rk) =

∫ −M∆
2

+k∆+α

−M∆
2

+k∆
fXn(β) dβ.

Assuming fXn is smooth relative to ∆, the mean value theorem
yields

Pr(εn ≤ α ∩Xn ∈ Rk) ≈ fXn(yk)α,

for some yk ∈ Rk.



Riemann Sum Argument

Summing over all quantization cells,

Pr(εn ≤ α) ≈ α

M−1∑
k=0

fXn(yk).

Multiply and divide by ∆:

Pr(εn ≤ α) ≈ α

∆

M−1∑
k=0

fXn(yk)∆.

The sum is a Riemann approximation of∫
fXn(x) dx = 1.

Therefore,
Pr(εn ≤ α) ≈ α

∆
.



Resulting PDF

Differentiating the CDF,

fεn(α) =
d

dα
Fεn(α) ≈

1

∆
, α ∈

(
−∆

2
,
∆

2

)
.

Conclusion (Bennett’s Theorem, heuristic): The quantization
error is approximately

εn ∼ U
(
−∆

2
,
∆

2

)
,

independent of the input signal.


